Camera Model and Calibration

Lecture-12

Camera Calibration

- Determine extrinsic and intrinsic parameters of camera
 - Extrinsic
 - 3D location and orientation of camera
 - Intrinsic
 - Focal length
 - The size of the pixels

Application: Object Transfer

Source Image

Target Image

More Results

Source Image

Target Image

More Results

Application in Film Industry

Pose Estimation

 Given 3D model of object, and its image (2D projection) determine the location and orientation (translation & rotation) of object such that when projected on the image plane it will match with the image.

http://www.youtube.com/watch?v=ZNHRH00UMvk

Transformations

3-D Translation

$$\begin{bmatrix} X_{2} \\ Y_{2} \\ Z_{2} \end{bmatrix} = \begin{bmatrix} X_{1} \\ Y_{1} \\ Z_{1} \end{bmatrix} + \begin{bmatrix} d_{x} \\ d_{y} \\ d_{z} \end{bmatrix}$$
$$\begin{bmatrix} X_{2} \\ Y_{2} \\ Z_{2} \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & d_{x} \\ 0 & 1 & 0 & d_{y} \\ 0 & 0 & 1 & d_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X_{1} \\ Y_{1} \\ Z_{1} \\ 1 \end{bmatrix}$$
$$\begin{bmatrix} X_{2} \\ Y_{2} \\ Z_{2} \\ 1 \end{bmatrix} = T \begin{bmatrix} X_{1} \\ Y_{1} \\ Z_{1} \\ 1 \end{bmatrix}$$
$$T = \begin{bmatrix} 1 & 0 & 0 & d_{x} \\ 0 & 1 & 0 & d_{y} \\ 0 & 0 & 1 & d_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
, Translation Matrix

$$\mathbf{T}^{-1} = \begin{bmatrix} 1 & 0 & 0 & -d_x \\ 0 & 1 & 0 & -d_y \\ 0 & 0 & 1 & -d_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$TT^{-1} = T^{-1}T = I$$

$$\begin{bmatrix} 1 & 0 & 0 & d_x \\ 0 & 1 & 0 & d_y \\ 0 & 0 & 1 & d_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & -d_x \\ 0 & 1 & 0 & -d_y \\ 0 & 0 & 1 & -d_z \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 $\begin{bmatrix} X_2 \\ Y_2 \\ Z_2 \end{bmatrix} = \begin{bmatrix} X_1 \times S_x \\ Y_1 \times S_y \\ Z_1 \times S_z \end{bmatrix}$

$$\begin{bmatrix} X_2 \\ Y_2 \\ Z_2 \\ 1 \end{bmatrix} = \begin{bmatrix} S_x & 0 & 0 & 0 \\ 0 & S_y & 0 & 0 \\ 0 & 0 & S_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X_1 \\ Y_1 \\ Z_1 \\ 1 \end{bmatrix}$$

 $\mathbf{S}^{-1} = \begin{bmatrix} 1/S_x & 0 & 0 & 0\\ 0 & 1/S_y & 0 & 0\\ 0 & 0 & 1/S_z & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$ $SS^{-1} = S^{-1}S = I$

$$\begin{bmatrix} X_2 \\ Y_2 \\ Z_2 \\ 1 \end{bmatrix} = S \begin{bmatrix} X_1 \\ Y_1 \\ Z_1 \\ 1 \end{bmatrix} = \begin{bmatrix} X_1 \\ Y_1 \\ Z_1 \\ 1 \end{bmatrix} = \begin{bmatrix} X_1 \\ Y_1 \\ Z_1 \\ 0 \end{bmatrix} = \begin{bmatrix} X_1 \\ Y_1 \\ Z_2 \\ 0 \end{bmatrix} = \begin{bmatrix} X_1 \\ Y_1 \\ Z_2 \\ 0 \end{bmatrix} = \begin{bmatrix} X_1 \\ Y_1 \\ Z_2 \\ 0 \end{bmatrix} = \begin{bmatrix} X_1 \\ Y_1 \\ Z_2 \\ 0 \end{bmatrix} = \begin{bmatrix} X_1 \\ Y_1 \\ Z_2 \\ 0 \end{bmatrix} = \begin{bmatrix} X_1 \\ Y_1 \\ Z_2 \\ 0 \end{bmatrix} = \begin{bmatrix} X_1 \\ Y_1 \\ Z_2 \\ 0 \end{bmatrix} = \begin{bmatrix} X_1 \\ Y_1 \\ Z_2 \\ 0 \end{bmatrix} = \begin{bmatrix} X_1 \\ Y_1 \\ Z_2 \\ 0 \end{bmatrix} = \begin{bmatrix} X_1 \\ Y_1 \\ Z_2 \\ 0 \end{bmatrix} = \begin{bmatrix} X_1 \\ Y_1 \\ Z_2 \\ 0 \end{bmatrix} = \begin{bmatrix} X_1 \\ Y_1 \\ Z_2 \\ 0 \end{bmatrix} = \begin{bmatrix} X_1 \\ Y_1 \\ Z_2 \\ Z_2 \\ Z_2 \end{bmatrix} = \begin{bmatrix} X_1 \\ Y_1 \\ Z_2 \\ Z_2 \\ Z_2 \end{bmatrix} = \begin{bmatrix} X_1 \\ Y_1 \\ Z_2 \\ Z_2 \\ Z_2 \end{bmatrix} = \begin{bmatrix} X_1 \\ Y_1 \\ Z_2 \\ Z_2 \\ Z_2 \end{bmatrix} = \begin{bmatrix} X_1 \\ Y_1 \\ Z_2 \\ Z_2 \\ Z_2 \\ Z_2 \end{bmatrix} = \begin{bmatrix} X_1 \\ Y_1 \\ Z_2 \\ Z_2 \\ Z_2 \\ Z_2 \end{bmatrix} = \begin{bmatrix} X_1 \\ Y_1 \\ Z_2 \\ Z_2 \\ Z_2 \\ Z_2 \\ Z_2 \end{bmatrix} = \begin{bmatrix} X_1 \\ Y_1 \\ Z_2 \\ Z_2 \\ Z_2 \\ Z_2 \\ Z_2 \\ Z_2 \end{bmatrix} = \begin{bmatrix} X_1 \\ Y_1 \\ Z_2 \\ Z_$$

