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Abstract

We study the lane formation capabilities of a cellu-
lar automaton model introduced by [A. Kirchner and A.
Schadschneider: Simulation of evacuation processes using
a bionics-inspired cellular automaton model for pedestrian
dynamics. Physica A: Statistical Mechanics and its Appli-
cations, 312(1-2):260 276, 2002]. We present numerical
examples demonstrating the formation of lanes in the mi-
croscopic setting. Using the link to a macroscopic partial
differential equation, we are able to give conditions on the
stability of perturbations corresponding to the formation of
lanes in the microscopic case.

1. Introduction

The formation of lanes in two groups moving in oppo-
site directions is a famous and important example of self-
organisation in human crowds. Pedestrians with the same
desired walking direction prefer to walk in lanes. Typically,
the number of lanes depends on the width of the street and
on the density of pedestrians. The explanation for lane for-
mation is as follows: Pedestrians walking against the stream
have a high relative velocity. As a consequence, pedestrians
change their walking direction sideways to avoid collisions,
which finally leads to separation [8]. Such effects are com-
monly observed in pedestrian dynamics [10], [7]

We study the lane formation capabilities of a cellular
automaton model for human crowd motion introduced in
[12]. In this model, the crowd is considered as a group of
a finite number of individuals living on a rectangular two-
dimensional grid. Given a discrete time step, the model
provides for each individual in a given cell the probabil-
ity to jump into a neighbouring cell. This probability is

determined by several factors: First of all, individuals are
not allowed to jump to an occupied cell (size exclusion, cf.
[17]). Furthermore, there exist two driving forces, called
”floor fields”, cf. [4], a static field S and a dynamic field D
on which the jump-probability depends exponentially. The
static field S provides individuals with a sense of their en-
vironment, increasing towards locations they want to reach,
such as doors. The dynamic field D is created by the par-
ticles themselves and accounts for herding effects. This is
a key feature of the model and one goal of this paper is to
examine its impact on the formation of lanes. Being zero
at the initial time, the value of D is increased whenever a
particle leaves a cell, modelling the tendency of people to
follow others. It is straightforward to extend this model to
multiple species, each of them coupled to its own dynamic
and static field. We remark that lane formation is created by
pedestrians via self-organisation. In our model, we do not
assume that individuals have a tendency to prefer a special
walking site. We consider the case of two species (labelled
red or r and blue or b in the following) and focus on the for-
mation of lanes. The formation of lanes for two species (but
without static field) has already been briefly demonstrated
in [15]. Here, we shall present the results of Monte Carlo
simulations showing the formation of lanes. The main part
will be to analyse the corresponding continuum partial dif-
ferential equation model. For one species, this limit has
already been considered, cf. [2]. We shall exploit linear sta-
bility properties of this model yielding insight into the role
of the dynamic fields for the formation of lanes.

2. Related Work

In the modelling of human crowds, one can distinguish
between two general approaches: microscopic and macro-
scopic models. In the microscopic framework people are



treated as individual entities (particles) while in the macro-
scopic description the crowd is represented by a density
function and it is no longer possible to observe individual
entities. The evolution of the particles in time is determined
by physical and social laws which describe the interaction
among the particles as well as their interactions with the
physical surrounding. Examples of microscopic methods
are social-force models (see [9] and the references therein),
queuing models e.g. [21] or continuum dynamic approaches
like [19]. For an extensive review of different microscopic
approaches we refer to [6]. We are interested in the cel-
lular automation model [15], see [5, 14] for other exam-
ples. It has been demonstrated in a number of papers, cf.
[1, 18, 17], that it is possible to derive macroscopic partial
differential equation from theses models by a formal limit
process. As in [2], we are interested in comparing these two
formulations numerically.

