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Stepsin Video Computing

acquire  (CCD arrays/synthesize (Graphics))
process (Image processing)

anayze (Computer Vision)

transmit  (Compression/Networking)

store (Compression/databases)

retrieve  (Computer Vision/Databases)
browse  (Computer Vision/Databases)
visualize (Graphics)




Computer Vision

* Measurement of Motion

— 2-D Motion
* optical flow
* point correspondences
— 3-D Mation
* structure from motion (sfm)
» compute 3D trandation, 3D rotation
» shape from motion (depth)

Computer Vision (contd.)

» Scene Change Detection
— consecutive frame differencing
— background differencing
» median filter
e pfinder
W4
» Mixture of Gaussians




Computer Vision (contd.)

» Tracking

— people
— vehicles

—animals

Computer Vision (contd.)

* Video Recognition
— activity recognition
— gesture recognition
— facial expression recognition
— lipreading
* Video Segmentation
— shots
— scenes
— stories
— key frames




|mage Processing

* Filtering
« Compression
— MPEG-1
— MPEG-2
— MPEG4
— MPEG-7

Databases

Storage
Retrieval
Video on demand
Browsing
—skim
— abstract
— key frames
— mosaics




Networking

e Transmission
e ATM

Computer Graphics

 Visualization
» Image-based Rendering and Modeling
» Augmented Reality




PART |

Measurement of Motion

Contents

* Image Motion Models
» Optical Flow Methods
— Horn & Schunck
— Lucas and Kanade
— Anandan et a
— Szeliski
—Mann & Picard
e Video Mosaics




3-D Rigid Motion
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Displacement Model

Orthographic Projection
XK@ 6XU &, 1, rBXU enU
u u e u u
SOGERY (+T=da 1o Taie! y *el
& &H 8a o ratBZH ELH
(x,y)=image coordinates,
XC= 1 X+, Y+ Z+T) (X,Y,Z)=world coordinates
Y=L XY+ (2 +T,)
x¢= 1)("' ay+h
y¢= X+ a,y+ b,

X¢= AX+b Affine Transformation
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Orthographic Projection (contd.)
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Plane+Perspective(projective)
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Plane+perspective (contd.)
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Displacement Models

Trandlation *&xH xi=g +ax+ay+axX +ay +ay _
g Biquadratic
Yy yi=a, +ax+ay+apd +a, YN

RIQID xo=xcosq- ysng+b,  xi=g +ax+ay+axy
ye=xsnq+ycosq+bh, ez +ax+ay+axy Bilinear

P x¢=ax+a,y+h
ATING o ax+ay+b, XEa+axayaxay
e axrayh Y=g tax+ay+ay+ay
ey Pseudo Perspective
Projective ye= 2X*3:y*h ¥
CX+Cy+1

Displacement Models (contd)

* Trandation

—dample

— used in block matching

— No zoom, no rotation, no pan and tilt
* Rigid

— rotation and translation

— No zoom, no pan and tilt
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Displacement Models (contd)

o Affine
— rotation about optical axis only
— can not capture pan and tilt
— orthographic projection

* Projective
— exact eight parameters (3 rotations, 3
trandations and 2 scalings)

— difficult to estimate

Displacement Models (contd)

* Biquadratic
— obtained by second order Taylor series
— 12 parameters

* Bilinear

— obtained from biquadratic model by removing square

terms
— most widely used
— not related to any physical 3D motion
* Pseudo-perspective
— obtained by removing two sgquare terms and

constraining four remaining to 2 degrees of freedom
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| nstantaneous V elocity Model

3-D Rigid Motion
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Orthographic Projection

X=W" X+V

X =W,Z- W,Y +V,
Y =W, X - W,Z+V,
Z=W,Y-W,X +V,

u=x=V, +W,Z- W,y
v=y=V, +W,x- W, Z  (uv)isoptical flow
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Plane+orthographic(Affine)

b, =V, +aW
Z=at+bX+CY R
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u a, =-cWw,
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Plane+Perspective (pseudo
perspective)
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Measurement of |mage Motion

» Local Motion (Optical Flow)
* Global Motion (Frame Alignment)

Computing Optical Flow
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lmage from Hamburg Taxi seq

Image from Hamburg Taxi seq
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Fleet & Jepson optical flow
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Horn & Schunck optical flow




Tian & Shah optical flow
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Horn& Schunck Optical Flow
fxyt)=f(x+k y+djt+d)

' Taylor Series

oY) = F 0oy, +%m+ww+

f deHf g+, =C

fu+ ny+ft =C brightness constancy eq
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Interpretation of optical flow eq

fXU+ny+ft :C _fﬂ_ f C d=normal flow
' , ’ p=parallel flow
N
Al
£, f -
i
ft
d=—==
e
Equation of st.line
Horn& Schunck (contd)
(ﬁ(fxu+fyv+ P+ (& +L§+V’% +V§)}dq/ variational calculus
min
co P
(fu+f v+, + (Bu =0 U=t g
P
(Fu+f v+f)f, + (OW=0 v=v, -, 5

discrete verson P=fu, +fV, +f,
(Futfyv+f)f,+ (U-y) =0 D=l +f2+f?

