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Edge Detection

Lecture-3
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Example



An Application

 What is an object? 
 How can we find it?
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Edge Detection in Images

 At edges intensity or color changes
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What is an Edge?

 Discontinuity of intensities in the image
 Edge models

– Step
– Roof
– Ramp
– Spike

Step Ramp

Roof Spike
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Detecting Discontinuities

 Image derivatives

 Convolve image with derivative filters
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Derivative in Two-Dimensions

 Definition

 Approximation

 Convolution kernels
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Image Derivatives
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Derivatives and Noise

 Strongly affected by noise
– obvious reason: image 

noise results in pixels 
that look very different 
from their neighbors

 The larger the noise is the 
stronger the response

 What is to be done?
– Neighboring pixels look 

alike
– Pixel along an edge look 

alike
– Image smoothing should 

help 
 Force pixels different to 

their neighbors (possibly 
noise) to look like 
neighborsAlper Yilmaz, Mubarak Shah Fall 2012UCF



Derivatives and Noise

Zero mean additive gaussian noise

Increasing noise
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Image Smoothing

 Expect pixels to “be like” their neighbors
– Relatively few reflectance changes

 Generally expect noise to be independent 
from pixel to pixel
– Smoothing suppresses noise
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Gaussian Smoothing

 Scale of Gaussian 
– As  increases, more pixels are involved in average
– As  increases, image is more blurred
– As  increases, noise is more effectively suppressed 
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Gaussian Smoothing (Examples)
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Edge Detectors

 Gradient operators
– Prewit
– Sobel

 Laplacian of Gaussian (Marr-Hildreth)
 Gradient of Gaussian (Canny)
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Prewitt and Sobel Edge Detector

 Compute derivatives
– In x and y directions

 Find gradient magnitude
 Threshold gradient magnitude
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Prewitt Edge Detector

image blurred edges in xaverage
smoothing in x

derivative
filtering in x
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Sobel Edge Detector

Image I
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Sobel Edge Detector

I
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Sobel Edge Detector
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Marr Hildreth Edge Detector
 Smooth image by Gaussian filter  S
 Apply Laplacian to S

– Used in mechanics, electromagnetics, wave theory, quantum 
mechanics and Laplace equation

 Find zero crossings
– Scan along each row, record an edge point at the location of 

zero-crossing.
– Repeat above step along each column



Marr Hildreth Edge Detector

 Gaussian smoothing
  imagefilter Gaussianimage smoothed
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Marr Hildreth Edge Detector

 Deriving the Laplacian of Gaussian (LoG)
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Gaussian
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LoG Filter
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Finding Zero Crossings

 Four cases of zero-crossings :
– {+,-}
– {+,0,-}
– {-,+}
– {-,0,+}

 Slope of zero-crossing {a, -b} is |a+b|.
 To mark an edge 

– compute slope of zero-crossing
– Apply a threshold to slope
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On the Separability of LoG

 Similar to separability of Gaussian filter
– Two-dimensional Gaussian can be separated into 

2 one-dimensional Gaussians
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On the Separability of LoG

Requires n2 multiplications
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Requires 4n multiplications
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Seperability

Image

gxx(x) g(y)

gyy(y) g(x)

+ S2

Image g(x) g(y) gI 

Gaussian Filtering

Laplacian of Gaussian Filtering
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Example

 gI 2* I S2 of crossings Zero 
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Example

1

6

3
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Algorithm

 Compute LoG
– Use 2D filter
– Use 4 1D filters

 Find zero-crossings from each row
 Find slope of zero-crossings
 Apply threshold to slope and mark edges
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Quality of an Edge

 Robust to noise
 Localization
 Too many or too less responses
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Quality of an Edge

True 
edge

Poor robustness 
to noise

Poor
localization

Too many
responses
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Canny Edge Detector

 Criterion 1: Good Detection: The optimal detector must 
minimize the probability of false positives as well as false 
negatives.

 Criterion 2: Good Localization: The edges detected must 
be as close as possible to the true edges.

 Single Response Constraint: The detector must return 
one point only for each edge point.
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Canny Edge Detector Steps

1. Smooth image with Gaussian filter
2. Compute derivative of filtered image
3. Find magnitude and orientation of gradient
4. Apply “Non-maximum Suppression”
5. Apply “Hysteresis Threshold”
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Canny Edge Detector
First Two Steps

 Smoothing

 Derivative
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Canny Edge Detector
Derivative of Gaussian
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Canny Edge Detector
First Two Steps
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Canny Edge Detector
Third Step

 Gradient magnitude and gradient direction
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Canny Edge Detector
Fourth Step

 Non maximum suppression

We wish to mark points along the curve where the magnitude is largest. We can do this by 
looking for a maximum along a slice normal to the curve (non-maximum suppression).  
These points should form a curve.  There are then two algorithmic issues: at which point is 
the maximum, and where is the next one?
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Canny Edge Detector
Non-Maximum Suppression

 Suppress the pixels in |S| which are not 
local maximum
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Canny Edge Detector
Non-Maximum Suppression
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Canny Edge Detector
Hysteresis Thresholding

 If the gradient at a pixel is 
– above “High”, declare it as an ‘edge pixel’
– below “Low”, declare it as a “non-edge-pixel”
– between “low” and “high” 

 Consider its neighbors iteratively then declare it an 
“edge pixel” if it is connected to an ‘edge pixel’ directly
or via pixels between “low” and “high”.
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Canny Edge Detector
Hysteresis Thresholding

 Connectedness

x x x

4 connected 8 connected 6 connected
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Canny Edge Detector
Hysteresis Thresholding

High

low

Gradient 
magnitude
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Canny Edge Detector
Hysteresis Thresholding

 Scan the image from left to right, top-bottom.
– The gradient magnitude at a pixel is above a high 

threshold declare that as an edge point
– Then recursively consider the neighbors of this 

pixel.
 If the gradient magnitude is above the low threshold 

declare that as an edge pixel.
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Canny Edge Detector
Hysteresis Thresholding
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Suggested Reading

 Chapter 4, Emanuele Trucco, Alessandro 
Verri, "Introductory Techniques for 3-D 
Computer Vision"

 Chapter 2, Mubarak Shah, “Fundamentals of 
Computer Vision”
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