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Course Contents

• Introduction
• Part I Measurement of Image Motion
• Part II Change Detection and Tracking
• Part III Video Understanding
• Part IV Video Phones and MPEG-4
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Multimedia

• Text
• Graphics
• Audio
• Images
• Video

Imaging Configurations

• Stationary camera stationary objects
• Stationary camera moving objects
• Moving camera stationary objects
• Moving camera moving objects
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Video

• sequence of images
• clip
• mosaic
• key frames

Steps in Video Computing

• acquire     (CCD arrays/synthesize (Graphics))
• process     (Image processing)
• analyze     (Computer Vision)
• transmit    (Compression/Networking)
• store         (Compression/databases)
• retrieve     (Computer Vision/Databases)
• browse      (Computer Vision/Databases)
• visualize    (Graphics)
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Computer Vision

• Measurement of Motion
– 2-D Motion

• optical flow
• point correspondences

– 3-D Motion
• structure from motion (sfm)
• compute 3D translation, 3D rotation
• shape from motion (depth)

Computer Vision (contd.)

• Scene Change Detection
– consecutive frame differencing
– background differencing

• median filter
• pfinder
• W4
• Mixture of Gaussians
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Computer Vision (contd.)

• Tracking
– people
– vehicles
– animals

Computer Vision (contd.)

• Video Recognition
– activity recognition
– gesture recognition
– facial expression recognition
– lipreading

• Video Segmentation
– shots
– scenes
– stories
– key frames
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Image Processing

• Filtering
• Compression

– MPEG-1
– MPEG-2
– MPEG-4
– MPEG-7

Databases

• Storage
• Retrieval
• Video on demand
• Browsing

– skim
– abstract
– key frames
– mosaics
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Networking

• Transmission
• ATM

Computer Graphics

• Visualization
• Image-based Rendering and Modeling
• Augmented Reality
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PART I

Measurement of Motion

Contents

• Image Motion Models
• Optical Flow Methods

– Horn & Schunck
– Lucas and Kanade
– Anandan et al
– Szeliski
– Mann & Picard

• Video Mosaics
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3-D Rigid Motion
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Rotation (continued)
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Displacement Model

Orthographic Projection

(x,y)=image coordinates,
 (X,Y,Z)=world coordinates
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Orthographic Projection (contd.)
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Plane+Perspective(projective)
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 Displacement Models
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Displacement Models (contd)

• Translation
– simple
– used in block matching
– no zoom, no rotation, no pan and tilt

• Rigid
– rotation and translation
– no zoom, no pan and tilt
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• Affine
– rotation about optical axis only
– can not capture pan and tilt
– orthographic projection

• Projective
– exact eight parameters (3 rotations, 3

translations and 2 scalings)
– difficult to estimate

Displacement Models (contd)

• Biquadratic
– obtained by second order Taylor series
– 12 parameters

• Bilinear
– obtained from biquadratic model by removing square

terms
– most widely used
– not related to any physical 3D motion

• Pseudo-perspective
– obtained by removing two square terms and

constraining four remaining to 2 degrees of freedom

Displacement Models (contd)
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Instantaneous Velocity Model

3-D Rigid Motion
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Orthographic Projection

(u,v) is optical flow
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Plane+orthographic(Affine)
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Measurement of Image Motion

• Local Motion (Optical Flow)
• Global Motion (Frame Alignment)

Computing Optical Flow
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Image from Hamburg Taxi seq

Image from Hamburg Taxi seq



21

Fleet & Jepson optical flow

Horn & Schunck optical flow
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Tian & Shah optical flow

Horn&Schunck Optical Flow

f x yt f x dx y dyt dt( , , ) ( , , )= + + +
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Taylor Series
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Interpretation of optical flow eq
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Algorithm-1

• k=0
• Initialize u vK K

u u f
P

D

v v f
P

D

K
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•  Repeat until some error measure is satisfied

Convolution
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Convolution (contd)
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Synthetic Images

Results

One iteration 10 iterations
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Comments

• Algorithm-1 works only for small motion.
• If object moves faster, the brightness

changes rapidly,  2x2 or 3x3 masks fail to
estimate spatiotemporal derivatives.

• Pyramids can be used to compute large
optical flow vectors.

Algorithm-2 (Optical Flow)

• Create  Gaussian pyramid of both frames.
• Repeat

– apply algorithm-1 at the current level of
pyramid.

– propagate flow by using bilinear interpolation
to the next level, where it is used as an initial
estimate.

– Go back to step 2
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Horn&Schunck Method

• Good only for translation model.
• Oversmoothing of boundaries.
• Does not work well for real

sequences.

Other Optical Flow Methods
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Important Issues

• What motion model?
• What function to be minimized?
• What  minimization method?