(Futf v+)f, + (v-\,)=C
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Algorithm-1

* k=0

e |nitialize at v

* Repeat until some error measure is satisfied

P

PD P=fu, +fy, +f,
— 2,2

5 D=l +f2+f

Convolution
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Convolution (contd)

h(xy)=a a f(x+i,y+jgd, j)

i=1j=-1

h(x,y) = f(x,y)*g(x,y)

Derivative Masks
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Synthetic Images

Results

10iterations

Oneiteration
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Comments

 Algorithm-1 works only for small motion.

* If object moves faster, the brightness
changes rapidly, 2x2 or 3x3 masksfail to
estimate spatiotemporal derivatives.

» Pyramids can be used to compute large
optical flow vectors.

Algorithm-2 (Optical Flow)

* Create Gaussian pyramid of both frames.
* Repeat
— apply algorithm-1 at the current level of
pyramid.

— propagate flow by using bilinear interpolation
to the next level, whereit isused as an initial
estimate.

— Go back to step 2

27



Horn& Schunck Method

» Good only for translation model.
» Oversmoothing of boundaries.

* Does not work well for real
Sequences.

Other Optical Flow Methods

28



| mportant Issues

* \What motion model?
e \What function to be minimized?
 What minimization method?

Minimization Methods

o |east Squaresfit

» Weighted Least Squaresfit
« Newton-Raphson
 Gradient Descent
 Levenberg-Marquadet

29



Lucas & Kanade (Least Squares)

» Optical flow eq
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Lucas & Kanade
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Lucas & Kanade

min & & w(tu+t v+ t,)’

i=-2j=-2

4

WAU =WfF,

ATWAU = ATWF,

u=(A"WA)*ATWH,

Anandan

U(x,Y) =ax+a,y+h,
V(X Y) =a,x+a,y+b,

< O
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> (D>_ (D> >‘§>m>m> .
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(oY ey e} en e} en} en} ex Y en
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Anandan
u(x) = X(x)a

E(da) = q (f,+ f du)?

E(da) =g (f, + f7Xda )?

Anandan

[& XT(F,)(f,) X[da=- § XTf, f,
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Basic Components

« Pyramid construction

e Motion estimation
 |mage warping

o Coarse-to-fine refinement

Szeliski (Levenberg-Marquadet)

E=Q[f(x¢yy- f(xy)*=Q ¢€°

o= QX T3y +h
CX+Cy+1

yo= BXFay+h,
CX+Cy+1
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Szeliski (Levenberg-Marquadet)

Motion Vector:

m=[a & a a b b g cf

Szeliski (Levenberg-Marquadet)

o e fe q:_éek

gradient

Dm=(A+11) b
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Szeliski (Levenberg-Marquadet)
e For each pixel | at (xi,yi)

e Compute(x¢y®  using projective transform.

- Compute €= f (XCyQ- (X, Y)

e _ qf ﬂx¢+ it qyc
fm,  Ix¢Im,  Ty¢Im,

e Compute

Szeliski (Levenberg-Marquadet)
-Compute Aand b

-Solve system
(A- 11)Dm=b

-Update
m™ =m" +Dm

36



Szeliski (Levenberg-Marquadet)

e check if error has decreased, if not
increase | and computeanew om

e Continue iteration until error is below
threshold.

Mann & Picard
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Projective Flow (weighted)
u f, +v, f +1, =0
uf +f =0

AxX + Db
XC= —
C x+1

Projective Flow (weighted)

eﬂOW: é ( ur-[wfx + ‘I:t)2

ﬁ minimize
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Projective Flow (weighted)

@ffHa=a (x'f,- f)f
a:[311'ajzib11321'a22’b2’01’02]T

ft :[fxx’ fxy’ fx' fyx’ fyy’ fy’xft - Xzfx- nyy! yft - nyx - yzfy]

Projective Flow (unweighted)
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Bilnear

