KLT Tracker

Tracker

- Detect Harris corners in the first frame
- 2. For each Harris corner compute motion between consecutive frames (Alignment).
- Link motion vectors in successive frames to get a track
- 4. Introduce new Harris points at every *m* frames
- 5. Track new and old Harris points using steps 2-4.

Alignment

Lecture-11

Presentations

- Comaniciu et al
- Alper Yilmaz
- Afshin Dehghan

Mean-Shift Theory and Its Applications

Lecture-18

Mean Shift: A robust Approach Toward Feature Space Analysis, by Comaniciu, Meer, IEEE PAMI, Volume 24, No 5, May 2002, pages 603-619.

Mean Shift Vector

Given:

Data points and approximate location of the mean of this data:

Task:

Estimate the exact location of the mean of the data by determining the shift vector from the initial mean.

Mean Shift Vector Example

$$\boldsymbol{M}_h(\mathbf{y}) = \left[\frac{1}{n_x} \sum_{i=1}^{n_x} \mathbf{x}_i\right] - \mathbf{y}_0$$

Mean shift vector always points towards the direction of the maximum increase in the density.

Mean Shift (Weighted)

$$M_h(\mathbf{y}_0) = \begin{bmatrix} \frac{\sum_{i=1}^{n_x} w_i(\mathbf{y}_0) \mathbf{x}_i}{\sum_{i=1}^{n_x} w_i(\mathbf{y}_0)} \end{bmatrix} - \mathbf{y}_0 \quad \begin{array}{l} \mathbf{n}_{\mathbf{x}} : \text{number of points in the kernel} \\ \mathbf{y}_0 : \text{initial mean location} \\ \mathbf{x}_i : \text{data points} \\ \mathbf{h} : \text{kernel radius} \end{array}$$

Weights are determined using kernels (masks): Uniform, Gaussian or Epanechnikov

Properties of Mean Shift

Mean shift vector has the direction of the gradient of the density estimate.

• It is computed iteratively for obtaining the maximum density in the local neighborhood.

What is Mean-Shift?

 A tool for finding modes in a set of data samples, manifesting an underlying probability density function (PDF) in R_N

Non-Parametric Density Estimation

Assumption: The data points are sampled from an underlying PDF

Non-Parametric Density Estimation

Real Data Samples

Non-Parametric Density Estimation

Real Data Samples

Parametric Density Estimation

Assumption: The data points are sampled from an underlying PDF

Kernel Density Estimation

Various Kernels

$$P(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} K(\mathbf{x} - \mathbf{x}_i)$$

A function of some finite number of data points $X_1...X_n$

Examples:

• Epanechnikov Kernel
$$K_E(\mathbf{x}) = \begin{cases} c(1 - |\mathbf{x}||^2) & ||\mathbf{x}|| \le 1 \\ 0 & \text{otherwise} \end{cases}$$

Uniform Kernel

$$K_U(\mathbf{x}) = \begin{cases} c & \|\mathbf{x}\| \le 1 \\ 0 & \text{otherwise} \end{cases}$$

Normal Kernel

$$K_N(\mathbf{x}) = c \cdot \exp\left(-\frac{1}{2} \|\mathbf{x}\|^2\right)$$

Profile and Kernel

Radially symmetric Kernel

$$K(\mathbf{x}) = \mathbf{c}k(||\mathbf{x}||^2)$$
Profile

$$P(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} K(\mathbf{x} - \mathbf{x}_i) = \frac{1}{n} c \sum_{i=1}^{n} k(||\mathbf{x} - \mathbf{x}_i||^2)$$

Kernel Density Estimation

$$P(x) = \frac{1}{n} c \sum_{i=1}^{n} k(||x - x_i||^2)$$

$$\nabla P(\mathbf{x}) = \frac{1}{n} c \sum_{i=1}^{n} \nabla k(||\mathbf{x} - \mathbf{x}_i||^2)$$

$$\nabla P(\mathbf{x}) = \frac{1}{n} 2c \sum_{i=1}^{n} (\mathbf{x} - \mathbf{x}_i) k'(||\mathbf{x} - \mathbf{x}_i||^2)$$