$$S = \begin{bmatrix} S_x & 0 & 0 & 0 \\ 0 & S_y & 0 & 0 \\ 0 & 0 & Sz & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \text{ Scaling Matrix}$$

$$(R_{\theta}^{Z})^{-1} = \begin{bmatrix} \cos\Theta & \sin\Theta & 0 \\ -\sin\Theta & \cos\Theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$\begin{bmatrix} \cos\Theta & \sin\Theta & 0 \\ -\sin\Theta & \cos\Theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\Theta & -\sin\Theta & 0 \\ \sin\Theta & \cos\Theta & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

 $(R_{\theta}^{Z})^{-1} = (R_{\theta}^{Z})^{T}$ Rotation matrices are orthonormal matrices $(R_{\theta}^{Z})(R_{\theta}^{Z})^{T} = I$ $r_{i}r_{j} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$

Euler Angles

Rotation around an arbitrary axis:

 $R = R_{Z}^{\alpha} R_{Y}^{\beta} R_{X}^{\gamma} = \begin{bmatrix} \cos\alpha \cos\beta & \cos\alpha \sin\beta \sin\gamma - \sin\alpha \cos\gamma & \cos\alpha \sin\beta \cos\gamma + \sin\alpha \sin\gamma \\ \sin\alpha \cos\beta & \sin\alpha \sin\beta \sin\gamma + \cos\alpha \cos\gamma & \sin\alpha \sin\beta \cos\gamma - \cos\alpha \sin\gamma \\ -\sin\beta & \cos\beta \sin\gamma & \cos\beta \cos\gamma \end{bmatrix}$

if angles are small $\cos \Theta \approx 1$ $\sin \Theta \approx \Theta$

$$R = \begin{bmatrix} 1 & -\alpha & \beta \\ \alpha & 1 & -\gamma \\ -\beta & \gamma & 1 \end{bmatrix}$$

Perspective Projection (origin at the lens center)

Perspective Projection (origin at image center)

Perspective $\begin{vmatrix} x \\ y \\ \end{vmatrix} = \begin{vmatrix} 2 \\ 2 \\ 1 \end{vmatrix} \begin{pmatrix} X \\ Y \\ Z \\ 1 \end{vmatrix}$ Image World coordinates coordinates $(X,Y,Z) \rightarrow \rightarrow \rightarrow (kX,kY,kZ,k)$, Homogenous transformation $(C_{h1}, C_{h2}, C_{h3}, C_{h4}) \rightarrow (\frac{C_{h1}}{C_{h4}}, \frac{C_{h2}}{C_{h4}}, \frac{C_{h3}}{C_{h4}}),$ Inverse homogenous $P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & \frac{-1}{f} & 1 \\ \end{bmatrix}$

- Camera is at the origin of the world coordinates first
- Then translated by some amount(G),
- Then rotated around Z axis in counter clockwise direction,
- Then rotated again around X in counter clockwise direction, and
- Then translated by C.

 $C_{h} = PCR_{-\phi}^{X}R_{-\theta}^{Z}GW_{h}$

Since we are moving the camera instead of object we need to use inverse transformations

$$C_h = PCR^X_{-\phi}R^Z_{-\theta}GW_h$$

$$P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & \frac{-1}{f} & 1 \end{bmatrix}, R_{-\theta}^{Z} = \begin{bmatrix} \cos\theta & \sin\theta & 0 & 0 \\ -\sin\theta & \cos\theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$R_{-\phi}^{X} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\phi & \sin\phi & 0 \\ 0 & -\sin\phi & \cos\phi & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, G = \begin{bmatrix} 1 & 0 & 0 & -X_{0} \\ 0 & 1 & 0 & -Y_{0} \\ 0 & 0 & 1 & -Z_{0} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$C = \begin{bmatrix} 1 & 0 & 0 & -r_{1} \\ 0 & 1 & 0 & -r_{2} \\ 0 & 0 & 1 & -r_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$C_{h} = PCR_{-\phi}^{X}R_{-\theta}^{Z}GW_{h}$$