AX + Db
X C=
C'x +1

ﬂ Taylor Series
u, +x0=a, +a,x+ay+a,xy
Vi + Y8= 85 + 8 X+ 8,y + 85Xy

Pseudo-Perspective

AX + Db
X C=
C 'x +1

ﬂ Taylor Series

XC+u,_=a, +a,Xx+ay+a,x +axy
yotv, =a, +a,x+ay+a,xy+agy’
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Projective Flow (unweighted)

eﬂOW: é ( ur-lr-1fx + ft)2

ﬁ Minimize

Bilinear and Pseudo-Perspective

(AFF)q=-4 fF

FT=[f, 0% v, fy(xy,x,y,l)] bilinear
F=[f,(xyD) f,00yD) ¢ ¢ Pseudop
c, = X, +xyf,

CZ=nyx+y2fy
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Algorithm

» Estimate “q” (using approximate model,
e.g. bilinear mode).
* Relate“q” to “p”
— select four points S1, S2, S3, A4
— apply approximate model using “q” to compute (v
— estimate exact “p”:

True Projective

&fu_éx. y, 1 0 0 0 -xxt -yxfu
e U~ é R
SO 0 0 0 x vy 1 -xy$ -vyeH

a=[a, a, b a a, b ¢ ¢
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Final Algorithm

» A Gaussian pyramid of three or four levels
Is constructed for each framein the
sequence.

» The parameters “p” are estimated at the top
level of the pyramid, between the two
lowest resolution images, “g” and “h”,
using algorithm-1 (see figure).

Final Algorithm

» The estimated “p” is applied to the next
higher resolution image in the pyramid, to
make images at that level nearly congruent.

» The process continues down the pyramid
until the highest resolution image in the
pyramid is reached.
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Video Mosaics

* Mosaic aligns different pieces of a
scene into alarger piece, and
seamlessly blend them.

— High resolution image from low
resolution images

—Increased filed of view

Steps in Generating A Mosaic

» Take pictures
» Pick reference image

» Determine transformation between
frames

» Warp al imagesto the same reference
view




Applications of Mosaics

 Virtual Environments
e Computer Games

» Movie Special Effects
* Video Compression

Webpages

e http://nlnlfl.eecg.toronto.edu/tip.ps.gz

Video Orbits of the projective
group, S. Mann and R. Picard.

o http://wearcam.org/pencigraphy
(C code for generating mosaics)
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Webpages

* http://ww-bcs.mit.edu/peopl e/adel son/papers.htmi

—The Laplacian Pyramid as a compact
code, Burt and Adelson, |IEEE Trans on
Communication, 1983.

 J. Bergen, P. Anandan, K. Hanna, and R.
Hingorani, “Hierarchical Model-Based
Motion Estimation”, ECCV-92, pp 237-22.

Webpages

* http://www.cs.cmu.edu/afs/ cs/project/cil/ftp/html/
v-source.html (c code for several optical flow
algorithms)

o ftp://csd.uwo.ca/pub/vision

Performance of optical flow techniques
(paper)
Barron, Fleet and Beauchermin
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Webpages

* http://www.wisdom.weizmann.ac.il/~irani/abstract
s/mosaics.html (“Efficient representations of video
sequences and their applications’, Michal Irani, P.
Anandan, Jm Bergen, Rakesh Kumar, and Steve
Hsu)

* R. Szeliski. “Video mosaics for virtua
environments’, IEEE Computer Graphics and
Applications, pages,22-30, March 1996.

Part |1

Change Detection and Tracking
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Contents

Change Detection

Pfinder

Mixture of Gaussians
Kanade

w4

Tracking People Using Color

Change Detection
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Main Points

» Detect pixels which are changing dueto
motion of objects.

» Not necessarily measure motion (optical
flow), only detect motion.

» A set of connected pixels which are
changing may correspond to moving object.

Picture Difference

i1 if DP(x,y)>Ti{

D.(X,y)=1i :
(%) %0 ...... otherwise %

DP(X,y) =| f;,(X,y) - f.,(Xy)]
DP(x,Y)= & & If(x+,y+ )= fa(c+iy+ )]

DP(x,y)=a a alfi(x+i,y+j)- fu(x+i,y+])|

i=- mi=- mk=- m
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Background Image

» The first image of a sequence without

any moving objects, is background image.

» Median filter
B(x, y) =median(f,(x,y),..., f,(x,¥))

PFINDER

Pentland
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Pfinder

» Segment a human from an arbitrary
complex background.

* It only works for single person
situations.

 All approaches based on background
modeling work only for fixed cameras.

Algorithm

background model by watching 30 second video
moving object by measuring deviations from
background model

moving blob into smaller blobs by minimizing
covariance of ablob

position of ablob inthe next frame using
Kaman filter

each pixel in the new frame to a class with max
likelihood.

background and blob statistics
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L earning Background Image

» Each pixel in the background has
associated mean color value and a
covariance matrix.

