The Role of Multi-linear Constrained Factorization in Image Coding, Clustering and Visual Learning

Amnon Shashua

School of Computer Science & Eng.
The Hebrew University

Tamir Hazan, Ron Zass

Shashua & Hazan - ICML'05
Hazan, Polak & Shashua - ICCV'05
Zass & Shashua - ICCV'05
Shashua, Zass & Hazan - ECCV'06
Zass & Shashua - NIPS06
Low Rank Factorization Algorithms

Matrix Factorization Algorithms:

- Principle Component Analysis (PCA) and its probabilistic versions (Buntine & Perttu, 2003; Tipping & Bishop, 1999),
- Latent Semantic Analysis (Deerwester et al., 1990),
- Probabilistic Latent Semantic Analysis (Hofmann, 1999),
- Maximum Margin Matrix Factorization (Srebro, Rennie & Jaakola, 2005)

All methods factorize the data into a lower dimensional space in order to introduces a compact basis which if set up appropriately can describe the original data in a concise manner.

What are the possible interpretations of high dimensional (tensor) non-negative decompositions?
Outline

• Conditional Independence, tensor-rank, latent class models

• Conditional Independence and Clustering

• High-order affinity clustering (model selection, multiple 3D body segmentation, varying illumination segmentation).
A rank=1 matrix G is represented by an outer-product of two vectors:

$$G_{ij} = u_i v_j \quad \quad G = uv^T = u \otimes v$$

A rank=1 tensor (n-way array) $G \in R^{d_1 \times d_2 \times \ldots \times d_n}$ is represented by an outer-product of n vectors u_1, \ldots, u_n

$$G_{i_1,i_2,\ldots,i_n} = u_{1,i_1} u_{2,i_2} \ldots u_{n,i_n} \quad \quad G = u_1 \otimes u_2 \otimes \ldots \otimes u_n$$
N-way array decompositions

A matrix G is of (at most) rank=k if it can be represented by a sum of k rank-1 matrices:

$$G \in \mathbb{R}^{d_1 \times d_2} \quad U \in \mathbb{R}^{d_1 \times k} \quad V \in \mathbb{R}^{k \times d_2}$$

$$G = \sum_{j=1}^{k} u^j \otimes v^j$$

A tensor G is (at most) rank=k if it can be represented by a sum of k rank-1 tensors:

$$G = \sum_{j=1}^{k} u_1^j \otimes \ldots \otimes u_n^j$$

Example:

$$G = \sum_{j=1}^{k} u^j \otimes v^j \otimes w^j$$

$$A_i = w_1^i (u_1 \otimes v_1) + w_2^i (u_2 \otimes v_2) + \cdots + w_k^i (u_k \otimes v_k)$$
N-way array Symmetric Decompositions

A symmetric rank=1 matrix G:

$$G_{ij} = u_i u_j \quad G = uu^\top = u \otimes u$$

A symmetric rank=k matrix G:

$$G = \sum_{j=1}^{k} u_j \otimes u_j = \sum_{j=1}^{k} u_j u_j^\top = UU^\top$$

A super-symmetric rank=1 tensor (n-way array) $G \in \mathbb{R}^D$, $D = [m] \times \cdots [m] = [m]^{\times n}$ is represented by an outer-product of n copies of a single vector $u \in \mathbb{R}^m$

$$G_{i_1, \ldots, i_n} = u_{i_1} \cdots u_{i_n} \quad G = u \otimes \cdots \otimes u = u^{\otimes n}$$

A super-symmetric tensor described as sum of k super-symmetric rank=1 tensors:

$$G = \sum_{j=1}^{k} u_j \otimes u_j \otimes \cdots \otimes u_j = \sum_{j=1}^{k} u_j^{\otimes n}$$

is (at most) rank=k.
Let X_1 and X_2 be two random variables taking values in the sets $[d_i] = \{1,\ldots,d_i\}$.