$$x = f \frac{(X - X_0)\cos\theta + (Y - Y_0)\sin\theta - r_1}{-(X - X_0)\sin\theta\sin\phi + (Y - Y_0)\cos\theta\sin\phi - (Z - Z_0)\cos\phi + r_3 + f}$$

$$y = f \frac{(X - X_0)\sin\theta\cos\phi + (Y - Y_0)\cos\theta\cos\phi + (Z - Z_0)\sin\phi - r_2}{-(X - X_0)\sin\theta\sin\phi + (Y - Y_0)\cos\theta\sin\phi - (Z - Z_0)\cos\phi + r_3 + f}$$

$$C_{h} = PCR_{-\phi}^{X}R_{-\phi}^{Z}GW_{h} \qquad x = \frac{C_{h1}}{C_{h4}}$$

$$C_{h} = AW_{h} \qquad y = \frac{C_{h2}}{C_{h4}}$$

$$\begin{bmatrix} Ch_{1} \\ Ch_{2} \\ Ch_{3} \\ Ch_{4} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

T7

T7

$$Ch_{1} = a_{11}X + a_{12}Y + a_{13}Z + a_{14} = Ch_{4}x$$

$$Ch_{2} = a_{21}X + a_{22}Y + a_{23}Z + a_{24} = Ch_{4}y$$

$$Ch_{3} \text{ is not needed, we have 12}$$

$$Ch_{4} = a_{41}X + a_{42}Y + a_{43}Z + a_{44} \quad \text{unknowns.}$$

- How to determine camera matrix?
- Select some known 3D points (*X*,*Y*,*Z*), and find their corresponding image points (*x*,*y*).
- Solve for camera matrix elements using least squares fit.

$$C_{h} = PCR_{-\phi}^{X}R_{-\theta}^{Z}GW_{h}$$

$$C_{h} = AW_{h}$$

$$\begin{bmatrix} Ch_{1} \\ Ch_{2} \\ Ch_{3} \\ Ch_{4} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

$$Ch_{1} = a_{11}X + a_{12}Y + a_{13}Z + a_{14} = Ch_{4}x$$

$$Ch_{2} = a_{21}X + a_{22}Y + a_{23}Z + a_{24} = Ch_{4}y$$

$$Ch_{4} = a_{41}X + a_{42}Y + a_{43}Z + a_{44}$$

 Ch_3 is not needed, we have 12 unknowns.

 $x = \frac{C_{h1}}{C_{h4}}$

 $y = \frac{C_{h2}}{C_{h4}}$

$$Ch_{1} = a_{11}X + a_{12}Y + a_{13}Z + a_{14} = Ch_{4}x$$
$$Ch_{2} = a_{21}X + a_{22}Y + a_{23}Z + a_{24} = Ch_{4}y$$
$$Ch_{4} = a_{41}X + a_{42}Y + a_{43}Z + a_{44}$$

$$a_{11}X + a_{12}Y + a_{13}Z + a_{14} - a_{41}Xx - a_{42}Yx - a_{43}Zx - a_{44}x = 0$$

$$a_{21}X + a_{22}Y + a_{23}Z + a_{24} - a_{41}Xy - a_{42}Yy - a_{43}Zy - a_{44}y = 0$$

 $a_{11}X + a_{12}Y + a_{13}Z + a_{14} - a_{41}Xx - a_{42}Yx - a_{43}Zx - a_{44}x = 0$ One point $a_{21}X + a_{22}Y + a_{23}Z + a_{24} - a_{41}Xy - a_{42}Yy - a_{43}Zy - a_{44}y = 0$ $a_{11}X_1 + a_{12}Y_1 + a_{13}Z_1 + a_{14} - a_{41}X_1x_1 - a_{42}Y_1x_1 - a_{43}Z_1x_1 - a_{44}x_1 = 0$ $a_{11}X_2 + a_{12}Y_2 + a_{13}Z_2 + a_{14} - a_{41}X_2x_2 - a_{42}Y_2x_2 - a_{43}Z_2x_2 - a_{44}x_2 = 0$ $a_{11}X_n + a_{12}Y_n + a_{13}Z_n + a_{14} - a_{41}X_nx_n - a_{42}Y_nx_n - a_{43}Z_nx_n - a_{44}x_n = 0$ n points 2n equations, $a_{21}X_1 + a_{22}Y_1 + a_{23}Z_1 + a_{24} - a_{41}X_1y_1 - a_{42}Y_1y_1 - a_{43}Z_1y_1 - a_{44}y_1 = 0$ 12 unknowns $a_{21}X_2 + a_{22}Y_2 + a_{23}Z_2 + a_{24} - a_{41}X_2y_2 - a_{42}Y_2y_2 - a_{43}Z_2y_2 - a_{44}y_2 = 0$ $a_{21}X_n + a_{22}Y_n + a_{23}Z_n + a_{24} - a_{41}X_ny_n - a_{42}Y_ny_n - a_{43}Z_ny_n - a_{44}y_n = 0$