* The color distribution for each
pixel is described by Gaussian.

* YUV color spaceis used.

Detecting Moving Objects

» After background model has been learned,

Pfinder watches for large deviations from the
model.

e Deviations are measured in terms of
M ahalanobis distance in color.

« If the distance is sufficient then the process of
building a blob model is started.

52



Detecting Moving Objects

* For each of k blob in the image, |og-
likelihood is computed

d, =-.5(y- m)" K (y- m)- 5In|K, |- .5min(2%)
* Log likelihood values are used to classify pixels

s(x, y) =argmax  (d, (%, y))

Updating
*The statistical model for the IS
updated.
K" =E[(y- m)(y- ni)']
m =(1- a)nm ' +ay
» The statistics of each (mean and covariance) are

re-computed.
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Mixture of Gaussians

Grimson

Algorithm

background model by watching 30 second video
moving object by measuring deviations from
background model, and applying connected component to
foreground pixels.
position of aregion in the next frame using
Kaman filter

background and blob statistics




Summary

» Each pixel is an independent statistical process,
which may be combination of several processes.
— Swaying branches of tree result in a bimodal
behavior of pixd intengity.

» Theintensity isfit with amixture of K
Gaussians.

[a)
\

1 -
Wj 'E(Xt'mj)TSjl(Xt'mj)
m
2

1
2

1S; |

Mixture of Gaussians

» The K distributions are stored in
descending order of the term

Wi
S |
e Out of “k” distributions, the first B are selected
éd u
eéad W, v
B=agmn &> >TU
o) u
A Wj L'J
I 0
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L earning Background Model

* Every new pixel ischecked against all
existing distributions. The match isthe first
distribution such that the pixel value lies within
2 standard deviations of mean.

*|f no match, introduce new distribution.

Updating

* The mean and s.d. of unmatched
distributions remain unchanged. For the
matched distributions they are updated as:

m,=Q-r)m,, +rX

s =(@-r)sf tr(X;-m)(X,-m,)

» The weights are adjusted:
w,,=@1-a)w, ,+a(M;,)
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Segmenting Background

» Any pixel that is morethan 2 sd from all the
distributionsis marked as a part of
foreground-moving object.

» Such pixels are then clustered into
connected components.

Kanade
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Summary

» Very similar to k-Gaussian with following
differences:
— uses only single Gaussian
— uses gray level images, the mean and variance
are scalar values

Algorithm

background model by watching 30 second video

moving object by measuring deviations from
background model, and applying connected component to
foreground pixels.

background and region statistics
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Detection

» During detection if intensity value is more than
two sigma away from the background it is
considered foreground:

— keep original mean and variance
— track the object with new mean and variance

— if new mean and variance persists for sometime,
then substitute the new mean and variance as the
background model

— Object isno longer visible, it isincorporated as part
of background

W4 (Who, When, Where, What)

Davis
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w4

« Compute “minimum” (M(x)),
“maximum” (N(x)), and “largest absolute
difference” (L(x)).

il if [M(xy)- f.(Xx,y)[>L(x y)ori
D, (x, y):_{ IN(X,Y)- f.(% ) > L(XY) i,

1 0 ... otherwise b

» Theoretically, the performance of this
tracker should be worse than others.

* Evenif onevalueisfar away from the
mean, then that value will result in an
abnormally high value of L.

» Having short training time is better for this
tracker.
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Occlusion
Shadows

Limitations

Multiple people

Slow moving people
Multiple processes (swaying of trees..)

Webpage

o Http://www.cs.cmu.edu/~vsam (DARPA
Visual Surveillance and Monitoring

program)
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Skin Detection

Kjeldsen and Kender

Training

Crop skin regions in the training images.
Build histogram of training images.
Ideally this histogram should be bi-modal,

one peak corresponding to the skin pixels,
other to the non-skin pixels.

Practically there may be several peaks

corresponding to skin, and non-skin pixels.

62



Training

» Apply threshold to skin peaks to remove
small peaks.

» Label all gray levels (colors) under skin
peaks as “skin”, and the remaining gray
levels as “non-skin”.

» Generate alook-up table for all possible
colorsin theimage, and assign “skin” or
“non-skin” label.

Detection

» For each pixel in the image, determine its
label from the “look-up table” generated
during training.
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Building Histogram

* Instead of incrementing the pixel countsin a
particular histogram bin:

— for skin pixel increment the bins centered
around the given value by a Gaussian function.
— For non-skin pixels decrement the bins centered

around the given value by a smaller Gaussian
function.

Tracking People Using Color
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Fieguth and Terzopoulos

» Computer mean color vector for each sub
region.