Kernel Density Estimation

$$\nabla P(\mathbf{x}) = \frac{1}{n} 2c \sum_{i=1}^{n} (\mathbf{x} - \mathbf{x}_{i}) k'(||\mathbf{x} - \mathbf{x}_{i}||^{2})$$

$$\nabla P(\mathbf{x}) = \frac{1}{n} 2c \sum_{i=1}^{n} (\mathbf{x}_{i} - \mathbf{x}) g(||\mathbf{x} - \mathbf{x}_{i}||^{2})$$

$$\nabla P(\mathbf{x}) = \frac{1}{n} 2c \sum_{i=1}^{n} \mathbf{x}_{i} g(||\mathbf{x} - \mathbf{x}_{i}||^{2}) - \frac{1}{n} 2c \sum_{i=1}^{n} \mathbf{x} g(||\mathbf{x} - \mathbf{x}_{i}||^{2})$$

$$\nabla P(\mathbf{x}) = \frac{1}{n} 2c \sum_{i=1}^{n} g(||\mathbf{x} - \mathbf{x}_{i}||^{2}) \left[\frac{\sum_{i=1}^{n} \mathbf{x}_{i} g(||\mathbf{x} - \mathbf{x}_{i}||^{2})}{\sum_{i=1}^{n} g(||\mathbf{x} - \mathbf{x}_{i}||^{2})} - \mathbf{x} \right]$$

$$g(\mathbf{x}) = k'(\mathbf{x})$$

$$\nabla P(\mathbf{x}) = \frac{1}{n} 2c \sum_{i=1}^{n} g(||\mathbf{x} - \mathbf{x}_{i}||^{2}) \left[\frac{\sum_{i=1}^{n} \mathbf{x}_{i} g(||\mathbf{x} - \mathbf{x}_{i}||^{2})}{\sum_{i=1}^{n} g(||\mathbf{x} - \mathbf{x}_{i}||^{2})} - \mathbf{x} \right]$$

$$\nabla P(\mathbf{x}) = \frac{1}{n} 2\mathbf{c} \sum_{i=1}^{n} g_i \begin{bmatrix} \sum_{i=1}^{n} \mathbf{x}_i g_i \\ \sum_{i=1}^{n} g_i \end{bmatrix} - \mathbf{x}$$

Computing The Mean Shift

$$\nabla P(\mathbf{x}) = \frac{c}{n} \sum_{i=1}^{n} \nabla k_{i} = \underbrace{\frac{c}{n} \left[\sum_{i=1}^{n} g_{i} \right]}_{i=1} \left[\underbrace{\sum_{i=1}^{n} \mathbf{x}_{i} g_{i}}_{i} - \mathbf{x} \right]$$

$$\nabla P(\mathbf{x}) = \frac{\mathbf{c}}{n} \sum_{i=1}^{n} g_i \times \mathbf{m}(\mathbf{x})$$

$$m(x) = \frac{\nabla P(x)}{\frac{c}{n} \sum_{i=1}^{n} g_i}$$

Mean Shift Mode Detection

<u>Updated Mean Shift Procedure:</u>

- Find all modes using the Simple Mean Shift Procedure
- Prune modes by perturbing them (find saddle points and plateaus)
- Prune nearby take highest mode in the window

Mean Shift Properties

- Automatic convergence speed
 - mean shift vector size depends on gradient.
- Near maxima, the steps are small and refined

Adaptive Gradient Ascent

- Convergence is guaranteed for infinitesimal steps only, (therefore set a lower bound)
- For Uniform Kernel (), convergence is achieved in a finite number of steps
- Normal Kernel (exhibits a smooth trajectory, but is slower than Uniform Kernel ().

Real Modality Analysis

Tessellate the space with windows

Run the procedure in parallel

Real Modality Analysis

The blue data points were traversed by the windows towards the mode

Mean Shift Applications

UCF Computer Vision Lab

Computer VISION Lab

Mean-Shift Object Tracking

General Framework

The object is being modeled using color probability density

UCF Computer Vision Lab

Mean-Shift Object Tracking

General framework

Target Localization-Tracking

Select a ROI around the target location in current frame

UCF Computer Vision Lab

Mean-Shift Object Tracking

PDF Representation

Target Model: color distribution by discrete m-bin color histogram

$$\vec{q} = \{q_u\}_{u=1,\dots,m}$$

$$\sum_{u=1}^{m} q_u = 1$$

$$\overrightarrow{p(y)} = \{p_u(y)\}_{u=1,\dots,m}$$

discrete m-bin color histogram

$$\overrightarrow{p(y)} = \{p_u(y)\}_{u=1,\dots,m}$$
$$\sum_{u=1}^{m} p_u = 1$$

The Bhattacharyya Coefficient

Mean-Shift Object Tracking

- The Bhattacharyya Coefficient
 - Measures similarity between object model q and color p of target at location y

$$\rho(p(y),q) = \sum_{u=1}^{m} \sqrt{p_u(y)q_u}$$

- ρ is the cosine of vectors $(\sqrt{p_1}, \dots, \sqrt{p_m})^T$ and $(\sqrt{q_1}, \dots, \sqrt{q_m})^T$.
- ullet Large ho means good match between candidate and target model
- In order to find the new target location we try to maximize the Bhattacharyya coefficient

Target Model for Tracking

- Features used for tracking include:
 - Gray level
 - Color
 - Gradient
- Feature probability distribution are calculated by using weighted histograms.
- The weights are derived from Epanechnikov profile.