This is a homogenous system, no unique solution

CP = 0

Select
$$a_{44} = 1$$

$$\begin{bmatrix} X_1 & Y_1 & Z_1 & 1 & 0 & 0 & 0 & 0 & -x_1X_1 & -x_1Y_1 & -x_1Z_1 \\ X_2 & Y_2 & Z_2 & 1 & 0 & 0 & 0 & 0 & -x_2X_2 & -x_2X_2 & -x_2X_2 \\ & & & & \vdots \\ X_n & Y_n & Z_n & 1 & 0 & 0 & 0 & 0 & -x_nX_n & -x_nY_n & -x_nZ_n \\ 0 & 0 & 0 & 0 & X_1 & Y_1 & Z_1 & 1 & -y_1X_1 & -y_1X_1 & -y_1Z_1 \\ 0 & 0 & 0 & 0 & X_2 & Y_2 & Z_2 & 1 & -y_2X_2 & -y_2X_2 & -y_2Z_2 \\ & & & & \vdots \\ 0 & 0 & 0 & 0 & X_n & Y_n & Z_n & 1 & -y_nX_n & -y_nX_n & -y_nX_n \end{bmatrix} \begin{bmatrix} a_{11} \\ a_{12} \\ a_{13} \\ a_{14} \\ a_{21} \\ a_{22} \\ a_{23} \\ a_{24} \\ a_{41} \\ a_{42} \\ a_{43} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ a_{13} \\ a_{14} \\ a_{21} \\ a_{22} \\ a_{23} \\ a_{24} \\ a_{43} \end{bmatrix}$$

Pseudo inverse Least squares fit DQ = R $D^{T}DQ = D^{T}R$ $Q = (D^{T}D)^{-1}D^{T}R$

Finding Camera Location

- Take one 3D point X_1 and find its image homogenous coordinates.
- Set the third component of homogenous coordinates to zero, find corresponding World coordinates of that point, X₁₁
- Connect X₁ and X₁₁ to get a line in 3D.
- Repeat this for another 3D point X₂ and find another line
- Two lines will intersect at the location of camera.

Camera Location

$$\begin{bmatrix} Ch_{1} \\ Ch_{2} \\ Ch_{3} \\ Ch_{4} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

$$U_{1} = AX_{1} \qquad U_{2} = AX_{2}$$

$$U_{1}' = (Ch_{1} Ch_{2} 0 Ch_{4}) \qquad U_{2}' = ((Ch_{1} Ch_{2} 0 Ch_{4}) X_{11} = A^{-1}U_{1}' \qquad X_{22} = A^{-1}U_{2}'$$

• Only time the image will be formed at infinity if $Ch_4=0$.

$$\begin{bmatrix} Ch_1 \\ Ch_2 \\ Ch_3 \\ 0 \end{bmatrix} = A \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

 $a_{41}X + a_{42}Y + a_{43}Z + a_{44} = 0$

• This is equation of a plane, going through the lens, which is parallel to image plane.

Application

 $M = \begin{bmatrix} .17237 & -.15879 & .01879 & 274.943 \\ .131132 & .112747 & .2914 & 258.686 \\ .000346 & .0003 & .00006 & 1 \end{bmatrix}$

Camera location: intersection of California and Mason streets, at an elevation of 435 feet above sea level. The camera was oriented at an angle of 8⁰ above the horizon. $fs_x=495$, $fs_y=560$.

Application

	175451	10520	.00435	297.83	
<i>M</i> =	.02698	09635	.2303	249.574	
	.00015	00016	.00001	1.0	

Camera location: at an elevation of 1200 feet above sea level. The camera was oriented at an angle of 4^0 above the horizon. $fs_x = 876$, $fs_y = 999$.

Recovering the camera parameters from a transformation matrix

TM Strat - Readings in Computer Vision, 1987

Camera Parameters

- Extrinsic parameters
 - Parameters that define the location and orientation of the camera reference frame with respect to a known world reference frame
 - 3-D translation vector
 - A 3 by 3 rotation matrix
- Intrinsic parameters
 - Parameters necessary to link the pixel coordinates of an image point with the corresponding coordinates in the camera reference frame
 - Perspective projection (focal length)
 - Transformation between camera frame coordinates and pixel coordinates

Camera Model Revisited: Rotation & Translation

$$P_{c} = TRP_{w} = \begin{bmatrix} 1 & 0 & 0 & T_{x} \\ 0 & 1 & 0 & T_{y} \\ 0 & 0 & 1 & T_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & 0 \\ r_{21} & r_{22} & r_{23} & 0 \\ r_{31} & r_{32} & r_{33} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

$$P_{c} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & T_{x} \\ r_{21} & r_{22} & r_{23} & T_{y} \\ r_{31} & r_{32} & r_{33} & T_{z} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$
$$P_{c} = M_{ext} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

Perspective Projection: Revisited

Camera Model Revisited: Perspective

$$C_{h} = \begin{bmatrix} f & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$
$$x = \frac{fX}{Z}$$
$$y = \frac{fY}{Z}$$