(F.g.0) == & (r(xy).g(x ¥).b(x,¥))
|R |(x,y)iR

Fieguth and Terzopoulos

» Compute goodness of fit.

Ir g bu

maXJ\[:’T!E%

Yi — | i gi hI :
. LG g u
mnjf—,—,=

Y h{)

Target M easurement




Fieguth and Terzopoulos

 Tracking

&Y (X, +X,y, + i
Y (%) =3 (X, >|§\IyH Y)
i=1

(X, ¥) =arg,, v,y MY (X, Yy )}

Fieguth and Terzopoulos

* Non-linear velocity estimator

it () (f-0>0 v(f) += ¢33

Dt

it (r(f)v(f-1<0) w(f) += dsgn([f)t(f))

. _ _ 4 s9n(v(f))
if (r(f)=0 w(f) +=d O
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Part I11

VIDEO UNDERSTANDING

Contents

Monitoring Human Behavior In an Office
Model-Based Human Activities
Recognition

Visual Lipreading

Hand Gesture Recognition

Action Recognition using temporal
templates
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Monitoring Human Behavior
In an Office Environment

Goals of the System

» Recognize human actionsin aroom for
which prior knowledgeis available.

» Handle multiple people

» Provide atextual description of each
action

» Extract “key frames’ for each action
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Possible Actions

Enter

L eave

Sitting or Standing
Picking Up Object
Put Down Object

Prior Knowledge

» Spatial layout of the scene:
— L ocation of entrancesand exits

— L ocation of objects and some
information about how they are use

» Context can then be used to improve
recognition and save computation
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Layout of Scene 1

Layout of Scene 2
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Layout of Scene 4

Major Components

Skin Detection
Tracking

Scene Change Detection
Action Recognition
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State Model For Action Recognition

Near Cabinet

Near Terminal

Pick Up

Open / Close Shone

Cabinet
" ; Talking on Phone Terminal
Opening/Closing
Cabinet
Put Down Using Terminal
Phone

Hanging Up Phone

Flow of the System

— Skin Detection

A

Track people and Objects for this Frame

A

Determine Possible Interactions Between People and Objects

A

Scene Change Detection

A

Update States, Output Text, Output Key Frames
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Key Frames

» Why get key frames?
— Key framestake less space to store
— Key frames take less time to transmit
— Key frames can be viewed more quickly
» We use heuristics to determine when key
frames are taken
— Some are taken before the action occurs
— Some are taken after the action occurs

Key Frames

“Enter” key frames: as the person leaves the
entrance/exit area

“Leave’ key frames: asthe person enters the
entrance/exit area

“ Standing/Sitting” key frames after the
tracking box has stopped moving up or
down respectively

“Open/Close” key frames. when the % of
changed pixels stabilizes
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Results
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Key Frames Sequence 1 (350 frames), Part 1
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Key Frames Sequence 4 (399 frames), Part 2
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Generalizations

* Increased field of view
— Arbitrary positioned un-calibrated cameras
 Activity Recognition without apriori
knowledge
— Automatically learn activities by observing

— Determine which objects persons interact with
frequently

— Separate out object motion from human motion,
to determine objects being interacted with

» Real-time implementation
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Model-Based Human Activity
Recognition

Approach

 Activity Detection
 Activity Recognition
 Activity Modeling
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3-D Body Model

14 Cylinders

—Head (1), Torso (1), Upperarms (2),
Forearms(2), Hands (2), Thighs (2), Calves
(2) and Fest.

2 Parameters
— Length
— Circular Crossections

The center of Torso isthe origin of 3D
coordinate system.

Modeling Activities

Joint Curves at Shoulder, Elbow, Hip and
Knee.

Walking Curves from Rohr.
Running, Skipping and Jogging Curves
from Goddard.

One Cycle of ajoint curveis polynomial
curve.
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Kaman
Filter

Activity Confidence Measure

Edge and Li Pairs of
Change ) n€s | correspondence
" ne =

Detection

1 Posture .
Posture | 3D Body Joint 3D Mation
Period Model Model Podture

Change Detection

- Motion arises from arelative displacement
between the sensor and the scene.

- The accumulative differences method is used.

- Algorithm for change detection:
*Divide the image into 5X5 blocks
oif DP>T, set block “k” to all ones
DP(x,y)=a a alfi(x+i,y+j)- fi(x+i,y+j)|

i=- mi=- mk=-m




Change Detection

- Connected component analysis on the changed
pixels.

- A merging phase to combine overlapping regions

- Areathresholding to reject small regions

Line Correspondence

We match 2D lines from the model
projection to the scene lines.