Minimization Methods

• Least Squares fit
• Weighted Least Squares fit
• Newton-Raphson
• Gradient Descent
• Levenberg-Marquadet
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Lucas & Kanade (Least Squares)

• Optical flow eq
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Lucas & Kanade
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Lucas & Kanade
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Anandan
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Basic Components

• Pyramid construction
• Motion estimation
• Image warping
• Coarse-to-fine refinement

Szeliski (Levenberg-Marquadet)
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Szeliski (Levenberg-Marquadet)

Motion Vector:

[ ]Tccbbaaaa 21214321=m

Szeliski (Levenberg-Marquadet)
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Szeliski (Levenberg-Marquadet)

• For each pixel I at ),( ii yx

• Compute                using projective transform.),( yx ′′

• Compute ),(),( yxfyxfe −′′=
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Szeliski (Levenberg-Marquadet)

• Continue iteration until error is below
threshold.

• check if error has decreased, if not
increase        and compute a new m∆λ

Mann & Picard
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Projective Flow (weighted)
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Projective Flow (weighted)
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Bilnear
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Projective Flow (unweighted)
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Algorithm

• Estimate “q” (using approximate model,
e.g. bilinear model).

• Relate “q” to “p”
– select four points S1, S2, S3, S4
– apply approximate model using “q” to compute
– estimate exact “p”:
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Final Algorithm

• A Gaussian pyramid of three or four levels
is constructed for each frame in the
sequence.

• The parameters “p” are estimated at the top
level of the pyramid, between the two
lowest resolution images, “g” and “h”,
using algorithm-1 (see figure).

Final Algorithm

• The estimated “p” is applied to the next
higher resolution image in the pyramid, to
make images at that level nearly congruent.

• The process continues down the pyramid
until the highest resolution image in the
pyramid is reached.
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Video Mosaics

• Mosaic aligns different pieces of a
scene into a larger piece, and
seamlessly blend them.
– High resolution image from low

resolution images
– Increased filed of view

Steps in Generating A Mosaic

• Take pictures
• Pick reference image
• Determine transformation between

frames
• Warp all images to the same reference

view
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Applications of Mosaics

• Virtual Environments
• Computer Games
• Movie Special Effects
• Video Compression

Webpages

• http://n1nlf1.eecg.toronto.edu/tip.ps.gz

Video Orbits of the projective
group, S. Mann and R. Picard.

• http://wearcam.org/pencigraphy
(C code for generating mosaics)
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Webpages

• http://ww-bcs.mit.edu/people/adelson/papers.html

– The Laplacian Pyramid as a compact
code, Burt and Adelson, IEEE Trans on
Communication, 1983.

• J. Bergen, P. Anandan, K. Hanna, and R.
Hingorani, “Hierarchical Model-Based
Motion Estimation”, ECCV-92, pp 237-22.

Webpages

• http://www.cs.cmu.edu/afs/cs/project/cil/ftp/html/
v-source.html (c code for several optical flow
algorithms)

• ftp://csd.uwo.ca/pub/vision
Performance of optical flow techniques
(paper)

Barron, Fleet and Beauchermin
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Webpages

• http://www.wisdom.weizmann.ac.il/~irani/abstract
s/mosaics.html (“Efficient representations of video
sequences and their applications”, Michal Irani, P.
Anandan, Jim Bergen, Rakesh Kumar, and Steve
Hsu)

• R. Szeliski. “Video mosaics for virtual
environments”, IEEE Computer Graphics and
Applications, pages,22-30, March 1996.

Part II

Change Detection and Tracking
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Contents

• Change Detection
• Pfinder
• Mixture of Gaussians
• Kanade
• W4
• Tracking  People Using Color

Change Detection
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Main Points

• Detect pixels which are changing due to
motion of objects.

• Not necessarily measure motion (optical
flow), only detect motion.

• A set of connected pixels which are
changing may correspond to moving object.

Picture Difference
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Background Image

• The first image of a sequence without
any moving objects, is background image.

• Median filter
)),(,),,((),( 1 yxfyxfmedianyxB nK=

PFINDER

Pentland
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Pfinder

• Segment a human from an arbitrary
complex background.

• It only works for single person
situations.

• All approaches based on background
modeling work only for fixed cameras.

Algorithm

• Learn background model by watching 30 second video
• Detect moving object by measuring deviations from

background model
• Segment moving blob into smaller blobs by minimizing

covariance of a blob
• Predict position of a blob in the  next frame using

Kalman filter
• Assign each pixel in the new frame to a class with max

likelihood.
• Update background and blob statistics
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Learning Background Image

• Each pixel in the background has
associated mean color value and a
covariance matrix.

• The color distribution for each
pixel is described by Gaussian.

• YUV color space is used.

Detecting Moving Objects

• After background model has been learned,
Pfinder watches for large deviations from the
model.

• Deviations are measured in terms of
Mahalanobis distance in color.