Origin at the lens Image plane in front of the lens

Camera Model Revisited: Image and Camera coordinates

$$x = -(x_{im} - o_x)s_x$$
$$y = -(y_{im} - o_y)s_y$$
$$x_{im} = -\frac{x}{s_x} + o_x$$
$$y_{im} = -\frac{y}{s_y} + o_y$$

$$\begin{bmatrix} x_{im} \\ y_{im} \\ 1 \end{bmatrix} = \begin{bmatrix} -\frac{1}{s_x} & 0 & o_x \\ 0 & -\frac{1}{s_y} & o_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

(x_{im}, y_{im}) image coordinates
(x, y) camera coordinates
(o_x, o_y) image center (in pixels)
(s_x, s_y) effective size of pixels (in millimeters) in the horizontal and vertical directions.

Camera Model Revisited

 $C_h = C'P'T'R'W_h$

$$\begin{bmatrix} Ch_{1} \\ Ch_{2} \\ Ch_{4} \end{bmatrix} = \begin{bmatrix} -\frac{1}{s_{x}} & 0 & o_{x} \\ 0 & -\frac{1}{s_{y}} & o_{y} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} f & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & T_{x} \\ r_{21} & r_{22} & r_{23} & T_{y} \\ r_{31} & r_{32} & r_{33} & T_{z} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$
$$\begin{bmatrix} Ch_{1} \\ Ch_{2} \\ Ch_{4} \end{bmatrix} = \begin{bmatrix} -\frac{f}{s_{x}} & 0 & o_{x} \\ 0 & -\frac{f}{s_{y}} & o_{y} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & T_{x} \\ r_{21} & r_{22} & r_{23} & T_{y} \\ r_{31} & r_{32} & r_{33} & T_{z} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$
$$\begin{bmatrix} Ch_{1} \\ Ch_{2} \\ Ch_{4} \end{bmatrix} = M_{int}M_{ext} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

Camera Model Revisited

$$\begin{bmatrix} Ch_1 \\ Ch_2 \\ Ch_4 \end{bmatrix} = \begin{bmatrix} -\frac{f}{s_x} & 0 & o_x \\ 0 & -\frac{f}{s_y} & o_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & T_x \\ r_{21} & r_{22} & r_{23} & T_y \\ r_{31} & r_{32} & r_{33} & T_z \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} Ch_{1} \\ Ch_{2} \\ Ch_{4} \end{bmatrix} = \begin{bmatrix} -\frac{f}{s_{x}}r_{11} + r_{31}o_{x} & -\frac{f}{s_{x}}r_{12} + r_{32}o_{x} & -\frac{f}{s_{x}}r_{13} + r_{33}o_{x} & -\frac{f}{s_{x}}T_{x} + T_{z}o_{x} \\ -\frac{f}{s_{y}}r_{21} + r_{31}o_{y} & -\frac{f}{s_{y}}r_{22} + r_{32}o_{y} & -\frac{f}{s_{y}}r_{23} + r_{33}o_{y} & -\frac{f}{s_{y}}T_{y} + T_{z}o_{y} \\ r_{31} & r_{32} & r_{33} & T_{z} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

Camera Model Revisited

$$\begin{bmatrix} Ch_{1} \\ Ch_{2} \\ Ch_{4} \end{bmatrix} = \begin{bmatrix} -\frac{f}{s_{x}}r_{11} + r_{31}o_{x} & -\frac{f}{s_{x}}r_{12} + r_{32}o_{x} & -\frac{f}{s_{x}}r_{13} + r_{33}o_{x} & -\frac{f}{s_{x}}T_{x} + T_{z}o_{x} \\ -\frac{f}{s_{y}}r_{21} + r_{31}o_{y} & -\frac{f}{s_{y}}r_{22} + r_{32}o_{y} & -\frac{f}{s_{y}}r_{23} + r_{33}o_{y} & -\frac{f}{s_{y}}T_{y} + T_{z}o_{y} \\ r_{31} & r_{32} & r_{33} & T_{z} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

 f_x effective focal length expressed in effective horizontal pixel size

$$\begin{bmatrix} Ch_1 \\ Ch_2 \\ Ch_4 \end{bmatrix} = \begin{bmatrix} -f_x r_{11} + r_{31} o_x & -f_x r_{12} + r_{32} o_x & -f_x r_{13} + r_{33} o_x & -f_x T_x + T_z o_x \\ -f_y r_{21} + r_{31} o_y & -f_y r_{22} + r_{32} o_y & -f_y r_{23} + r_{33} o_y & -f_y T_y + T_z o_y \\ r_{31} & r_{32} & r_{33} & T_z \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} Ch_1 \\ Ch_2 \\ Ch_4 \end{bmatrix} = M \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

Computing Camera Parameters

- Using known 3-D points and corresponding image points, estimate camera matrix employing pseudo inverse method of section 1.6 (Fundamental of Computer Vision).
- Compute camera parameters by relating camera matrix with estimated camera matrix.
 - Extrinsic
 - Translation
 - Rotation
 - Intrinsic
 - Horizontal f_x and f_y vertical focal lengths
 - Translation o_x and o_y