Thelineis represented by a vector [a,b,y,].
Representation:

— A line from the model, by vector mO
— A line from the scene by the vector ri

For an ideal match between a model line and
scene lineri-m=0

— A Mahalanobis Distance is computed
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Pose Estimation

« For any 3D point thereisatransformation that
will give the 2D image point:

m=PM
* For every 3D point and its corresponding 2D point we
have:

qIMi B uingi +Q14' uiQ34 =0
q:M; - VidzM; +0,, - ViGy, =0

Pose Estimation
« For N points, we have 2N equations:
Ag =0

Y Z 10000 -uX -uY -uZ -uu
0000 X Y Z 1-vX -vY -vz v H

a=la] g @ @ o) o

A=

CDCD>?&

* Solve to estimate P.
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Activity Recognition Using Kalman Filter

e ] State Vector

(X,Y.Z,R R R X,Y,Z,R,R R)

-2Start a Kalman Filter for each possible activity.

» 3 Continuous processing per filter

Activity Recognition Using Kalman Filter

-i Predict next sate, and compute covariance
matrix.

at=fat*
Pe=fRf ' +Q

i Use predicted stateto generate 3D model
based upon filter’s corresponding activity.
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Activity Recognition Using Kalman Filter

« iii Do projection, line correspondence and pose
estimation to obtain measur ement vector and
error measure

g =a+K|(r, - Ha®
K =R (HPH" +R )"
P =P¢ (K{HPY

«iv |f error isbelow threshold, then update
the state vector.

Activity Recognition Using Kalman Filter

-vIf error isabovethreshold, thefilter’s
corresponding activity isincorrect, and
filter isstopped.

» Stop processing when all but onefilter have
ceased. Remaining filter givesthe recognized
activity.
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d)

i)
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SHOW VIDEO CLIP

Visual Lipreading
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|mage Sequences of “A” to “J”’

 ARARRRARREE
PREERNDEERDRDRDR-
EERRNNRNEERERERER-
HOIDERREREEDN-
EEERNRNEERDEEN-
ENRNDNERNNEERER-
DENDDNODEEEEREN-
EEDNNEENEERREERDN-
INDERNERERN-
ERNNDNOEEDREENRN-

Particulars

. Pattern differ spatially
« Solution: Spatial registration using SSD
. Articulations vary in length, and
thus, in number of frames.

 Solution: Dynamic programming for
temporal warping of sequences.

. Features should have compact
representation.

+ Solution: Principle Component Analysis.
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Feature Subspace Generation

» Generate alower dimension subspace
onto which image sequences are
projected to produce a vector of
coefficients.

» Components
— Sample Matrix
—Most Expressive Features

Generating the Sample Matrix

» Consder € letters, each of which hasatraining set
of K sequences. Each sequenceis compose of images:

P

* Collect all gray-level pixelsfrom al imagesin a
sequence into avector:

u=(1,LY,...,1,(M,N), 1,@LD, ..., 1,(M,N),...1,@LD,..., 1, (M, N))
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. Generating the Sample Matrix

« For letter W , collect vectorsinto matrix T
1,2 K
T, —[u ,us,...u J
- Create sample matrix A:

A=[T.T,,..T.]

*The eilgenvectors of amatrix | = aa7 are defined as:

The Most Expressive Features

f isan orthonormal basis of the sample matrix.
*Any image sequence, u, can be represented as.

S
u=ag ay =fa
n=1 "
- Use Q most significant el genvectors.
- The linear coefficients can be computed as

a, =u'f,
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Training Process

» Model Generation

—Warp all the training sequences to a fixed
length.

— Perform spatial registration (SSD).

— Perform PCA.

— Select Q most significant elgensequences,
and compute coefficient vectors“a’.

— Compute mean coefficient vector for each
|etter.

Recognition
- Warp the unknown sequence.

- Perform spatial registration.
a‘=u,f,
d"=a"-a"|
- Determine best match by

- Compute;




Extracting letters from Connected Sequences
- Average absolute intensity difference
function

1 & &
F) =g a ey 1.l
- f issmoothed to obtain g.

- Articulation intervals correspond to
peaks and non-articulation intervals
correspond to valleysin “g”.

L
o -
ﬁ 10 | r‘l.l | |I || Il I.'Il I|I || 1ilterad
. | PN
% hl ] |IrII | | :III I,-' J|| {
g |_,' | (| ll’ ||I 1 [ i
= 1 | L vab J: ! . s f'. || :'TVI:I‘LI I lrﬁ.-
I RO U2 B N A
JooYe e L =)

95



Extracting letters from Connected Sequences

- Detect valleysin g.

- From valley locationsin g, find
locations where f crosses high
threshold.