The statement X_1 is independent of X_2, denoted by $X_1 \perp X_2$, means:

$$P(X_1,X_2) = P(X_1)P(X_2)$$

$P(X_1,X_2)$ is a 2D array (a matrix) \hspace{1cm} $G_{ij} = P(X_1=i,X_2=j)$

$P(X_1)$ is a 1D array (a vector) \hspace{1cm} $u_i = P(X_1=i)$

$P(X_2)$ is a 1D array (a vector) \hspace{1cm} $v_j = P(X_2=j)$

$X_1 \perp X_2$ means that $G_{ij} = u_i v_j$ is a rank=1 matrix

$G = u \otimes v$
Reduced Rank in Statistics

Let \(X_1, \ldots, X_n \) be random variables taking values in the sets \([d_i] = \{1, \ldots, d_i\}\).

The statement \(X_1 \perp \ldots \perp X_n \) means:

\[
P(X_1, \ldots, X_n) = P(X_1) \cdots P(X_n)
\]

\(P(X_1, \ldots, X_n) \) is a \(n \)-way array (a tensor) \(G_{i_1, \ldots, i_n} = P(X_1 = i_1, \ldots, X_n = i_n) \).

\(P(X_j) \) is a 1D array (a vector) \(\vec{u}_j \) whose entries \(u_{j,i} = P(X_j = i) \).

\(X_1 \perp \ldots \perp X_n \) means that \(G_{i_1, \ldots, i_n} = u_{1,i_1}u_{2,i_2} \cdots u_{n,i_n} \) is a rank=1 tensor

\[
G = \vec{u}_1 \otimes \vec{u}_2 \otimes \cdots \otimes \vec{u}_n
\]
Let X_1, X_2, X_3 be three random variables taking values in the sets $[d_i] = \{1, \ldots, d_i\}$.

The conditional independence statement $X_1 \perp X_2 \mid X_3$ means:

$$P(X_1, X_2 \mid X_3 = i) = P(X_1 \mid X_3 = i)P(X_2 \mid X_3 = i)$$

Slice $X_3 = i$ is a rank=1 matrix.
Reduced Rank in Statistics: Latent Class Model

Let X_1,\ldots,X_n be random variables taking values in the sets $[d_i] = \{1,\ldots,d_i\}$.

Let Y be a “hidden” random variable taking values in the set $\{1,\ldots,k\}$.

The “observed” joint probability n-way array is:

$$P(X_1,\ldots,X_n) = \sum_{j=1}^{k} P(X_1,\ldots,X_n, Y = j) = \sum_{j=1}^{k} P(X_1,\ldots,X_n \mid Y = j)P(y = j)$$

A statement of the form $X_1 \perp X_2 \perp \ldots \perp X_n \mid Y$ translates to the algebraic statement

About the n-way array $P(X_1,\ldots,X_n)$ having tensor-rank equal to k.
Reduced Rank in Statistics: Latent Class Model

\[P(X_1, \ldots, X_n) \] is a n-way array \[G \geq 0 \quad \|G\|_1 = 1 \]

\[P(X_i \mid Y = j) \] is a 1D array (a vector) \[u^i_j \quad \|u^i_j\|_1 = 1 \]

\[P(X_1, \ldots, X_n \mid Y = j) \] is a rank-1 n-way array \[\otimes_{i=1}^n u^i_j \]

\[P(Y) \] is a 1D array (a vector) \[\sigma \quad \|\sigma\|_1 = 1 \]

\[
\min_{u^i_j, \sigma} \|G - \sum_{j=1}^k \sigma_j \otimes_{i=1}^n u^i_j\|^2 \quad s.t. \quad u^i_j \geq 0, \quad \sigma \geq 0, \quad \|u^i_j\|_1 = 1, \quad \|\sigma\|_1 = 1
\]

reduced to repeated application of “projection onto probability simplex”

\[
\min_x \|x - b\|^2 \quad s.t. \quad x \geq 0, \quad \|x\|_1 = 1
\]
(non-negative) Low Rank Decompositions

\[
\min_{\mathbf{u}_i, \mathbf{\sigma}} \| \mathbf{G} - \sum_{j=1}^{k} \mathbf{\sigma}_j \otimes \mathbf{u}_i \|^2 \quad \text{s.t} \quad \mathbf{u}_i \geq 0, \mathbf{\sigma} \geq 0, \| \mathbf{u}_i \|_1 = 1, \| \mathbf{\sigma} \|_1 = 1
\]

