Computer Vision

Mubarak Shah shah@eecs.ucf.edu

Computer Vision

- The ability of computers to see.
 - Image Understanding
 - Machine Vision
 - Robot Vision
 - Image Analysis
 - Video Understanding

A picture is worth a thousand words.

A word is worth a thousand pictures.

A HUNT

Image

- 2-D array of numbers (intensity values, gray levels)
 - Gray levels 0 (black) to 255 (white)
 - Color image is 3 2-D arrays of numbers
 - Red
 - Green
 - Blue
 - Resolution (number of rows and columns)
 - 128X128
 - 256X256
 - 512X512
 - 640X480

34	23	58	29	186	97	25	23	83	Ħ
97	8	23	67	75	29	25	29	29	81
139	F3	26	67	67	58	75	81	Ħ	75
171	147	97	186	64	7	23	58	Ħ	83
55	25	147	155	114	73	48	58	73	Ħ
23	64	115	148	155	114	4	25	48	73
23	56	74	81	73	64	73	Ħ	29	29
73	56	45	62	57	55	73	81	82	82
97	64	81	183	186	97	25	82	82	82
97	\$1	29	#	25	97	\$1	78	82	97

Image Formats

- TIF
- PGM
- PBM
- GIF
- JPEG

Video

- Sequence of frames
- 30 frames per second
- Formats
 - AVI
 - MPEG
 - Quick Time

Video Clip

Sequence of Images

Image Formation

- Light Source
- Camera (extrinsic and intrinsic parameters)
- Scene (Surface reflectance, Surface shape)

Perspective Projection (Pin Hole)

4

Orthographic Projection

Shape from X

- Recover 3-D shape from 2-D image(s)
 - Stereo
 - Motion
 - Shading
 - Texture
 - Contours

Stereo

http://www.vision3d.com/stereo.html

Renault Stereo Pair

Depth Map

Shape from Shading

Lambertian Model

S=L, light source I=S.N

Vase

Shape from Texture

Visual Motion

Shape from Motion: Moving Light Display

Shape from Motion

Sequence

Video Clip & Mosaic

Applications of Computer Vision

- Face Recognition
- Object Recognition
- Video Surveillance and Monitoring
 - Object detection, tracking and behavior analysis
- Remote Sensing: UAVs
- Robotics
- Computer Graphics

Object Recognition

Finding People in images

Problem 1: Given an image I

Question: Does I contain an image of a person?

"Yes" Instances

"No" Instances

Localize People (Human Detection)

Human Detection

iniduals within small arouns of neonle

Airplanes

Motor Cycles

Face Recognition

FACIAL EXPRESSIONS

RAISE EYE BROWS

SMILE

Detecting Driver Alertness

Lipreading

Video Surveillance and Monitoring

Automated Surveillance System (Detection & Tracking)

NONA: Project Overview

- Part of the WAS (wide area surveillance) project executed by the Homeland Security Advanced Research Project Agency (HSARPA)
- Current Sensor
 - 8 high-resolution cameras
 - provide a 100 mega-pixel, 360° field of view
 - frame rate: 5 frames per second
- Next Generation
 - 48 cameras with significantly higher resolution
 - smaller size

NONA Sysmtem—Airport Sequence I

UAV: Unmanned Aerial Vehicle

UAVs: Unmanned Aerial Vehicles (Drones)

Predator

Microdrone

KINGFISHER AEROSTAT BALLOON

COCOA – System Flow

Registration Result - I

Registration Result - II

Aerial Video - IR

Alignment

Mosaic

Mask

Detection Results

Tracking Results

Wide Area Surveillance

Wide Area Surveillance

Tracking Results

Robot Vision (Unmanned Ground Vehicle)

UGV

Human Action Recognition

Events, Actions, Activities,

- Action
- Event
- Movement
- Activity
- Interaction
- Verb
-

Weizmann Action Dataset

- 10 actions
- 9 actors per action

KTH Data Set

• Six Categories, 25 actors, 4 instances, 600. clips

UCF Sports Action Dataset

9 actions, 142 videos.

Bench Swing

Dive

Swing

Run

Kick Lift

Ride

Golf Swing

IXMAS Multi-view Data Set

• 13 action categories, 4 camera views, 10 actors, 3 instances.

UCF YouTube Action Dataset (UCF-11)

Juggling

Volleyball

Diving

Basketball Shooting

Trampoline Jumping

Golf Swinging

Swinging

Walking Dog

Riding

Tennis Swinging

UCF50

UCF50

Microsoft Kinect sensor

Data Captured using Microsoft Kinect sensor

Approximately 50,000 gesture samples

Gesture Lexicons

Diving Signals

Referee Signals

Nurse Gesture

Music Notes

Gestures from Depth camera 🔺

Gestures from RGB camera

Discovered Primitives

Test case 1: Torso motion adds noise (devel 01–10 gestures)

Instances of Failed Recognition

Test Case 2: Improvisations (devel 06 – 9 gestures)

Test Case 3: Subtle differences (devel 09 – 10 gestures)

Instances of Successful Recognition
Instances of Failed Recognition

High Density Crowded Scenes

Tracking in Crowds

- Average chip size 14 x 22 pixels
- 492 Frames
- Selected 199 athletes for tracking
- Successfully tracked 143 athletes

Results

Experiment – 1

Experiment-3

- Average chip size 14 x 17 pixels
- 453 Frames
- Selected 50 athletes for tracking

Experiment – 3

Behaviors in Crowded Scenes

Where Am I?

"Where Am I?"

Problem:

Accurate Image Localization

Input

Mere Visual Information(Images)

Output

Location in Terms of λ (Lon.) and ϕ (Lat.) ϕ =40.4419, λ =-79.9986

Geospatial Trajectory Extraction

Video Completion

Layer Based Video Composition

Results of Doll

Results of Mom-Daughter

Accepted in IEEE Transactions on Multimedia

New York Times, August 19,2012

Robot arms like those at a Philips Electronics factory in the Netherlands can perform the same tasks as hundreds of low-skill workers.