• If the distance is sufficient then the process of
building a blob model is started.
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Detecting Moving Objects

• For each of k blob in the image, log-
likelihood is computed

)2ln(5.||ln5.)()(5. 1 DmKyKyd kkk
T
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• Log likelihood values are used to classify pixels
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Updating

•The statistical model for the background is
updated.
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• The statistics of each blob (mean and covariance) are
re-computed.
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Mixture of Gaussians

Grimson

Algorithm

• Learn background model by watching 30 second video
• Detect moving object by measuring deviations from

background model, and applying connected component to
foreground pixels.

• Predict position of a region  in the next frame using
Kalman filter

• Update background and blob statistics
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Summary

• Each pixel is an independent statistical process,
which may be combination of several processes.
–  Swaying branches of tree result in a bimodal

behavior of pixel intensity.

• The intensity is fit with a mixture of K
Gaussians.
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Learning Background Model

•  Every new pixel  is checked against all
existing distributions.  The match is the first
distribution such that the pixel value lies within
2 standard deviations of mean.

•If no match, introduce new distribution.

Updating
• The mean and s.d. of unmatched
distributions remain unchanged. For the
matched distributions they are updated as:
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Segmenting Background

• Any pixel that is more than 2 sd from all the
distributions is marked as a part of
foreground-moving object.

• Such pixels are then clustered into
connected components.

Kanade
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Summary

• Very similar to k-Gaussian with following
differences:
– uses only single Gaussian
– uses gray level images, the mean and variance

are scalar values

Algorithm

• Learn background model by watching 30 second video
• Detect moving object by measuring deviations from

background model, and applying connected component to
foreground pixels.

• Update background and region statistics
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Detection

• During detection if intensity value is more than
two sigma away from the background it is
considered foreground:
– keep original mean and variance
– track  the object with new mean and  variance
– if new mean and variance persists for sometime,

then substitute the new mean and variance as the
background model

– Object  is no longer visible, it is incorporated as part
of background

W4 (Who, When, Where, What)

Davis
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W4

• Compute “minimum”(M(x)),
“maximum” (N(x)), and “largest absolute
difference” (L(x)).
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• Theoretically, the performance of this
tracker should be worse than others.

• Even if one value is far away from the
mean, then that value will result in an
abnormally high value of  L.

• Having short training time is better for this
tracker.
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Limitations

• Multiple people
• Occlusion
• Shadows
• Slow moving people
• Multiple processes (swaying of trees..)

Webpage

• Http://www.cs.cmu.edu/~vsam  (DARPA
Visual Surveillance and Monitoring
program)
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Skin Detection

Kjeldsen and Kender

Training

• Crop skin regions in the training images.
• Build histogram of training images.
• Ideally this histogram should be bi-modal,

one peak corresponding to the skin pixels,
other to the non-skin pixels.

• Practically there may be several peaks
corresponding to skin, and non-skin pixels.
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Training

• Apply threshold to skin peaks to remove
small peaks.

• Label all gray levels (colors) under skin
peaks as “skin”, and the remaining gray
levels as “non-skin”.

• Generate a look-up table for all possible
colors in the image, and assign “skin” or
“non-skin” label.

Detection

• For each pixel in the image, determine its
label from the “look-up table” generated
during training.
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Building Histogram

• Instead of incrementing the pixel counts in a
particular histogram bin:
– for skin pixel increment the bins centered

around the given value by a Gaussian function.
– For non-skin pixels decrement the bins centered

around the given value by a smaller Gaussian
function.

Tracking People Using Color
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Fieguth and Terzopoulos

• Computer mean color vector for each sub
region.

∑
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• Compute goodness of fit.
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Fieguth and Terzopoulos

• Tracking

∑
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Fieguth and Terzopoulos

• Non-linear velocity estimator
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Part III

VIDEO UNDERSTANDING

Contents

• Monitoring Human Behavior In an Office

• Model-Based Human Activities
Recognition

• Visual Lipreading
• Hand Gesture Recognition
• Action Recognition using temporal

templates
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Monitoring Human Behavior
In an Office Environment

Goals of the System

• Recognize human actions in a room for
which prior knowledge is available.

• Handle multiple people
• Provide a textual description of each

action
• Extract “key frames” for each action
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Possible Actions

• Enter
•  Leave
• Sitting or Standing
• Picking Up Object
• Put Down Object
• …..