Measurements
= (non-negative) Low Rank Decompositions

The rank-1 blocks tend to represent local parts of the image class

4 factors 8 factors 12 factors 16 factors 20 factors

Hierarchical build-up of “important” parts
(non-negative) Low Rank Decompositions

$$\min_{u_i, \sigma} \left\| G - \sum_{j=1}^{k} \sigma_j \otimes_{i=1}^{n} u^j_i \right\|^2$$

Example: The swimmer

Sample set (256)

Non-negative Tensor Factorization

NMF
• Conditional Independence, tensor-rank, latent class models

• Conditional Independence and Clustering

• High-order affinity clustering (model selection, multiple 3D body segmentation, varying illumination segmentation).
Clustering data into k groups: Pairwise Affinity

$x_1, \ldots x_m \in \mathbb{R}^d$ \hspace{1cm} \text{input points}

$K_{ij} = e^{-\|x_i-x_j\|^2/\sigma^2}$ \hspace{1cm} \text{input (pairwise) affinity value}

interpret K_{ij} as “the probability that x_i and x_j are clustered together”

$y_1, \ldots, y_m \in \{1, \ldots, k\}$ \hspace{1cm} \text{unknown class labels}
Clustering data into k groups: Pairwise Affinity

$x = x_1, \ldots x_m \in \mathbb{R}^d$ \hspace{1cm} \text{input points}

$K_{ij} = e^{-\|x_i - x_j\|^2/\sigma^2}$ \hspace{1cm} \text{input (pairwise) affinity value}

interpret K_{ij} as “the probability that x_i and x_j are clustered together”

$y_1, \ldots, y_m \in \{1, \ldots, k\}$ \hspace{1cm} \text{unknown class labels}

A probabilistic view:

$G_{ij} = P(y_i = j \mid X)$ \hspace{1cm} \text{probability that x_i belongs to the j’th cluster}

note: $G \geq 0$, $G_1 = 1$

What is the (algebraic) relationship between the input matrix K and the desired G?
Clustering data into k groups:
Pairwise Affinity

Assume the following conditional independence statements:

\[y_1 \perp \cdots \perp y_m \mid x_1, \ldots, x_m \]

\[K_{ij} = \sum_{r=1}^{k} P(y_i = r, y_j = r \mid X) \]

\[= \sum_{r=1}^{k} P(y_i = r \mid X)P(y_j = r \mid X) \]

\[= \sum_{r=1}^{k} G_{ir}G_{jr} \]

\[K = GG^T, \quad G \geq 0, \quad G1 = 1 \]
A “hard” assignment requires that:

\[G^\top G = D = \text{diag}(n_1, \ldots, n_k) \]

where \(n_1, \ldots, n_k \) are the cardinalities of the clusters.

Proposition: the feasible set of matrices \(G \) that satisfy \(G \geq 0, \ G_1 = 1, \ G^\top G = D \)

are of the form:

\[G_{ij} = \begin{cases}
1 & x_i \in \psi_j \\
0 & \text{otherwise}
\end{cases} \]

\[
\max_G \text{tr}(G^\top K G) \quad \text{s.t} \quad G \geq 0, \ G_1 = 1, \ G^\top G = D
\]

are equivalent to:

\[
\max_{\psi_1, \psi_2} \sum_{(i,j) \in \psi_1} K_{ij} + \sum_{(i,j) \in \psi_2} K_{ij}
\]

Min-cut formulation

\[
\min_{\psi_1, \psi_2} \sum_{i \in \psi_1, j \in \psi_2} K_{ij}
\]
Relation to Spectral Clustering

\[K = GG^\top, \quad G \geq 0, \quad G1 = 1 \]

Add a “balancing” constraint: \(G^\top 1 = (n/k) 1 \)

put together \(G1 = 1, \quad G^\top 1 = 1 \) means that \(GG^\top 1 = (n/k) 1 \)
also, \(GG^\top = (n/k) 1 \) and \(G^\top G = D \) means that \(D = (n/k) I \)

\[
\max_G \text{tr}(G^\top KG) \quad s.t \quad G \geq 0, \quad GG^\top 1 = \frac{n}{k} 1, \quad G^\top G = \frac{n}{k} I
\]

\(n/k \) can be dropped.

\[
\max_G \text{tr}(G^\top KG) \quad s.t \quad G \geq 0, \quad GG^\top 1 = 1, \quad G^\top G = I
\]