- Locate beginning and ending frames

A 12-22

B 26-39

C 42-55

D 57-67
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HES-1
WES-2
OHMM
OCox

I: “A” to“J one speaker, 10 training seqs
[1.“A” to“M”, one speaker, 10 training seqs
1. *“A” to“Z”, ten speakers, two training seqs/letter/person

Show Video Clip
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Hand Gesture Recognition

Seven Gestures
EEEEE
EEEEE
HEEE
EEEEE
EEEEE
R EEE
EEEEE
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Gesture Phases

Hand fixed in the
Fingers or hand move smoothly to

Hand fixed in :
Fingers or hand return smoothly to

Finite State Machine
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Main Steps

Detect fingertips.
Create fingertip trajectories using motion
correspondence of fingertip points.

Fit vectors and assign motion code to
unknown gesture.

Match

Detecting Fingertips

(d)
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Proximal Uniformity Constraint

* Most objectsin the real world follow
smooth paths and cover small distancein a
small time.

— Given alocation of point in aframe, itslocation

in the next fame liesin the proximity of its
previous location.

— The resulting trgectories are smooth and
uniform.

Proximal Uniformity Constraint
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Proximal Uniformity Constraint

Establish correspondence by minimizing:

"xlglxg_ kak+1 " s "kak+1 "

2 A IXFXE XX & A XX

x=1 z=1 x=1 z=1

d(X;_l, X:, er+1) =

V ector Extraction

(d) (e) (f)

(9) (h)
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Vector Representation of Gestures

. ‘f— -
W7~
(a) {b} (c}
W] ]
{d) (e} {f}
(g}
Results
Results
Run Frames| L |  R|{U|D|T|G|S
1 200 VIVIVIVIVIVIV
2 250 VIVIVIVIVIVIY
3 250 VIVIVIXIVIV]V
a | 250 | VI[VIVIVIVIVIV
5 300 VIVIVIVIVIVIY
6 300 VIVIVIVIVIV]V
7 300 VIVIVIVIVIVIY
8 300 VIVIVIVIVIVIV
9 300 | VIV VIVIF[F[F
10 [ 300 | VIVIVIVIVIVIV

L = Left, R = Right, U = Up, D = Down, T =
Rotate, G = Grab, S = Stop, / - Recognized, X - Not
Recognized, * - Error in Sequence.
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Action Recognition Using
Tempora Templates

Jim Davis and Aaron Bobick

Main Points

Compute a sequence of difference pictures
from a sequence of images.

Compute Motion Energy Images (MEI) and
Motion History Images (MHI) from
difference pictures.

Compute Hu moments of MEI and MHI.
Perform recognition using Hu moments.

19



MEI and MHI
Motion-Energy Images (MEl)
Et (X, Y, ’[) :tulD(X’ y,t _ i) DifferencePictures
i=0
Motion History Images (MHI)

i t IfD(x, y,t) =10
H, (%, y,1) = 00y =1e
imax(0O,H, (x,y,t-1)-1)  otherwise [v)

Moments

General Moments
— N N\ p q
M, = 00X Y T (X y)dxdy
Central Moments

My = O X~ X)° (Y- Y (xy) d(x- X)d(y- y)

)_(:%,y:ﬁ
My My
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Moments
Hu Momens

U, =my,+my,
uz2=(my- m)2)2+”112

U, =(my - 3”12)2 +(3m, - m)3)2
Us

Webpage

o http://vismod.www.media.mit.edu/vismod/d
emos/actions/mhi_generation.mov

o http://www.cs.ucf.edu/~ayers/research.html
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“Motion-Based Recognition: A survey”,
Image and Vision Computing, March 1995.

* Jim Davis and Mubarak Shah, “Visual
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Papers
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Book
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Part 1V

Video Phones and MPEG-4

Video Compression

Video compression is important.

MPEG compression is domain independent,
uses 2D block motion.

Compression ratio in MPEG is limited.

Model-Based compression can be used to
achieve compression of up to 250kb/s.
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Model-Based Compression

* Object-based
» Knowledge-based
» Semantic-based

Contents

Estimation using rigid+non-rigid motion
model

Making Faces (SIGGRAPH-98)
Synthesizing Realistic Facial Expressions
from Photographs (SIGGRAPH-98)
MPEG-4
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Model-Based Image Coding

The transmitter and receiver both posses the
same 3D face model and texture images.

During the session, at the transmitter the
facial motion parameters: global and local,
are extracted.

At the receiver the image is synthesized
using estimated motion parameters.

The difference between synthesized and
actual image can be transmitted as residuals.

Face Mode

Candide model has 108 nodes, 184 polygons.