Comparison

$$\hat{M} = \begin{bmatrix} \hat{m}_{11} & \hat{m}_{12} & \hat{m}_{13} & \hat{m}_{14} \\ \hat{m}_{31} & \hat{m}_{32} & \hat{m}_{33} & \hat{m}_{34} \\ \hat{m}_{31} & \hat{m}_{32} & \hat{m}_{33} & \hat{m}_{34} \end{bmatrix}$$

$$M = \begin{bmatrix} -f_x r_{11} + r_{31} o_x & -f_x r_{12} + r_{32} o_x & -f_x r_{13} + r_{33} o_x & -f_x T_x + T_z o_x \\ -f_y r_{21} + r_{31} o_y & -f_y r_{22} + r_{32} o_y & -f_y r_{23} + r_{33} o_y & -f_y T_y + T_z o_y \\ r_{31} & r_{32} & r_{33} & T_z \end{bmatrix}$$

Computing Camera Parameters estimated

 $\begin{bmatrix} \hat{m}_{11} & \hat{m}_{12} & \hat{m}_{13} & \hat{m}_{14} \\ \hat{m}_{21} & \hat{m}_{22} & \hat{m}_{23} & \hat{m}_{24} \\ \hat{m}_{31} & \hat{m}_{32} & \hat{m}_{33} & \hat{m}_{34} \end{bmatrix} = \gamma \begin{bmatrix} -f_x r_{11} + r_{31} o_x & -f_x r_{12} + r_{32} o_x & -f_x r_{13} + r_{33} o_x & -f_x T_x + T_z o_x \\ -f_y r_{21} + r_{31} o_y & -f_y r_{22} + r_{32} o_y & -f_y r_{23} + r_{33} o_y & -f_y T_y + T_z o_y \\ r_{31} & r_{32} & r_{33} & T_z \end{bmatrix}$

Because rotation matrix is orthonormal

Since M is defined up to a scale factor

$$\sqrt{\hat{m}_{31}^2 + \hat{m}_{32}^2 + \hat{m}_{33}^2} = |\gamma| \sqrt{r_{31}^2 + r_{32}^2 + r_{33}^2} = |\gamma| \quad \text{is orthonormal}$$

Divide each entry of \hat{M} by $|\gamma|$.

 $\searrow \hat{M} = \gamma M$

Computing Camera Parameters

$$\begin{bmatrix} \hat{m}_{11} & \hat{m}_{12} & \hat{m}_{13} & \hat{m}_{14} \\ \hat{m}_{21} & \hat{m}_{22} & \hat{m}_{23} & \hat{m}_{24} \\ \hat{m}_{31} & \hat{m}_{32} & \hat{m}_{33} & \hat{m}_{34} \end{bmatrix} = \gamma \begin{bmatrix} -f_x r_{11} + r_{31} o_x & -f_x r_{12} + r_{32} o_x & -f_x r_{13} + r_{33} o_x & -f_x T_x + T_z o_x \\ -f_y r_{21} + r_{31} o_y & -f_y r_{22} + r_{32} o_y & -f_y r_{23} + r_{33} o_y & -f_y T_y + T_z o_y \\ r_{31} & r_{32} & r_{33} & T_z \end{bmatrix}$$

- Compute T_z and third row r_{3i} (*i*=1,2,3)
- Compute o_x and o_y
- Compute f_x and f_y
- Compute r_{1i} and r_{2i} i=1,2,3
- Computer T_x and T_y

Computing Camera Parameters: estimating third row of rotation matrix and translation in depth

$$\begin{bmatrix} \hat{m}_{11} & \hat{m}_{12} & \hat{m}_{13} & \hat{m}_{14} \\ \hat{m}_{21} & \hat{m}_{22} & \hat{m}_{23} & \hat{m}_{24} \\ \hat{m}_{31} & \hat{m}_{32} & \hat{m}_{33} & \hat{m}_{34} \end{bmatrix} = \gamma \begin{bmatrix} -f_x r_{11} + r_{31} o_x & -f_x r_{12} + r_{32} o_x & -f_x r_{13} + r_{33} o_x & -f_x T_x + T_z o_x \\ -f_y r_{21} + r_{31} o_y & -f_y r_{22} + r_{32} o_y & -f_y r_{23} + r_{33} o_y & -f_y T_y + T_z o_y \\ r_{31} & r_{32} & r_{33} & T_z \end{bmatrix} \\ T_z = \sigma \hat{m}_{34}, \quad \sigma = \pm 1 \quad \text{Since we can determine } T_z > 0 \text{ (origin of world reference is in front)} \\ r_{3i} = \sigma \hat{m}_{3i}, \quad i = 1, 2, 3 \quad \text{Or } T_z < 0 \text{(origin of world reference is in back)} \\ \text{we can determine sign.} \end{bmatrix}$$