Relax the balancing constraint by replacing \(K \) with the “closest” doubly stochastic matrix \(K' \) and ignore the non-negativity constraint:

\[
\max_G \text{tr}(G^\top K' G) \quad s.t \quad G^\top G = I
\]
Relation to Spectral Clustering

\[
\max_G \text{tr}(G^\top K'G) \; s.t \; G^\top G = I
\]

Let \(D = \text{diag}(K1) \)

Then: \(K' = K - D + I \) is the closest D.S. in L1 error norm. \(\text{Ratio-cuts} \)

\[
K' = D^{-1/2}KD^{-1/2}
\]

\(\text{Normalized-Cuts} \)

Proposition: iterating \(K^{(t+1)} = D^{-1/2}K^{(t)}D^{-1/2} \) with \(D = \text{diag}(K^{(t)}1) \) converges to the closest D.S. in KL-div error measure.
\[
\max_G \text{tr}(G^\top K'G) \quad \text{s.t.} \quad G^\top G = I
\]

where

\[
K' = \text{argmin}_F \|K - F\|_F^2 \quad \text{s.t.} \quad F \geq 0, \; F 1 = 1, \; F = F^\top
\]

we are looking for the closest doubly-stochastic matrix in least-squares sense.
New Normalization for Spectral Clustering

\[K' = \arg\min_F \|K - F\|_F^2 \text{ s.t. } F \geq 0, \ F1 = 1, \ F = F^\top \]

to find \(K' \) as above, we break this into two subproblems:

\[P_1(X) = \arg\min_F \|X - F\|_F^2 \text{ s.t. } F1 = 1, \ F = F^\top \]

\[P_2(X) = \arg\min_F \|X - F\|_F^2 \text{ s.t. } F \geq 0 \]

\[P_1(X) = \frac{1}{n}I + \frac{1}{n^2}X1 - \frac{1}{n}X \]

\[P_2(X) = th_{\geq0}(X) \]

use the Von-Neumann successive projection lemma:

\[K' = P_1P_2P_1P_2...P_1(K) \]
New Normalization for Spectral Clustering

successive-projection vs. QP solver

running time for the three normalizations
New Normalization for Spectral Clustering

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Kernel</th>
<th>Clusters</th>
<th>Size</th>
<th>Dim.</th>
<th>Lowest Error Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L1</td>
</tr>
<tr>
<td>SPECTF heart</td>
<td>RBF</td>
<td>2</td>
<td>349</td>
<td>44</td>
<td>27.5</td>
</tr>
<tr>
<td>Pima Indians Diabetes</td>
<td>RBF</td>
<td>2</td>
<td>768</td>
<td>8</td>
<td>36.2</td>
</tr>
<tr>
<td>Wine</td>
<td>RBF</td>
<td>3</td>
<td>178</td>
<td>13</td>
<td>38.8</td>
</tr>
<tr>
<td>SpamBase</td>
<td>RBF</td>
<td>2</td>
<td>4601</td>
<td>57</td>
<td>36.1</td>
</tr>
<tr>
<td>BUPA liver disorders</td>
<td>Poly</td>
<td>2</td>
<td>345</td>
<td>6</td>
<td>37.4</td>
</tr>
<tr>
<td>WDBC</td>
<td>Poly</td>
<td>2</td>
<td>569</td>
<td>30</td>
<td>18.8</td>
</tr>
</tbody>
</table>

UCI Data-sets

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Kernel</th>
<th>Clusters</th>
<th>Size</th>
<th>Dim.</th>
<th>Lowest Error Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L1</td>
</tr>
<tr>
<td>AML/ALL Leukemia</td>
<td>Poly</td>
<td>2</td>
<td>72</td>
<td>5</td>
<td>27.8</td>
</tr>
<tr>
<td>Lung</td>
<td>Poly</td>
<td>2</td>
<td>181</td>
<td>5</td>
<td>15.5</td>
</tr>
<tr>
<td>Prostate</td>
<td>RBF</td>
<td>2</td>
<td>136</td>
<td>5</td>
<td>40.4</td>
</tr>
<tr>
<td>Prostate Outcome</td>
<td>RBF</td>
<td>2</td>
<td>21</td>
<td>5</td>
<td>28.6</td>
</tr>
</tbody>
</table>

Cancer Data-sets

Hebrew University
• Conditional Independence, tensor-rank, latent class models

• Conditional Independence and Clustering

• High-order affinity clustering (model selection, multiple 3D body segmentation, varying illumination segmentation).
Clustering data into k groups: Beyond Pairwise Affinity

A model selection problem that is determined by n-1 points can be described by a factorization problem of n-way array (tensor).

