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* SIFT: David Lowe, UBC




i SIFT - Key Point Extraction

s Stands for scale invariant feature
transform

= Patented by university of British
Columbia

= Similar to the one used in primate visual
system (human, ape, monkey, etc.)

= [ransforms image data into scale-
invariant coordinates

D. Lowe. Distinctive image features from scale-invariant key points., International Journal of
Computer Vision 2004.



i Goal

= Extracting distinctive invariant features

= Correctly matched against a large database of
features from many images

= |nvariance to image scale and rotation

= Robustness to
= Affine distortion,
= Change in 3D viewpoint,
= Addition of noise,
= Change in illumination.



i Advantages

= Locality: features are local, so robust to
occlusion and clutter

= Distinctiveness: individual features can be
matched to a large database of objects

= Quantity: many features can be generated
for even small objects

= Efficiency: close to real-time performance
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Steps for Extracting Key

i Points

= Scale space peak selection
= Potential locations for finding features

= Key point localization

= Accurately locating the feature key points
= Orientation Assignment

= Assigning orientation to the key points

= Key point descriptor

= Describing the key point as a high dimensional
vector




i Scales

= What should be sigma value for Canny
and LG edge detection?

= If use multiple sigma values (scales),
how do you combine multiple edge
maps?

= Marr-Hildreth:

= Spatial Coincidence assumption:

« Zerocrossings that coincide over several scales
are physically significant.



Scale Space (Witkin, IJCAI
‘_h983)

= Apply whole spectrum of scales
= Plot zerocrossings vs scales in a scale-space
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Scale Space (Witkin, IJCAI
083)

= Apply whole spectrum of scales
= Plot zerocrossings vs scales in a scale-space

= Interpret scale space contours

= Contours are arches, open at the bottom, closed
at the top

= Interval tree

=« Each interval corresponds to a node in a tree, whose
parent node represents larger interval, from which
interval emerged, and whose off springs represent
smaller intervals.

« Stability of a node is a scale range over which the
interval exits.




i Scale Space

= [op level description

= Iteratively remove nodes from the tree,
splicing out nodes that are less stable than
any of their parents and off springs



i Scale Space

A top level description of WWW\WWM
several signals using stability
criterion. MM




Laplacian-of-Gaussian (LoG)

Interest points:

Local maxima in scale
space of Laplacian-of-
Gaussian o

= List of
(X, Y, 0)
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K. Grauman, B. Leibe



What Is A Useful Signature Function?

e [aplacian-of-Gaussian = ““blob’ detector
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Scale-space blob detector: Example

Source: Lana Lazebnik



Scale-space blob detector: Example

sigma = 11.9912

Source: Lana Lazebnik



Scale-space blob detector: Example
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Source: Lana Lazebnik



i Building a Scale Space

= All scales must be examined to identify scale-
invariant features

= An efficient function is to compute the Laplacian
Pyramid (Difference of Gaussian) (Burt & Adelson, 1983)

Resample / m




Approximation of LoG by
i Difference of Gaussians

oG

% — AZG Heat Equation
v - 96 _G(xy.ko)-G(xy,0)
60 Ko—o

G(x,Y,ka)-G(X,y,0) = (k-1)c°A°G
Typical values:o =1.6; k = V2



Building a Scale Space

G(x,y,ko)= 1 e—(x2+y2)/2k20'2
27(ko )’
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Building a Scale Space

G(x,y,ko)= 1 e—(x2+y2)/2k20'2
27(ko )’
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scale ——»

octave

A.7arie?
1.414214
Z.B2ZR427
5.656B54

1.BBREAR
2. BBBEna
4. BBBEna
B.BBBana

1.414214
2.828427
5.656854
11.313788

2. B88EH0E
4 . A8BERE
8 . BaEan
16 . BBEBHA

Z.B2R427
5.6hEE54
11.313708
22627417

o =.707187.6: k =+/2



How many scales per
octave?
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Repeatability (%)
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Scale Space Peak Detection

= Compare a pixel (X) with 26
pixels in current and adjacent A [

scales ( ) B
s S

= Select a pixel (X) if g
larger/smaller than all 26 pixels

= Large number of extrema, o v v
. . s
computationally expensive S

= Detect the most stable subset
with a coarse sampling of scales




* Key Point Localization

s Candidates are chosen from extrema
detection

original image extrema locations



i Initial Outlier Rejection

Low contrast candidates
2. Poorly localized candidates along an edge

o aylor series expansion of DOG, D.

n oDt 1 02D
D(x) =D+ — x+ =x"- x = (z,y,0)7

X 2 Ox2 Homework
Nt - . (:)QD_l )
=  Minima or maxima is located at = — — =
JX= 5.4

= Value of D(x) at minima/maxima must be
large, |D(Xx)|>th.