Prior Knowledge

• Spatial layout of the scene:
– Location of entrances and exits
– Location of objects and some

information about how they are use

• Context can then be used to improve
recognition and save computation
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Layout of Scene 1

Layout of Scene 2
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Layout of Scene 4

Major Components

• Skin Detection
• Tracking
• Scene Change Detection
• Action  Recognition



73

Start

End Standing Sitting

Near Cabinet
Near Terminal

Using Terminal

Enter

Sit 
Leave

   Use 
Terminal

Near Phone

Talking on Phone

Hanging Up Phone

Pick Up 
  Phone

Put Down 
   Phone

Stand

Opening/Closing
       Cabinet

Open / Close
    Cabinet

Sit / 0Stand / 0

State Model For Action Recognition

Flow of the System

Skin Detection

Track people and Objects for this Frame

Scene Change Detection

Update States, Output Text, Output Key Frames

Determine Possible Interactions Between People and Objects
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Key Frames

• Why get key frames?
– Key frames take less space to store
– Key frames take less time to transmit
– Key frames can be viewed more quickly

• We use heuristics to determine when key
frames are taken
– Some are taken before the action occurs
– Some are taken after the action occurs

Key Frames
• “Enter” key frames: as the person leaves the

entrance/exit area
• “Leave” key frames: as the person enters the

entrance/exit area
• “Standing/Sitting” key frames: after the

tracking box has stopped moving up or
down respectively

• “Open/Close” key frames: when the % of
changed pixels stabilizes
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Results
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Key Frames Sequence 1 (350 frames), Part 1

Key Frames Sequence 1 (350 frames), Part 2
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Key Frames Sequence 2 (200 frames)
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Key Frames Sequence 3 (200 frames)
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Key Frames Sequence 4 (399 frames), Part 1
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Key Frames Sequence 4 (399 frames), Part 2
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Generalizations

• Increased field of view
– Arbitrary positioned un-calibrated cameras

• Activity Recognition without  a priori
knowledge
– Automatically learn activities by observing
– Determine which objects persons interact with

frequently
– Separate out object motion from human motion,

to determine objects being interacted with

• Real-time implementation
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Model-Based Human Activity
Recognition

Approach

• Activity Detection
• Activity Recognition
• Activity Modeling
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3-D Body Model

• 14 Cylinders
– Head (1), Torso (1), Upperarms (2),

Forearms(2), Hands (2), Thighs (2), Calves
(2) and Feet.

• 2 Parameters
– Length
– Circular Crossections

• The center of Torso is the origin of 3D
coordinate system.

Modeling Activities

• Joint Curves at Shoulder, Elbow, Hip and
Knee.

• Walking Curves from Rohr.
• Running, Skipping and Jogging Curves

from Goddard.
• One Cycle of a joint curve is polynomial

curve.
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Change
Detection

Correspondence Pose
Estimation

Walking

Running

Jogging

Skipping

Kalman
Filter

Image

Sequences

Edge and
Line

Detection

Tracking
Window

Lines Pairs of

Lines

Pose Recognized

Activity

Activity Confidence Measure

Projection

3D Body
Model

3D Motion
Model

Pose

Posture

Posture

Joint

Curves

Posture
Period

Model
Lines

Change Detection

• Motion arises from a relative displacement
between the sensor and the scene.

• The accumulative differences method is used.

• Algorithm for change detection:

•Divide the image into 5X5 blocks
•if DP>T, set block “k” to all ones
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Change Detection

• Connected component analysis on the changed
pixels.

• A merging phase to combine overlapping regions.

• Area thresholding to reject small regions.

Line Correspondence
• We match 2D lines from the model

projection to the scene lines.
• The line is represented by a vector [a,b,y,l].
• Representation:

– A line from the model, by vector m0
– A line from the scene by the vector ri

• For an ideal match between a model line and
scene line ri-m=0
– A Mahalanobis Distance is computed
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Pose Estimation

•  For any 3D point  there is a transformation that
will give the 2D image point:
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Activity Recognition Using Kalman Filter

• 2 Start a Kalman Filter for each possible activity.
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• 3 Continuous processing per filter

• 1 State Vector

Activity Recognition Using Kalman Filter

-ii Use  predicted state to generate 3D model
based upon filter’s corresponding activity.

-i Predict next sate, and compute covariance
matrix.
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Activity Recognition Using Kalman Filter

• iii Do projection, line correspondence and pose
estimation to obtain measurement vector and

error measure
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•iv  If error is below threshold, then update
the state vector.

Activity Recognition Using Kalman Filter

• v If error is above threshold, the filter’s
corresponding activity is incorrect, and

filter is stopped.

• Stop processing when all but one filter have
ceased. Remaining filter gives the recognized

activity.
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Results

Results
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SHOW VIDEO CLIP

Visual Lipreading
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Image Sequences of “A” to “J”

Particulars
• Problem: Pattern differ spatially
• Solution: Spatial registration using SSD
• Problem : Articulations vary in length, and

thus, in number of frames.
• Solution: Dynamic programming for

temporal warping of sequences.
• Problem: Features should have compact

representation.
• Solution: Principle Component Analysis.
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Feature Subspace Generation

• Generate a lower dimension subspace
onto which image sequences are
projected to produce a vector of
coefficients.