3. The Microscopic Model for Two Species
The model under consideration is based on an Asymmet-

ric Simple Exclusion Process (ASEP) on a two-dimensional
grid of size mx · ny (the size of one cell is typically about
40 × 40 cm2, cf. [16], originating from a maximal density
of 6.25 people per m2, cf. [20]). For simplicity, we shall
only explain the model for particles of group r with corre-
sponding fields Dr and Sr. The probability of a particle to
jump into a neighbouring cell i, j is given by

(Pr)i,j = (Nr)i,j exp (kD (Dr)i,j) exp (kS(Sr)i,j) (1)

× (1− ri,j − bi,j).

The term (1− ri,j− bi,j) accounts for the size exclusion ef-
fect rendering the probability zero if a cell is occupied. The
positive constants kD and kS regulate the relative influence
of the two floor fields. Finally, (Nr)i,j is a normalisation
factor given by

(Nr)
−1
i,j =

∑
k={i−1,i+1}

∑
l={j−1,j+1}

ekD(Dr)k,lekS(Sr)k,l .

(2)

The dynamic fields Dr is zero at the beginning of a simula-
tion. In every step, it is updated using the following rules

• It is increased by one whenever a particle left a cell,
i.e.

(Dr)
k+1
i,j =

{
(Dr)

k
i,j + 1 if (rki,j − r

k+1
i,j ) = 1

(Dr)
k
i,j otherwise

(3)

• If Dr ≥ 1, it decreases by a given probability δ > 0,
i.e. given a random number p

(Dr)
k+1
i,j =

{
(Dr)

k
i,j − 1 if p < δ

(Dr)
k
i,j otherwise

(4)

• The diffusion is implemented in the following way:
With a probability of κ/4, κ ∈ R+ a particle jumps to
one of its neighbouring fields. With probability (1−κ),
it stays at its place.

Note that these rules imply that the value of Dr is always a
non-negative integer.

4. Monte Carlo Simulations
We performed simulations of the above model on a

20 × 100 cell grid. We used a Mersenne twister, cf. [13],
to create the pseudo-random numbers needed. The main is-
sue here is to deal with so-called “conflicts”, i.e. the case
when two particles want to jump into the same cell. In
our implementation, we followed the strategy described in
[11]. The basic idea is the following: A new parameter
λ ∈ [0, 1] in introduced. If two or more particles want to
jump to the same cell, this new parameter determines their
behaviour: With probability λ, none of the particles jumps
and the cell remains empty. With probability (1 − λ), one
particle is chosen randomly and jumps into the target cell.
In our set-up, red particles enter the domain from the left
and blue particles from the right. Both species are sup-
plemented with a static field transporting them through the
channel. For this simulation, we chose the following param-
eters: δ = 0.05, kD = 1.0, kS = 7, κ = 0.5. The diffusion
coefficients of r and b are chosen as 0.0005 in x- and 0.1
in y-direction. The boundary conditions are implemented
as follows: In each step, for each cell on the left boundary,
a random number is generated. If this number is below a
given value bcl, a virtual particle is created. This particle
evolves due to the usual probabilities given by the model
and can either jump into the domain or vanishes. On the
right side, the boundary conditions are implemented in the
same way with a corresponding boundary value bcr. In our
experiment, we added small perturbations in y-direction,
i.e.

bcl = b̃cl + 0.04 sin

(
2kπ

nx
i

)
, i = 1, . . . , nx, (5)

bcr = b̃cr + 0.04 sin

(
2kπ

nx
i+ π

)
, i = 1, . . . , nx. (6)

Here, we chose b̃cl = b̃cr = 0.06. In Figure 1 (top), we
show a snapshot of one simulation demonstration the for-
mation of two lanes. Figure 1 (bottom), we show the aver-
age density of red particles at step 2000 averages over 35
simulations, in Figure 1 (middle), we same is shown for the
blue species.