Example: clustering m points into k lines

\[D = \{x_1, \ldots, x_m\} \]

Input: \(K_{i_1,i_2,i_3} \) = the probability that \(x_{i_1}, x_{i_2}, x_{i_3} \) belong to the same model (line).

Output: \(g_{rs} = Pr(y_s = r \mid D) \) the probability that the point \(x_s \) belongs to the r’th model (line)

Under the independence assumption:

\(y_1 \perp \ldots \perp y_m \mid x_1, \ldots, x_m \)

\[
 P(y_{i_1} = r, y_{i_2} = r, y_{i_3} = r \mid D) = P(y_{i_1} = r \mid D)P(y_{i_2} = r \mid D)P(y_{i_3} = r \mid D)
\]

\[
 K_{i_1,i_2,i_3} = \sum_{r=1}^{4} P(y_{i_1} = r \mid D)P(y_{i_2} = r \mid D)P(y_{i_3} = r \mid D) = \sum_{r=1}^{4} g_{r,i_1}g_{r,i_2}g_{r,i_3}
\]

\(K = \sum_{r=1}^{K} g_r \otimes g_r \otimes g_r \) is a 3-dimensional super-symmetric tensor of rank=4

\[G = [g_1, \ldots, g_k] \]
Clustering data into \(k \) groups: Beyond Pairwise Affinity

General setting: clusters are defined by \(n-1 \) dim subspaces, then for each \(n \)-tuple of points \(x_{i_1}, \ldots, x_{i_n} \) we define an affinity value \(K_{i_1,\ldots,i_n} = e^{-\Delta} \) where \(\Delta \) is the volume defined by the \(n \)-tuple.

Input: \(K_{i_1,\ldots,i_n} \) the probability that \(x_{i_1}, \ldots, x_{i_n} \) belong to the same cluster

Output: \(g_{rs} = P(y_s = r \mid D) \) the probability that the point \(x_s \) belongs to the \(r \)'th cluster

Assume the conditional independence: \(y_1 \perp \ldots \perp y_m \mid x_1, \ldots, x_m \)

\[
K_{i_1,\ldots,i_n} = \sum_{r=1}^{k} P(y_{i_1} = r \mid D) \cdots P(y_{i_n} = r \mid D) = \sum_{r=1}^{k} g_{r,i_1} \cdots g_{r,i_n}
\]

\[\rightarrow \quad K = \sum_{r=1}^{k} g_r^{\otimes n}\]

is a \(n \)-dimensional super-symmetric tensor of rank=\(k \)
Hyper-stochastic constraint: under balancing requirement

K is (scaled) hyper-stochastic:

\[
\sum_{i_1, \ldots, i_{j-1}, i_{j+1}, \ldots, i_n} K_{i_1, \ldots, i_n} = \left(\frac{m}{k}\right)^{n-1} 1, \quad j = 1, \ldots, n
\]

Theorem: for any non-negative super-symmetric tensor \(K^{(0)}\), iterating

\[
K_{i_1, \ldots, i_n}^{(t+1)} = \frac{K_{i_1, \ldots, i_n}^{(t)}}{(a_{i_1} \cdots a_{i_n})^{1/n}}
\]

\[
a_i = \sum_{i_2, \ldots, i_n} K_{i,i_2, \ldots, i_n}, \quad i = 1, \ldots, m
\]

converges to a hyper-stochastic tensor.
Example: **multi-body segmentation**

9-way array, each entry contains
The probability that a choice of 9-tuple of points arise from the same model.

\[p^T F p = 0 \]

Probability:

\[e^{-(p^T F p)^2} \]
Model Selection

Example: visual recognition under changing illumination

4-way array, each entry contains
The probability that a choice of 4 images
Live in a 3D subspace.
Previous Work

- In VLSI / PCB Placement - since early 70s
 - Hyper-vertex swapping and multi-level paradigms (heuristic in nature).