• Components
– Sample Matrix
– Most Expressive Features

Generating the Sample Matrix

• Consider       letters, each of which has a training set
of K sequences. Each sequence is compose of images:

PIII ,,, 21 K

• Collect all gray-level pixels from all images in a
sequence  into a vector:

)),(,),1,1(),,(,),1,1(),,(,),1,1(( 2211 NMIINMIINMIIu PP KKKK=

ε
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. Generating the Sample Matrix
• For letter       , collect  vectors into matrix T

[ ]KuuuT K,, 21=ω

• Create sample matrix A:

[ ]εTTTA K,, 21=

ω

•The eigenvectors of a matrix                are defined as:TAAL =

iiiL φλφ =

The Most Expressive Features

• Use Q most significant eigenvectors.

•Any image sequence, u, can be represented as:

aau
Q

n
n n

φφ == ∑
=1

• The linear coefficients can be computed as:

n
T

n ua φ=

•       is an orthonormal basis of the sample matrix.φ
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Training Process
• Model Generation

– Warp all the training sequences to a fixed
length.

– Perform spatial registration (SSD).
– Perform PCA.
– Select Q most significant eigensequences,

and  compute coefficient vectors “a”.
– Compute mean coefficient vector for each

letter.

Recognition

• Warp the unknown sequence.

• Perform spatial registration.

• Compute:

• Determine best match by 

||||

.
xww

i
T
x

x
i

aad

ua

−=

= φ

)(min ω
ω d
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Extracting letters from Connected  Sequences

• Average absolute intensity difference
function

||),(),(||
1

)( 1
1 1

yxIyxI
MN

nf n

M

x

N

y
n −

= =

−= ∑∑
• f  is smoothed to obtain g.
• Articulation intervals correspond to
peaks and non-articulation intervals
correspond to valleys in “g”.
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Extracting letters from Connected  Sequences

• Detect valleys in g.

• From valley locations in g, find
locations where f crosses high
threshold.

• Locate beginning and ending frames.

A 12-22 

B 26-39

C 42-55

D 57-67
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Results
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HMM
Cox

I: “A” to “J” one speaker, 10 training seqs
II. “A” to “M”, one speaker, 10 training seqs
III. “A” to “Z”, ten speakers, two training seqs/letter/person

Show Video Clip
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Hand Gesture Recognition

Seven Gestures
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Gesture Phases

• Hand fixed in the start position.
• Fingers or hand move smoothly to gesture

position.
• Hand fixed in gesture position.
• Fingers or hand return smoothly to start

position.

Finite State Machine
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Main Steps

• Detect fingertips.
• Create fingertip trajectories using motion

correspondence of fingertip points.
• Fit vectors and assign motion code to

unknown gesture.
• Match

Detecting Fingertips
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Proximal Uniformity Constraint

• Most objects in the real world follow
smooth paths and cover small distance in a
small time.
– Given a location of point in a frame, its location

in the next fame lies in the proximity of its
previous location.

– The resulting trajectories are smooth and
uniform.

Proximal Uniformity Constraint
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Proximal Uniformity Constraint

Establish correspondence by minimizing:
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Vector Representation of Gestures

Results
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Action Recognition Using
Temporal Templates

Jim Davis and Aaron Bobick

Main Points

• Compute a sequence of difference pictures
from a sequence of images.

• Compute Motion Energy Images (MEI) and
Motion History Images (MHI) from
difference pictures.

• Compute Hu moments of MEI and MHI.
• Perform recognition using Hu moments.
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MEI and MHI
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Moments
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Hu Momens

Webpage

• http://vismod.www.media.mit.edu/vismod/d
emos/actions/mhi_generation.mov

• http://www.cs.ucf.edu/~ayers/research.html
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Papers

• Claudette Cedras and Mubarak Shah,
“Motion-Based Recognition: A survey”,
Image and Vision Computing, March 1995.

• Jim Davis and Mubarak Shah, “Visual
Gesture Recognition”, IEE Proc. Vis Image
Signal Processing, October 1993.

Papers

• Li Nan, Shawn Dettmer, and Mubarak
Shah, “Visual Lipreading”, Workshop on
Face and Gesture Recognition, Zurich,
1995.

• Doug Ayers and Mubarak Shah,
“Recognizing Human Activities In an
Office Environment”, Workshop on
Applications of Computer Vision, October,
1998.
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Book

• Mubarak Shah and Ramesh Jain, “Motion-
Based Recognition”, Kluwer Academic
Publishers, 1997 ISBN  0-7923-4618-1.

Book
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Contents
• Mubarak Shah and Ramesh Jain, “Visual Recognition

of Activities, Gestures, Facial Expressions and
Speech: An Introduction and a Perspective”

• Human Activity Recognition
– Y. Yacoob  and L. Davis, “Estimating Image

Motion Using Temporal Multi-Scale Models of
Flow and Acceleration

– A. Baumberg and D. Hogg, “Learning Deformable
Models for Tracking the Human Body

– S. Seitz and C. Dyer, “Cyclic Motion Analysis
Using the Period Trace”

Contents (contd.)