5. The Macroscopic PDE Limit
Following the strategy described in [1, 17] it is straight-

forward to obtain a continuum PDE limit of the above cel-
lular model. The densities of the two species are labelled r



Figure 1. Results of the Monte Carlo Simulations: Snapshot of a single Simulation after 1000 steps (top); Density of red particles after
2000 steps, averages over 35 runs (bottom); Density of blue particles after 2000 steps, averages over 35 runs (middle).

and b, P ∈ R+ denotes their diffusion coefficient, ρ = r+b
denotes the total mass, Sr and Sb denote external potentials
and Dr and Db denote the dynamic fields. As a result we
obtain the following non-linear Nernst-Planck type equa-
tions

∂tr =∇ · P ((1− ρ)∇r + r∇ρ (7)
+ r(1− ρ)∇(kSSr + kDDr)),

∂tb =∇ · P ((1− ρ)∇b+ b∇ρ (8)
+ b(1− ρ)∇(kSSb + kDDb)),

∂tDr =κ∆Dr − δ1Dr + r(1− ρ), (9)
∂tDb =κ∆Db − δ1Db + b(1− ρ) (10)

with x ∈ Ω = [0, 1] × [0, 1], t > 0. Appropriate bound-
ary conditions for our application will be discussed below.
Without dynamic fields, this model been analysed exten-
sively, cf. [1, 3].

6. Linear Stability Analysis
We now take a closer look at the linear stability of the

non-linear Nernst-Planck equations (7)-(10) with given ex-
ternal potentials Sr and Sb. The question is under which

Figure 2. Geometry of the domain

conditions small perturbations in the density around the
equilibrium solution do not smooth out, but are amplified
in time. In our set-up, these perturbations correspond to the
formation of lanes, and their frequency to the number of
lanes.

To simplify the analysis, we consider cosinusoidal
shaped perturbation in the y direction, hence the number
of (possible) lanes is given by the mode of the cosine. We
are able to predict for several densities and geometries of
the domain how many lanes are formed.

From now on, we assume that the potential is acting only
in x-direction. We assume the special case

∇Sr = (1, 0), ∇Sb = (−1, 0), (11)



meaning that the red and blue persons have opposite walk-
ing directions. We assume that the diffusion of particles in
x-directions vanishes, which is reasonable in case of pedes-
trians, as it is unlikely for them to go randomly forward or
backward. On the other hand, the diffusion of Di vanishes
in y-direction, corresponding to small movements orthogo-
nal to the walking direction. The resulting system is then
given by

∂tr =P∂y ((1− b)∂yr + r∂yb) + PkS∂x(r(1− ρ))

+ PkD∇(r(1− ρ)∇Dr)

=∇ · (−Jr) (12)
∂tb =P∂y ((1− r)∂yb+ b∂yr)− PkS∂x(b(1− ρ))

+ PkD∇(b(1− ρ)∇Db)

=∇ · (−Jb). (13)

Hence,

Jr = −P
(

kSr(1− b) + kD(r(1− ρ)∂xDr

(1− b)∂yr − r∂yρ+ kD(r(1− ρ)∂yDr

)
and

Jb = −P
(

kSb(1− r) + kD(b(1− ρ)∂xDb

(1− r)∂yb− b∂yρ+ kD(b(1− ρ)∂yDb

)
.

For the boundary conditions, we assume constant influxes
of r and b. We obtain at constant influx of r and outflux of
b at x = 0:

Jr ·
(
−1
0

)
= J inr = const and Jb ·

(
−1
0

)
= bv0.

At x = L, we obtain constant influx of b and outflux of r

Jr ·
(

1
0

)
= rv0 and Jb ·

(
1
0

)
= J inb = const.

We assume no-flux boundary conditions in y-direction:

Jr ·
(

0
1

)
= Jb ·

(
0
1

)
= 0 for y = 0, l.

We denote the equilibrium solutions by req , beq , Deq
r and

Deq
b and consider their perturbations r = req + εξ and b =

beq− εη, as well asDr = Deq
r + εΨr andDb = Deq

b − εΨb.
This yields the following first order linearisation

∂tξ =P ((1− beq)∂yyξ − req∂yyη) (14)
+ PkS∂x((1− ρeq)ξ − req(ξ − η))

+ PkDr
eq(1− ρeq)(∂xx + ∂yy)Ψr,

∂tη =P ((1− req)∂yyη − beq∂yyξ) (15)
− PkS∂x((1− ρeq)η − beq(−ξ + η))