- Recent works in vision and learning communities, seeks an approximation as a pairwise problem:

 \[
 A_{i_1,i_2,i_3} = \sum_{i_2,...,i_n} A_{r,i_2,...,i_n} A_{s,i_2,...,i_n}
 \]

- Govindu 2005:

 \[
 A_{r,s} = \sum_{i_2,...,i_n} A_{r,i_2,...,i_n} A_{s,i_2,...,i_n}
 \]

- When the affinity dimension \(n \) is high or when the number of points per cluster is low, the averaging decreases the SNR, and the projection result becomes less informative.
200 points
Arranged in five 3^{rd} order curves (4 coefficients), with added Gaussian noise.
Induces a 5-way affinity tensor.
Error Rate vs. Sampling

- Projection with Normalized Cuts
- SNTF
Error Rate vs. Sigma

\[K_{i_1, \ldots, i_n} = \frac{e^{\Delta^2}}{\sigma^2} \]

Projection with Normalized Cuts

SNTF
Revisiting Latent Class Model

\[P(X_1, \ldots, X_n) \] is a n-way array \[\|G\|_1 = 1 \]

\[P(X_i \mid Y = j) \] is a 1D array (a vector) \[u^i_j \| u^i_j \|_1 = 1 \]

\[P(X_1, \ldots, X_n \mid Y = j) \] is a rank-1 n-way array \[\otimes_{i=1}^n u^i_j \]

\[P(Y) \] is a 1D array (a vector) \[\sigma \| \sigma \|_1 = 1 \]

\[\min_{u^i_j, \sigma} \| G - \sum_{j=1}^{k} \sigma_j \otimes_{i=1}^n u^i_j \|^2 \quad \text{s.t. } u^i_j \geq 0, \sigma \geq 0, \| u^i_j \|_1 = 1, \| \sigma \|_1 = 1 \]

Why use the Least-Squares (Frobenius) error?
Revisiting Latent Class Model

The Relative Entropy:
\[D(p\|q) = \sum_i p_i \log \frac{p_i}{q_i} \]

\[
\min_{u_i^j, \sigma} D(G \| \sum_j \sigma_j \otimes_i u_i^j) \quad s.t \quad u_i^j \geq 0, \sigma \geq 0, \|u_i^j\|_1 = 1, \|\sigma\|_1 = 1
\]

is the Maximum-Likelihood solution.
The Expectation-Maximization algorithm, for example, introduces auxiliary tensors \(W_j \) and alternates among the three sets of variables: \(W_j, \sigma, u^j_i \)

\[
\min_{u^j_i, \sigma, W_j} \sum_{j=1}^{k} D(W_j \odot G \mid \sigma_j \otimes u^j_i) \quad s.t \quad u^j_i \geq 0, \sigma \geq 0, \|u^j_i\|_1 = 1, \|\sigma\|_1 = 1
\]

\(W_j \geq 0, \sum_j W_j = 1 \)

\((A \circ B)_i = A_i B_i \) Hadamard product.

reduces to repeated application of “projection onto probability simplex”

\[
\min_x D(x \mid b) \quad s.t. \quad x \geq 0, \|x\|_1 = 1
\]

This, however, is known to be very sensitive to additive noise!

Hebrew University
Revisiting Latent Class Model

Frobenius error behaves quite well under additive noise:

\[S = \{ Q : Q \geq 0, \| Q \|_1 = 1, \text{rank}(Q) = k \} \] probability tensors of rank=k

Let \(E \) be a perturbation tensor with bounded infinity-norm \(\| E \|_\infty = \varepsilon \)

Proposition: let \(P \in S \) be a rank=k probability tensor and let

\[Q^* = \arg\min_{Q \in S} \| P + E - Q \|_F^2 \]

then

\[\| P - Q^* \|_\infty \leq 2\sqrt{\varepsilon} \]
The noise-resilience has to do with allowing solutions on the boundary:

\[x^* = \frac{1}{\|b\|_1} b \]
conditional independence \rightarrow rank-1 tensor slices constraint

Latent class model \rightarrow low rank NTF

sparse image coding \rightarrow low rank super-symmetric NTF

clustering/model-selection is associated with a graphical model of conditional independence constraints
END