– R. Pollana and R. Nelson, “Temporal Texture
and Activity Recognition”

– A. Bobick and J. Davis, “Action Recognition
Using Temporal Templates”

– N. Goddard, “Human Activity Recognition”
– K. Rohr, “Human Movement Analysis Based

on Explicit Motion Models”
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Contents (contd.)
• Gesture Recognition and Facial Expression

Recognition
– A. Bobick and A. Wilson, “State-Based

Recognition of Gestures”
– T. Starner and A. Pentland, “Real-Time

American Sign Language Recognition from
Video Using Hidden Markov Models”

– M. Black , Y. Yacoob and S. Ju, “Recognizing
Human Motion Using Parameterized Models of
Optical Flow”

Contents (contd.)

– I. Essa and A. Pentland, “Facial Expression
Recognition Using Image Motion”

• Lipreading
– C. Bregler and S. Omohumdro, “Learning

Visual Models for Lipreading”
– A. Goldschen, O. Garcia and E. Petajan,

“Continuous Automatic Speech Recognition by
Lipreading”

– N. Li, S. Dettmer and M. Shah, “Visually
Recognizing Speech Using Eigensequences”
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Part IV

Video Phones and MPEG-4

Video Compression

• Video compression is important.
• MPEG compression is domain independent,

uses 2D block motion.
• Compression ratio in MPEG is limited.
• Model-Based compression can be used to

achieve compression of up to 250kb/s.
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Model-Based Compression

• Object-based
• Knowledge-based
• Semantic-based

Contents

• Estimation using rigid+non-rigid motion
model

• Making Faces (SIGGRAPH-98)
• Synthesizing Realistic Facial Expressions

from Photographs (SIGGRAPH-98)
• MPEG-4
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Model-Based Image Coding

• The transmitter and receiver both posses the
same 3D face model and texture images.

• During the session, at the transmitter the
facial motion parameters: global and local,
are extracted.

• At the receiver the image is synthesized
using estimated motion parameters.

• The difference between synthesized and
actual image can be transmitted as residuals.

Face Model
• Candide model has 108 nodes, 184 polygons.
• Candide is a generic head and shoulder

model. It needs to be conformed to a
particular person’s face.

• Cyberware scan gives head model consisting
of 460,000 polygons.

• Another face model was created by sticking
182 color dots on the face, and capturing dots
by six cameras.
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Wireframe  Model Fitting
• Fit orthographic projection of wireframe to

the frontal view of speaker using Affine
transformation.

• Locate four features in the image and the
projection of model.

• Find parameters of Affine using least
squares fit.

• Apply Affine to all vertices, and scale
depth.

Synthesis
• Collapse initial wire frame onto the image to

obtain a collection of triangles.
• Map observed texture in the first frame into

respective triangles.
• Rotate and translate the initial wire frame

according to global and local motion, and
collapse onto the next frame.

• Map texture within each triangle from first
frame to the next frame by interpolation.
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Video Phones

Motion Estimation

Perspective Projection (optical  flow)
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Optical Flow Constraint Eq
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Comments

• This is a simpler (linear) problem than sfm
because depth is assumed to be known.

• Since no optical flow is computed, this is
called “direct method”.

• Only spatiotemporal derivatives are
computed from the images.

Problem

• We have used 3D rigid motion, but face is
not purely rigid!

• Facial expressions produce non-rigid
motion.

• Use global rigid motion and non-rigid
deformations.
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3-D Rigid Motion
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3-D Rigid+Non-rigid Motion
Φ++=′ ETRXX
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Facial expressions
Action Units:
-opening of  a mouth
-closing of eyes
-raising of eyebrows

3-D Rigid+Non-rigid Motion
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3-D Rigid+Non-rigid Motion
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Perspective Projection (arbitrary flow)
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Optical Flow Constraint Eq
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Making Faces

Guenter et al
SIGGARPH’98

Making Faces

• System for capturing 3D geometry and color
and shading (texture map).

• Six cameras capture 182 color dots on a
face.

• 3D coordinates for each color dot are
computed using pairs of images.

• Cyberware scanner is used to get dense wire
frame model.
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Making Faces

• Two models are related by a rigid
transformation.

• Movement of each node in successive
frames is computed  by determining
correspondence of nodes.

Synthesizing Realistic Facial
Expressions from Photographs

Pighin et al
SIGGRAPH’98
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Synthesizing Realistic Facial Expressions

• Select 13 feature points manually in face
image corresponding to points in face
model created with Alias.

• Estimate camera poses and deformed 3d
model points.

• Use these deformed values to deform the
remaining points on the mesh using
interpolation.

Synthesizing Realistic Facial Expressions

• Extract texture.
• Create new expressions using morphing.
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3D Rigid  Transformation
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Model Fitting
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Model Fitting
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Model Fitting

• Solve for unknowns in five steps:
kk

Y
k
X

k
i

k TTs η;,;;; Rp

• Use linear least squares fit. 