* Initial Outlier Rejection

from 832 key points to 729 key points, th=0.03.



i Further Outlier Rejection

= DOG has strong response along
edge

= Assume DOG as a surface
= Compute principal curvatures (PC)

= Along the edge one of the PC is very
low, across the edge is high



i Further Outlier Rejection

= Analogous to Harris corner detector
= Compute Hessian of D

H - [ Dir Doy | Tr(H)=D,, +D,, =A+4,
Ty uy
Det(H)=D,,D,, —(D,,)* =44,

XXy

= Remove outliers by evaluating
Tr(H)* (r+2)°
Det(H) r

A
Z



i Further Outlier Rejection

= Following quantity is minimum when r=1

s It Increases with r
A

Tr(H)* (r+2)° 2,
Det(H) 1

= Eliminate key pointsif >10



* Further Outlier Rejection

from 729 key points to 536 key points.



i Orientation Assignment

= [0 achieve rotation invariance

= Compute central derivatives, gradient
magnitude and direction of L (smooth
image) at the scale of key point (x,y)

m(x,y) = \/(I,- (x+1.y)— Lz —1.9))*+ (L(z,y+1) — L(z.y — 1))?

Blx.y)= tzul_l( (L(z,y+1)—L(x,y —1))/(L(x+1,y) — L(z —1,y)))



i Orientation Assignment

= Create a weighted direction
histogram in a neighborhood of

a key point (36 bins) A e | T

= Weights are NEIENL
= Gradient magnitudes -\, T""
= Spatial gaussian filter with N

c=1.5 x <scale of key point>



i Orientation Assignment

= Select the peak as direction of the key point

= Introduce additional key points (same
location) at local peaks (within 80% of max
peak) of the histogram with different
directions

X o |




Local Image Descriptors at
i Key Points

= Possible descriptor
= Store intensity samples in the neighborhood

= Sensitive to lighting changes, 3D object
transformation

= Use of gradient orientation histograms
= Robust representation




Similarity to IT cortex

= Complex neurons respond to a gradient at a
particular orientation.

s Location of the feature can shift over a small
receptive field.

= Edelman, Intrator, and Poggio (1997)

= The function of the cells allow for matching and
recognition of 3D objects from a range of view
points.
= Experiments show better recognition
accuracy for 3D objects rotated in depth by
up to 20 degrees

39



Extraction of Local Image
i Descriptors at Key Points

= Compute relative orientation and magnitude in a
16x16 neighborhood at key point

= Form weighted histogram (8 bin) for 4x4 regions
= Weight by magnitude and spatial Gaussian
= Concatenate 16 histograms in one long vector of 128 dimensions

= Example for 8x8 to 2x2 descriptors
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2| Descriptor Regions (n by n)
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Extraction of Local Image
i Descriptors at Key Points

s Store numbers in a vector

= Normalize to unit vector (UN)
= lllumination invariance (affine changes)

= For non-linear intensity transforms

= Bound Unit Vector items to maximum 0.2
(remove larger gradients)

= Renormalize to unit vector



i Key point matching

= Match the key points against a database of
that obtained from training images.

= Find the nearest neighbor i.e. a key point with

minimum Euclidean distance.

= Efficient Nearest Neighbor matching

=« Looks at ratio of distance between best and 2"d best
match (.8)

43



Matching local features

Kristen Grauman



Matching local features

Image 1 Image 2

« To generate candidate matches, find patches that
have the most similar appearance or SIFT descriptor

« Simplest approach: compare them all, take the closest
(or closest k, or within a thresholded distance)

Kristen Grauman



Ambiguous matches

At what distance do we have a good match?

To add robustness to matching, can consider ratio : distance to
best match / distance to second best match

» If low, first match looks good.
 If high, could be ambiguous match.

Kristen Grauman



The ratio of distance
from the closest to the distance of the

i second closest
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i Reference

D. Lowe. Distinctive image features from scale-
invariant key points., International Journal of Computer

Vision 2004.