Computing Camera Parameters

$$\begin{bmatrix} \hat{m}_{11} & \hat{m}_{12} & \hat{m}_{13} & \hat{m}_{14} \\ \hat{m}_{21} & \hat{m}_{22} & \hat{m}_{23} & \hat{m}_{24} \\ \hat{m}_{31} & \hat{m}_{32} & \hat{m}_{33} & \hat{m}_{34} \end{bmatrix} = \gamma \begin{bmatrix} -f_x r_{11} + r_{31} o_x & -f_x r_{12} + r_{32} o_x & -f_x r_{13} + r_{33} o_x & -f_x T_x + T_z o_x \\ -f_y r_{21} + r_{31} o_y & -f_y r_{22} + r_{32} o_y & -f_y r_{23} + r_{33} o_y & -f_y T_y + T_z o_y \\ r_{31} & r_{32} & r_{33} & T_z \end{bmatrix}$$

Let

$$q_{1} = \begin{bmatrix} \hat{m}_{11} & \hat{m}_{12} & \hat{m}_{13} \end{bmatrix}$$

$$q_{2} = \begin{bmatrix} \hat{m}_{21} & \hat{m}_{22} & \hat{m}_{23} \end{bmatrix}$$

$$q_{3} = \begin{bmatrix} \hat{m}_{31} & \hat{m}_{32} & \hat{m}_{33} \end{bmatrix}$$

Computing Camera Parameters: origin of image

 $\begin{bmatrix} \hat{m}_{11} & \hat{m}_{12} & \hat{m}_{13} & \hat{m}_{14} \\ \hat{m}_{21} & \hat{m}_{22} & \hat{m}_{23} & \hat{m}_{24} \\ \hat{m}_{31} & \hat{m}_{32} & \hat{m}_{33} & \hat{m}_{34} \end{bmatrix} = \gamma \begin{bmatrix} -f_x r_{11} + r_{31} o_x & -f_x r_{12} + r_{32} o_x & -f_x r_{13} + r_{33} o_x & -f_x T_x + T_z o_x \\ -f_y r_{21} + r_{31} o_y & -f_y r_{22} + r_{32} o_y & -f_y r_{23} + r_{33} o_y & -f_y T_y + T_z o_y \\ r_{31} & r_{32} & r_{33} & T_z \end{bmatrix}$

 $q_{1}^{T}q_{3} = \hat{m}_{11}\hat{m}_{31} + \hat{m}_{12}\hat{m}_{32} + \hat{m}_{13}\hat{m}_{33}$ $\hat{m}_{11}\hat{m}_{31} + \hat{m}_{12}\hat{m}_{32} + \hat{m}_{13}\hat{m}_{33} = (-f_{x}r_{11} + r_{31}o_{x} - f_{x}r_{12} + r_{32}o_{x} - f_{x}r_{13} + r_{33}o_{x})(r_{31} - r_{32} - r_{33})$ $= (-f_{x}r_{11} - f_{x}r_{12} - f_{x}r_{13})(r_{31} - r_{32} - r_{33}) + (r_{31}o_{x} - r_{32}o_{x} - r_{32}o_{x})(r_{31} - r_{32} - r_{33}) + (r_{31}o_{x} - r_{32}o_{x} - r_{32}o_{x})(r_{31} - r_{32} - r_{33}) + (r_{31}o_{x} - r_{32}o_{x} - r_{32}o_{x})(r_{31} - r_{32} - r_{33}) + (r_{31}o_{x} - r_{32}o_{x} - r_{32}o_{x})(r_{31} - r_{32} - r_{33}) + (r_{31}o_{x} - r_{32}o_{x} - r_{32}o_{x})(r_{31} - r_{32} - r_{33}) + (r_{31}o_{x} - r_{32}o_{x} - r_{32}o_{x})(r_{31} - r_{32} - r_{33}) + (r_{31}o_{x} - r_{32}o_{x} - r_{32}o_{x})(r_{31} - r_{32} - r_{33}) + (r_{31}o_{x} - r_{32}o_{x} - r_{32}o_{x})(r_{31} - r_{32} - r_{33}) + (r_{31}o_{x} - r_{32}o_{x} - r_{32}o_{x})(r_{31} - r_{32} - r_{33}) + (r_{31}o_{x} - r_{32}o_{x} - r_{32}o_{x})(r_{31} - r_{32} - r_{33}) + (r_{31}o_{x} - r_{32}o_{x} - r_{32}o_{x})(r_{31} - r_{32} - r_{33}) + (r_{31}o_{x} - r_{32}o_{x} - r_{32}o_{x})(r_{31} - r_{32} - r_{33}) + (r_{31}o_{x} - r_{32}o_{x} - r_{32}o_{x})(r_{31} - r_{32} - r_{33}) + (r_{31}o_{x} - r_{32}o_{x} - r_{32}o_{x})(r_{31} - r_{32} - r_{33}) + (r_{31}o_{x} - r_{32}o_{x} - r_{32}o_{x})(r_{31} - r_{32} - r_{33}) + (r_{31}o_{x} - r_{32}o_{x} - r_{32}o_{x})(r_{31} - r_{32} - r_{33}) + (r_{31}o_{x} - r_{32}o_{x} - r_{32}o_{x})(r_{31} - r_{32} - r_{33}) + (r_{31}o_{x} - r_{32}o_{x} - r_{32}o_{x}) + (r_{31}o_{x} - r_{32}o_{x} - r_{33}o_{x}) + (r_{31}o_{x} - r_{32}o_{x} - r_{33}o_{x})$