• When solving for an unknown, assume
other  parameters are known.
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Interpolation

• Use initial set of coordinates for the feature
points (13 points), to deform the remaining
vertices using interpolation.

Interpolation
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Texture Extraction
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Weights

• Self-occlusion
• Smoothness
• Positional certainty
• View similarity
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Texture Extraction

• Positional certainty,           is define as a
dot product of surface normal at p and the
k-th  direction of projection.

)(pkP

•Visibility map             is set to 1 if the
corresponding point p is visible in k-th
image, and zero otherwise.

),( vuF k

• View-independent texture mapping:

)(),(),( pkkk PvuFvum =

• View-dependent texture mapping:

)()(),(),( dVPyxFvum kkkkkk p=

1..)( +−= llkkV ddddd

Texture Extraction
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MPEG-4

MPEG-4

• MPEG-4 will soon be international standard
for true multimedia coding.

• MPEG-4 provides very low bitrate & error
resilience for Internet and wireless.

• MPEG-4 can be carried in MPEG-2 systems
layer.

• MPEG-4 text and graphics can be overlaid
on MPEG-2 video for enhanced content:
sports statistics and player trajectories.
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MPEG-4

• Real audio and video objects
• Synthetic audio and video
• 2D and 3D graphics (based on VRML)

MPEG-4

• Traditional video coding is block-based.
• MPEG-4 provides object-based

representation for better compression and
functionalities.

• Objects are rendered after decoding object
descriptions.

• Display of content layers can be selected at
MPEG-4 terminal.
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MPEG-4

• User can search or store objects for later
use.

• Content does not depend on the display
resolution.

• Network providers can re-purpose content
for different networks and users.

Scope & Features of MPEG-4

• Authors
– reusability
– flexibility
– content owner rights

• Network providers
• End users
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Media Objects

• Primitive Media Objects
• Compound Media Objects
• Examples

–  Still Images (e.g. fixed background)
– Video objects (e.g., a talking person-without

background)
– Audio objects (e.g., the voice associated with

that person)
– etc

MPEG-4 Versions
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MPEG-4

functioanlities

Bitrate

5 kbps

64 kbps

4  Mbps

User Interactions

• Client Side
– content manipulation done at client terminal

• changing position of an object
• making it visible or invisible
• changing the font size of text

• Server Side
– requires back channel
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• Efficient representation of visual objects of
arbitrary shape to support content-based
functionalities

• Supports most functionalities of MPEG-1
and MPEG-2
– rectangular sized images
– several input formats
– frame rates
– bit rates
– spatial, temporal and quality scalability
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Object Composition

• Objects are organized in a scene graph.
• VRLM based binary format BIF is used to

specify scene graph.
• 2-D and 3-D objects, transforms and

properties are specified.
• MPEG-4 allows objects to be transmitted

once, and displayed repeatedly in the scene
after transformations.

MPEG-4 Scene

Display

Hypothetical Viewer

Audio 
CompositorVideo 

Compositor

3-D
objects

Multiplexed
downstream 
control data

Multiplexed
upstream 

control data

Background

sprite

voice
Audiovisual objects
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Scene Graph

Scene

Person

deskglobespritevoice

background
A/v

presentationfurniture

Standardized Ways

• To represent “media object”
– visual or audiovisual
– synthetic or natural

• To multiplex and synchronize the data
associated with media objects for
transportation over the network

• Interact with audiovisual scene generated
at the receiver’s end.
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Standardized Ways To
• place a media objects anywhere in a given

coordinate system;
• apply transforms to change the geometrical

or acoustical  appearances of media objects;
• group primitive media objects to form

compound media objects;
• apply stream data to media objects to

modify their attributes;
• change interactively user’s viewing and

listening points anywhere in the scene

Interaction with media objects
• change the viewing/listening point of the

scene, e.g., by navigating through a scene;
• drag objects in the scene to a different

position;
• trigger a cascade of events by clicking on

specific objects, e.g., starting or sopping a
video stream;

• select the desired language when multiple
language tracks are available;

• more complex behavior
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MPEG-4 Terminal

Upstream data

User events, class requests

Textures, Images and Video

• Efficient compression of
– images and video
– textures for texture mapping on 2D and 3D

meshes
– implicit 2D meshes
– time-varying geometry streams that animate

meshes
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Textures, Images and Video

• Efficient random access to all types of visual
objects

• Extended manipulation functionalities for
images and video sequences

• Content-based coding of images and video
• Content-based scalability of textures, images

and video
• Spatial, temporal and quality scalability
• Error robustness and resilience

2-D Mesh Modeling
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2-D Mesh Representation of
Video Object

• Video Object Manipulation
– Augmented Reality
– Synthetic-object-transfiguration/animation
– Spatio-temporal interpolation (e.g., frame rate

up-conversion)

