
CAP 5415 Computer Vision
Fall 2012

Dr. Mubarak Shah
Univ. of Central Florida
Office 247-F HEC

Lecture-5 



SIFT: David Lowe, UBC



SIFT - Key Point Extraction
 Stands for scale invariant feature 

transform
 Patented by university of British 

Columbia
 Similar to the one used in primate visual 

system (human, ape, monkey, etc.)
 Transforms image data into scale-

invariant coordinates
D. Lowe. Distinctive image features from scale-invariant key points., International Journal of 
Computer Vision 2004.



Goal
 Extracting distinctive invariant features

 Correctly matched against a large database of 
features from many images

 Invariance to image scale and rotation
 Robustness to 

 Affine distortion, 
 Change in 3D viewpoint, 
 Addition of noise, 
 Change in illumination.



Advantages
 Locality: features are local, so robust to 

occlusion and clutter
 Distinctiveness: individual features can be 

matched to a large database of objects
 Quantity: many features can be generated 

for even small objects
 Efficiency: close to real-time performance



Invariant Local Features



Steps for Extracting Key 
Points 
 Scale space peak selection

 Potential locations for finding features
 Key point localization

 Accurately locating the feature key points
 Orientation Assignment

 Assigning orientation to the key points
 Key point descriptor

 Describing the key point as a high dimensional 
vector



Scales
 What should be  sigma value for Canny 

and LG edge detection?
 If use multiple  sigma  values (scales), 

how do you combine multiple edge 
maps?

 Marr-Hildreth: 
 Spatial Coincidence assumption:

 Zerocrossings that coincide over several scales 
are physically significant.



Scale Space (Witkin, IJCAI 
1983)
 Apply whole spectrum of scales
 Plot zerocrossings vs scales in a scale-space



Scale Space

Multiple smooth versions of a signal Zerocrossings at multiple scale

scale scale



Scale Space

Scale Space Interval Tree



Scale Space (Witkin, IJCAI 
1983)
 Apply whole spectrum of scales
 Plot zerocrossings vs scales in a scale-space
 Interpret scale space contours 

 Contours are arches, open at the bottom, closed 
at the top

 Interval tree
 Each interval corresponds to a node in a tree, whose 

parent node represents larger interval, from which 
interval emerged, and whose off springs represent 
smaller intervals. 

 Stability of a node is a scale range over which the 
interval exits.



Scale Space
 Top level description

 Iteratively remove nodes from the tree, 
splicing out nodes that are less stable than 
any of their parents and off springs



Scale Space

A top level description of 
several signals using stability 
criterion.
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K. Grauman, B. Leibe

Laplacian-of-Gaussian (LoG)
• Interest points: 

Local maxima in scale 
space of Laplacian-of-
Gaussian

K. Grauman, B. Leibe
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K. Grauman, B. Leibe

What Is A Useful Signature Function?

• Laplacian-of-Gaussian = “blob” detector

K. Grauman, B. Leibe



Scale-space blob detector: Example

Source: Lana Lazebnik



Scale-space blob detector: Example

Source: Lana Lazebnik



Scale-space blob detector: Example

Source: Lana Lazebnik



Building a Scale Space
 All scales must be examined to identify scale-

invariant features
 An efficient function is to compute the Laplacian 

Pyramid (Difference of Gaussian) (Burt & Adelson, 1983)



Approximation of LoG by 
Difference of Gaussians
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Building a Scale Space
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Building a Scale Space
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How many scales per 
octave?



Initial value of sigma



Scale Space Peak Detection
 Compare a pixel (X) with 26 

pixels in current and adjacent 
scales (Green Circles)

 Select a pixel (X) if 
larger/smaller than all 26 pixels

 Large number of extrema, 
computationally expensive
 Detect the most stable subset 

with a coarse sampling of scales



Key Point Localization
 Candidates are chosen from extrema 

detection

original image extrema locations



Initial Outlier Rejection
1. Low contrast candidates
2. Poorly localized candidates along an edge
 Taylor series expansion of DOG, D.

 Minima or maxima is located at
 Value of D(x) at minima/maxima must be 

large, |D(x)|>th.

Homework



Initial Outlier Rejection

from 832 key points to 729 key points, th=0.03.



Further Outlier Rejection

 DOG has strong response along 
edge

 Assume DOG as a surface
 Compute principal curvatures (PC)
 Along the edge one of the PC is very 

low, across the edge is high



Further Outlier Rejection
 Analogous to Harris corner detector
 Compute Hessian of D

 Remove outliers by evaluating
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Further Outlier Rejection
 Following quantity is minimum when r=1
 It increases with r

 Eliminate  key points if 
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Further Outlier Rejection

from 729 key points to 536 key points.



Orientation Assignment
 To achieve rotation invariance
 Compute central derivatives, gradient 

magnitude and direction of L (smooth 
image) at the scale of key point (x,y)



Orientation Assignment
 Create a weighted direction 

histogram in a neighborhood of 
a key point (36 bins) 

 Weights are 
 Gradient magnitudes
 Spatial gaussian filter with   
=1.5 x <scale of key point>



Orientation Assignment
 Select the peak as direction of the key point
 Introduce additional key points (same 

location) at local peaks (within 80% of max 
peak) of the histogram with different 
directions



Local Image Descriptors at 
Key Points
 Possible descriptor

 Store intensity samples in the neighborhood
 Sensitive to lighting changes, 3D object 

transformation
 Use of gradient orientation histograms

 Robust representation



39

Similarity to IT cortex
 Complex neurons respond to a gradient at a 

particular orientation.
 Location of the feature can shift over a small 

receptive field.
 Edelman, Intrator, and Poggio (1997) 

 The function of the cells allow for matching and 
recognition of 3D objects from a range of view 
points.

 Experiments show better recognition 
accuracy for 3D objects rotated in depth by 
up to 20 degrees



Extraction of Local Image 
Descriptors at Key Points
 Compute relative orientation and magnitude in a 

16x16 neighborhood at key point
 Form weighted histogram (8 bin) for 4x4 regions

 Weight by magnitude and spatial Gaussian
 Concatenate 16 histograms in one long vector of 128 dimensions

 Example for 8x8 to 2x2 descriptors



Descriptor  Regions (n by n)



Extraction of Local Image 
Descriptors at Key Points
 Store numbers in a vector
 Normalize to unit vector (UN)

 Illumination invariance (affine changes)
 For non-linear intensity transforms

 Bound Unit Vector items to maximum 0.2 
(remove larger gradients)

 Renormalize to unit vector
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Key point  matching
 Match the key points against a database of 

that obtained from training images.
 Find the nearest neighbor i.e. a key point with 

minimum Euclidean distance.
 Efficient Nearest Neighbor matching

 Looks at ratio of distance between best and 2nd best 
match  (.8)



Matching local features

Kristen Grauman



Matching local features

?

• To generate candidate matches, find patches that 
have the most similar appearance or SIFT descriptor

• Simplest approach: compare them all, take the closest 
(or closest k, or within a thresholded distance)

Image 1 Image 2

Kristen Grauman



Ambiguous matches

• At what distance do we have a good match?
• To add robustness to matching, can consider ratio : distance to 

best match  / distance to second best match
• If low, first match looks good.
• If high, could be ambiguous match.

Image 1 Image 2

? ? ? ?

Kristen Grauman



The ratio of distance
from the closest  to the distance of the 
second closest
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