+ PkDb
eq(1− ρeq)(∂xx + ∂yy)Ψb,

0 =κ∂xxΨr − δΨr + (1− ρeq − req)ξ + reqη, (16)
0 =κ∂xxΨb − δΨb + (1− ρeq − beq)η + beqξ. (17)

We denote length of the domain in y-direction by l, the
length in x-direction is denoted by L, see Fig. 2. The per-
turbations are assumed as

ξ = U(x) cos

(
kπ

l
y

)
exp(λt), (18)

η = V (x) cos

(
kπ

l
y

)
exp(λt), (19)

Ψr = Yr(x) cos

(
kπ

l
y

)
exp(λt), (20)

Ψb = Yb(x) cos

(
kπ

l
y

)
exp(λt). (21)

whereU(x), V (x), Yr(x) and Yb(x) denote perturbations in
the x-direction, and k denotes the mode of the perturbation
in y-direction. From now on, we assume req = beq . Hence,
(14) and (15) read

λ/PU =− (1− req)γU + reqγV (22)
+ kS(1− 3req)U ′ + kSr

eqV ′

− kDreq(1− 2req)(γ + Γ)Yr

λ/PV =− (1− req)γV + reqγU (23)
− kS(1− 3req)V ′ − kSreqU ′

− kDreq(1− 2req)(γ + Γ)Yb,

where we used γ = k2π2

l2 , ′ denotes the derivative with re-
spect to x, Γ = π2

L2 and we assume perturbations Yi of a
sinusoidal or cosinusoidal type Y ′′i = −ΓYi. The equations
for U and V finally read, using (16) and (17):

[λ/P + (1− req)γ]U − reqγV (24)

+ kDr
eq(1− 2req)

γ + Γ

κΓ + δ
[(1− 3req)U + reqV ]

=kS(1− 3req)U ′ + µreqV ′,

[λ/P + (1− req)γ]V − reqγU (25)

+ kDr
eq(1− 2req)

γ + Γ

κΓ + δ
[(1− 3req)V + reqU ]

=− kS(1− 3req)V ′ − µreqU ′.

We denote Θ = γ+Γ
κΓ+δ . The summation of (24) and (25) is

given by

[λ/P + (1− 2req)γ + kDr
eq(1− 2req)2Θ](U + V )

= kS(1− 4req)(U ′ − V ′). (26)

The derivatives of (24) and (25) are given by

[λ/P + (1− req)γ]U ′ − reqγV ′ (27)
+ kDr

eq(1− 2req)Θ [(1− 3req)U ′ + reqV ′]

=kS(1− 3req)U ′′ + µreqV ′′,

[λ/P + (1− req)γ]V ′ − reqγU ′ (28)
+ kDr

eq(1− 2req)Θ [(1− 3req)V ′ + reqU ′]

=− kS(1− 3req)V ′′ − µreqU ′′.



and their difference gives

[λ/P + γ + kDr
eq(1− 2req)(1− 4req)Θ](U ′ − V ′)

= kS(1− 2req)(U ′′ + V ′′). (29)

Combining (26) and (29) leads to

[λ/P + (1− 2req)γ + kDr
eq(1− 2req)2Θ](U + V ) =

(30)

k2
S

(1− 4req)(1− 2req)

λ/P + γ + kDreq(1− 2req)(1− 4req)Θ
(U ′′ + V ′′).

In the following, we assume perturbations U and V in x-
direction of a sinusoidal type, due to the homogeneous
boundary conditions. This leads to

U ′′ = −m
2π2

L2
U, V ′′ = −m

2π2

L2
V,

where L denotes the length of the domain in x direction. In
the following, we take m = 1, as we are only interested in
lanes forming along the x-direction. We finally arrive at

[λ2/P 2 + 2λ/P [γ(1− req) + kDr
eq(1− 2req)(1− 3req)Θ]

+ γ2(1− 2req) + 2γkDr
eq(1− 2req)3Θ

+ k2
Dr

eq2(1− 2req)3(1− 4req)Θ2

+ k2
SΓ(1− 4req)(1− 2req)](U + V ) = 0. (31)

Accordingly, the equation for λ is given by

λ1/2 =− P [(1− req)γ + kDr
eq(1− 2req)(1− 3req)Θ]

± P
√
req2[γ − kDreq(1− 2req)Θ]2 (32)

−k2
SΓ(1− 4req)(1− 2req).