• Video Object Compression
– transmit texture maps only at keyframes
– animate texture maps for the intermediate

frames

2-D Mesh Representation of
Video Object

• Content-Based Indexing
– Provides vertex-based object shape

representation which is more efficient than the
bitmap representation of shape-based object
retrieval

– Provides accurate object trajectory information
that can be used to retrieve visual objects with
specific motion

– Animated key snapshots as visual synopsis of
objects
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MPEG-4 Video and Image
Coding Scheme

• Shape coding and motion compensation
• DCT-based texture coding

– standard 8x8 and shape adpated DCT

• Motion compensation
– local block based  (8x8 or 16x16)
– global (affine) for sprites

MPEG-4 Video Coder

DCT Q

Motion
texture
coding

Video 
multiplex

Frame
StorePred-3

Pred-2

Pred-1

Q-1

IDCT

Motion
Estimation Shape

coding

Swi
tch

+

+
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Sprite Panorama

• First compute static “sprite” or “mosaic”
• Then transmit 8 or 6 global motion (camera)

parameters for each frame to reconstruct the
fame from the “sprite”

• Moving foreground is transmitted
separately as an arbitrary-shape video
object.
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Other Objects

• Text and graphics
• Talking synthetic head and associated  text
• Synthetic sound

Face and Body Animtion

• Face animation is in MPEG-4 version 1.
• Body animation is in MPEG-4 version 2.
• Face animation parameters displace feature

points from neutral position.
• Body animation parameters are joint angles.
• Face and body animation parameter

sequences are compressed to low bit rate.
• Facial expressions: joy, sadness, anger, fear,

disgust and surprise.
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Face Node

• FAP (Facial Animation Parameters) node
• Face Scene graph
• Face Definition Parameters (FDP)
• Face Interpolation Table (FIT)
• Face Animation Table (FAT)

Face Model

• Face model (3D)  specified in VRLM, can
be downloaded to the  terminal with MPEG-
4

• FAT maps FAPS to face model vertices.
• FAPS are quantized and differentially coded
• Typical compressed FAP bitrate is less than

2 kbps
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Neutral Face
• Face is gazing in the Z direction
• Face axes parallel to the world axes
• Pupil is 1/3 of iris in diameter
• Eyelids are tangent to the iris
• Upper and lower teeth are touching and

mouth is closed
• Tongue is flat, and the tip of tongue is

touching the boundary between upper and
lower teeth

Facial Animation Parameters
(FAPS)

• 2 eyeball and 3 head rotations are
represented using Euler angles

• Each FAP is expressed as a fraction of
neutral face mouth width, mouth-nose
distance, eye separation, or iris diameter.



150

FAP Groups

Group FAPS
Visemes & expressions 2
jaw, chin, inner lower-lip, corner lip, mid-lip 16
eyeballs, pupils, eyelids 12
eyebrow 8
cheeks 4
tongue 5
head rotation 3
outer lip position 10
nose 4
ears 4

Visemes and Expressions

• For each frame a weighted combination of
two visemes and two facial expressions

• After  FAPs are applied the decoder can
interpret effect of visemes and expressions

• Definitions of visemes and expressions
using FAPs can be downloaded
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Phonemes and Visemes

• 56 phonemes
– 37 consonants
– 19 vowels/diphthongs

• 56 phonemes can be mapped to 35 visemes

Viseme_select phonemes example
0 none na
1 p, b, m put, bed, mill
2 f, v far, voice
3 T, D think, that
4 t, d tip, doll
5 k, g call, gas
6 tS, dZ, S chair, join, she
7 s, z sir,  zeal
8 n, l lot, not
9 r red
10 A: car
11 e bed
12 I tip
13 O top
14 U book

Visems
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Facial Expressions
• Joy

– The eyebrows are relaxed. The mouth is open,
and mouth corners pulled back toward ears.

• Sadness
– The inner eyebrows are bent upward. The eyes

are slightly closed. The mouth is relaxed.

• Anger
– The inner eyebrows are pulled downward and

together. The eyes are wide open. The lips are
pressed against each other or opened to expose
teeth.

Facial Expressions

• Fear
– The eyebrows are raised and pulled together.

The inner eyebrows are bent upward. The eyes
are tense and alert.

• Disgust
– The eyebrows and eyelids are relaxed. The upper

lip is raised and curled, often asymmetrically.

• Surprise
– The eyebrows are raised. The upper eyelids are

wide open, the lower relaxed. The jaw is open.
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FAPs

• Speech recognition can use FAPs to
increase recognition rate.

• FAPs can be used to animate face models
by text to speech systems

• In HCI FAPs can be used to communicate
speech, emotions, etc, in particular noisy
environment.

MPEG-4 Decoder

2-D/3-D
geometry

Cashed
Data

textures,
FAPs

Audio
synthesizer/
processing

Audio decoder

System Layer
compositing

rendering

Video/image
decoding
MPEG
JPEG

System Layer

Display

User input
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MPEG-4

• Go to http://www.cselt.it/mpeg