Distribution

x₁, x₂, x₃, x₄ have the same feature, such as gray level.

$$p(u) = C \sum_{\mathbf{x}_i \in S} k \left(\left\| \mathbf{x}_i \right\|^2 \right) \delta \left[S(\mathbf{x}_i) - u \right]$$

 $S(\mathbf{x}_i)$ is the color at x_i UCF Computer Vision Lab.

Target Gray Level Feature

Similarity of Target and **Candidate Distributions**

Target : q_u . Candidate : p_u .

$$d(\mathbf{y}) = \sqrt{1 - \rho(\mathbf{y})}$$

$$\rho(\mathbf{y}) = \rho[\hat{p}(\mathbf{y}), q] = \sum_{u=1}^{m} \sqrt{\hat{p}_u(\mathbf{y})q_u}$$

 $\rho(\mathbf{y})$: Bhattacharya coefficient.

Distance Minimization

Minimizing the distance corresponds to *maximizing* Bhattacharya coefficient.

$$\rho[\hat{p}(\mathbf{y}), q] = \sum_{u=1}^{m} \sqrt{\hat{p}_u(\mathbf{y})q_u}$$

Taylor expansion around

$$\hat{p}(\mathbf{y_0})$$

$$\rho[\hat{\mathbf{p}}(\mathbf{y}), \mathbf{q}] \cong \rho[\hat{\mathbf{p}}(\mathbf{y}_0), \mathbf{q}]^+ \frac{1}{2} \sum_{i=1}^m \hat{p}_u(\mathbf{y}) \sqrt{\frac{q_u}{\hat{p}_u(\mathbf{y}_0)}}$$

Maximizing Bhattacharya coefficient can be obtained by *maximizing* the blue term.

Likelihood Maximization

$$\rho[\hat{\mathbf{p}}(\mathbf{y}), \mathbf{q}] \cong \rho[\hat{\mathbf{p}}(\mathbf{y}_{0}), \mathbf{q}] + \frac{1}{2} \sum_{i=1}^{m} \hat{p}_{u}(\mathbf{y}) \sqrt{\frac{q_{u}}{\hat{p}_{u}(\mathbf{y}_{0})}}$$

$$\frac{C_{h}}{2} \sum_{i=1}^{n_{x}} \left[\sum_{u=1}^{m} \delta[S(\mathbf{x}_{i}) - u] \sqrt{\frac{q_{u}}{\hat{p}_{u}(\mathbf{y}_{0})}} \right] k \left(\left\| \frac{\mathbf{y} - \mathbf{x}_{i}}{h} \right\| \right)$$

h : radius of sphere

C_h: normalization constant

 $S(x_i)$: gray level at x y: kernel center

m : number of bins

likelihood maximization depends on maximizing W_i .

Likelihood Maximization Using Mean Shift Vector

Maximization of the likelihood of target and candidate depends on the weights:

$$w_i(\mathbf{y}_o) = \sum_{u=1}^m \delta[S(\mathbf{x}_i) - u] \sqrt{\frac{q_u}{\hat{p}_u(\mathbf{y}_o)}} \quad where \quad 0 \le w_i \le 1$$

Since $\sum_{i=1}^{n_x} w_i(\mathbf{y}_0)$ is strictly positive, mean shift vector can be written as

$$M_h(\mathbf{y}_0) = \frac{\sum_{i=1}^{n_x} w_i(\mathbf{y}_0) \mathbf{x}_i}{\sum_{i=1}^{n_x} w_i(\mathbf{y}_0)} - \mathbf{y}_0$$

Thus, new target center is

$$\hat{\mathbf{y}} = \mathbf{y}_0 + M_h(\mathbf{y}_0)$$

Algorithm

Tracking A Single Point

References

- D. Comaniciu, V. Ramesh, and P. Meer. Real-time tracking of non-rigid objects using mean shift. In IEEE Proc. on Computer Vision and Pattern Recognition on, pages673–678, 2000.
- D. Comaniciu, V. Ramesh, and P. Meer. Mean shift: A robust approach towards feature space analysis. IEEE Trans. on Pattern Analysis and Machine Intelligence, 24(5):603–619, 2002.