λ is supposed to be real-valued for all k, particularly for
k = 1. From that we conclude

req2[γ − kDreq(1− 2req)Θ]2 ≥ k2
SΓ(1− 4req)(1− 2req)

(33)

As req ≤ 1/2, (33) is always fulfilled in case that req ≥
1/4. This means that instabilities arise only in case req ≥
1/4.

To obtain instabilities increasing in time, λ > 0 has to be
satisfied. This means

[(1− req)γ + kDr
eq(1− 2req)(1− 3req)Θ]2 (34)

<req2γ2 − 2γkDr
eq3(1− 2req)Θ

+ k2
Dr

eq4(1− 2req)2Θ2 − k2
SΓ(1− 4req)(1− 2req)

Assuming (1 − 2req) > 0, which means that the overall
density is below maximum, we obtain

γ2 + 2γkDr
eq(1− 2req)2Θ (35)

+ k2
Dr

eq2(1− 2req)2(1− 4req)Θ2 + k2
SΓ(1− 4req) < 0.

The mode of the cosinusoidal perturbation in y-direction
is given by k, hence it gives the number of lanes of parti-
cles moving in opposite direction which are amplified dur-
ing time. If k = 1, we obtain one lane in each direction.
Accordingly, we obtain as inequality for γ = k2π2

l2

γ2

[
1 + 2kDr

eq(1− 2req)2 1

κΓ + δ
(36)

+k2
Dr

eq2(1− 2req)2(1− 4req)
1

(κΓ + δ)2

]
+γ

[
2kDr

eq(1− 2req)2 Γ

κΓ + δ

+2k2
Dr

eq2(1− 2req)2(1− 4req)
Γ

(κΓ + δ)2

]
+k2

Dr
eq2(1− 2req)2(1− 4req)

Γ2

(κΓ + δ)2
+ k2

SΓ(1− 4req)

< 0.

The evaluation of (36) leads to a condition on k which de-
termines under which conditions instabilities, which lead to
lane formation, appear.

6.1. Number of Lanes for varying Density

Figure 3. Number of lanes versus density

We are able to predict instabilities, thus forming of lanes
and the number of lanes, depending on the density req . In
Figure 3, the number of lanes k is plotted versus the den-
sity. In this setup, we choose as length l in y-direction 7
m. The length L in Figure 3 is 100 m. The decrease δ is
given by 0.05, and kD = 1. We set kS = 7. Without
the dynamic fields Di, the first lane in each direction arises
at densities of approximately 0.45 in each direction. If we
consider the dynamic fields, the first lanes are formed at
densities of approximately 0.35. Hence, the inclusion of the
dynamic fields leads indeed to an increase of the tendencies
to follow others.



6.2. Number of Lanes for varying Length

Figure 4 shows the number of lanes plotted versus length
L. We chose the same parameters as before, the density is
set to req = 0.33. It is obvious that the herding behaviour

Figure 4. Number of lanes versus lengh L

does not lead to an increase in lanes. As expected, the ten-
dency to follow others is more pronounced, this results in
less lanes.

7. Conclusion & Future Work
We demonstrated the lane formation capabilities of an

extended floor field model. Using the link of this model to
a macroscopic PDE, we were able to give conditions on the
formation of lanes depending on the density of particles as
well as the geometry on the domain. The effect of the floor
field presenting herding behaviour is that lanes are formed
at lower densities. A logical next step would be to system-
atically verify these condition using the Monte Carlo sim-
ulations described above. Also, it would be worthwhile to
perform detailed simulation on the macroscopic model (us-
ing, e.g. a finite difference scheme) and to compare these
results with the microscopic simulations. This would lead
to a unified understanding of lane formation in these kinds
of models.
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