Therefore:

$$o_x = q_1^T q_3$$
$$o_y = q_2^T q_3$$

Computing Camera Parameters: vertical and horizontal focal lengths

 $\begin{bmatrix} \hat{m}_{11} & \hat{m}_{12} & \hat{m}_{13} & \hat{m}_{14} \\ \hat{m}_{21} & \hat{m}_{22} & \hat{m}_{23} & \hat{m}_{24} \\ \hat{m}_{31} & \hat{m}_{32} & \hat{m}_{33} & \hat{m}_{34} \end{bmatrix} = \gamma \begin{bmatrix} -f_x r_{11} + r_{31} o_x & -f_x r_{12} + r_{32} o_x & -f_x r_{13} + r_{33} o_x & -f_x T_x + T_z o_x \\ -f_y r_{21} + r_{31} o_y & -f_y r_{22} + r_{32} o_y & -f_y r_{23} + r_{33} o_y & -f_y T_y + T_z o_y \\ r_{31} & r_{32} & r_{33} & T_z \end{bmatrix}$ $q_1^T q_1 = \hat{m}_{11} \hat{m}_{11} + \hat{m}_{12} \hat{m}_{12} + \hat{m}_{13} \hat{m}_{13}$ $\hat{m}_{11}\hat{m}_{11} + \hat{m}_{12}\hat{m}_{12} + \hat{m}_{13}\hat{m}_{13} =$ $\left(-f_{x}r_{11}+r_{31}o_{x} - f_{x}r_{12}+r_{32}o_{x} - f_{x}r_{13}+r_{33}o_{x}\right)\left(-f_{x}r_{11}+r_{31}o_{x} - f_{x}r_{12}+r_{32}o_{x} - f_{x}r_{13}+r_{33}o_{x}\right)$ $= (-f_{r}r_{11} + r_{21}O_{r})^{2} + (-f_{r}r_{12} + r_{22}O_{r})^{2} + (-f_{r}r_{13} + r_{23}O_{r})^{2}$ $=(f_{u}^{2}r_{11}^{2}+r_{21}^{2}o_{u}^{2})+(f_{u}^{2}r_{12}^{2}+r_{22}^{2}o_{u}^{2})+(f_{u}^{2}r_{12}^{2}+r_{22}^{2}o_{u}^{2})$ $q_{1}^{T}q_{1} = f_{x}^{2} + o_{x}^{2}$ $= f_{x}^{2} + o_{x}^{2}$ $= f_{x}^{2} + o_{x}^{2}$ $= f_{x}$ $f_{r} = \sqrt{q_{1}^{T}q_{1} - o_{r}^{2}}$ $f_v = \sqrt{q_2^T q_2 - o_v^2}$ Therefore:

Computing Camera Parameters: remaining rotation and translation parameters

 $\begin{bmatrix} \hat{m}_{11} & \hat{m}_{12} & \hat{m}_{13} & \hat{m}_{14} \\ \hat{m}_{21} & \hat{m}_{22} & \hat{m}_{23} & \hat{m}_{24} \\ \hat{m}_{31} & \hat{m}_{32} & \hat{m}_{33} & \hat{m}_{34} \end{bmatrix} = \gamma \begin{bmatrix} -f_x r_{11} + r_{31} o_x & -f_x r_{12} + r_{32} o_x & -f_x r_{13} + r_{33} o_x & -f_x T_x + T_z o_x \\ -f_y r_{21} + r_{31} o_y & -f_y r_{22} + r_{32} o_y & -f_y r_{23} + r_{33} o_y & -f_y T_y + T_z o_y \\ r_{31} & r_{32} & r_{33} & T_z \end{bmatrix}$

$$0_{x}r_{31} + f_{x}r_{11} - r_{31}0_{x} = \sigma(0_{x}\hat{m}_{31} - \hat{m}_{11}),$$

$$r_{11} = \sigma(0_{x}\hat{m}_{31} - \hat{m}_{11}) / f_{x},$$

$$r_{1i} = \sigma(0_x \hat{m}_{3i} - \hat{m}_{1i}) / f_x, \quad i = 1, 2, 3$$

$$r_{2i} = \sigma(0_y \hat{m}_{3i} - \hat{m}_{2i}) / f_y, \quad i = 1, 2, 3$$

$$T_x = \sigma(0_x \hat{m}_{34} - \hat{m}_{14}) / f_x$$

$$T_y = \sigma(0_y \hat{m}_{34} - \hat{m}_{24}) / f_y$$

Reading Material

- Chapter 1, Fundamental Of Computer Vision, Mubarak Shah
- Chapter 6, Introductory Techniques, E. Trucco and A. Verri, Prentice Hall, 1998.
- Recovering the camera parameters from a transformation matrix, TM Strat - Readings in Computer Vision, 1987