Candideis a generic head and shoulder
model. It needs to be conformed to a
particular person’s face.

Cyberware scan gives head model consisting
of 460,000 polygons.

Another face model was created by sticking
182 color dots on the face, and capturing dots
by six cameras.
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Wireframe Mode Fitting

Fit orthographic projection of wireframe to
the frontal view of speaker using Affine
transformation.

L ocate four featuresin the image and the
projection of model.

Find parameters of Affineusing least
squares fit.

Apply Affine to all vertices, and scale
depth.

Synthesis

Collapse initial wire frame onto the image to
obtain a collection of triangles.

Map observed texture in the first frame into
respective triangles.

Rotate and translate the initial wire frame
according to global and local motion, and
collapse onto the next frame.

Map texture within each triangle from first
frame to the next frame by interpolation.
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Video Phones

Motion Estimation

Perspective Projection (optical flow)

V. V. W, W.
u=f(2+W,)- =2x- W,y- —Lxy+—2x°
(Z ) S Y- XYt

V. V. W. W,
= f(=2- WY+W.X- 3 v+—2xy- —L\?
V=T - W) HWex- 2y +=Sxy- =y

13



Optical Flow Constraint Eq

fu+fyv+f =0

V, V. W, W.
f(F(E2+W)- 2x-W,y- —2xy+—2x)+f
x( (Z 2) Z 3y fxy f ) y

V. V. W. W,
f(=2- W) +W,x- 2 y+—2xy- —Ly*)+f =0
((Z )+ W, Y f><y fy) ¢

f f f
(LZV+ (1, 2V + (S (R T yVa+

2

2
(A2 e ML (£, 2 £ 2w+

(fxy+ fyX)W3 =- ft
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f f f
(LZV+ (1, 2V, + (S (R T yVa+

2 X2

(- fxgnny- £ F )W, +(f, T +fXT+fy¥)w2+

(fxy+ fyX)W3 =- ft

AX p— b Solve by Least Squares

X = (V,Vy, Vg, Wi, W, WE)

>
1l

~

D M. D> D> D> D~

:

f f f : X 2 X2 X Y
) (f,2) (hx £y - £t Lot (fxf+fx—+fyTy) (fxy+fyx)3

oo

foorf
u
ol
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Comments

* Thisisasimpler (linear) problem than sfm
because depth is assumed to be known.

 Since no optical flow is computed, thisis
called “direct method”.

» Only spatiotemporal derivatives are
computed from the images.

Problem

» We have used 3D rigid motion, but faceis
not purely rigid!

» Facia expressions produce non-rigid
motion.

» Use global rigid motion and non-rigid
deformations.
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3-D Rigid Motion

Xb é1 -a bwXy €N
S8 1 - Uiy ¢

LEUGY

@‘]’d @‘b g 1gy €4
&XG@ &0 -a bu él 0 OudeXu éTxu

& oll_ G
&%= ¢ea

U, u U
0 'gu +g 1 OugYu+2TYu

g b g 04 so 0 187§ &4

Xt Xu é0 -a beX
eYd;Y,—Aa 0 -gLBY

@Jggbg 0 [z

3-D Rigid Motion
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EXU 60 -W, W,0XU &
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eYu_9W 0 -wYyU g
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3-D Rigid+Non-rigid Motion

XE=RX+T+EF \

Facial expressions

ee, &, ... €,u Action Units:

=%, e, ... &4 -opening of amouth
? u -closing of eyes
€ €, ... &,f -raising of eyebrows

=(f,f,,...f.)

3-D Rigid+Non-rigid Motion

S, + 8 ef

ex+a ehflu

X® é1 -a buxg € ' d
8, .U_ €& _ gl 0,

drej=ga 1 -affrrenraeny

&% e b g 1pgZd g g ﬂ

éTZ+a e&fil;j

e i=1 u

s g u

grx"’_a%fiu

Xl 280 -a by é 0 OweXu € 'gjl a

A 7 ~ 7 Py A ’ u

gY¢H:gga 0 -gg+go 1 03+SYH+%|_Y+_3—1621fi0

g & & é F a
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3-D Rigid+Non-rigid Motion

. m i
grx"'é%fil]

eX¢ Xi 60 -a biexa & = 0
8¢y U@ B0, & & (U
&*Y=sa O ‘ggethqugrﬁa%fiu
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_éTz+aeaffiL:I
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X=W X+D

3-D Rigid+Non-rigid Motion
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Perspective Projection (arbitrary flow)

X

Z
fY

Z

X =

 fZX - X2 X 7
u=Xx= 5 =f—- x—
Z Z Z

V-2 Y 2

Z? Z " Z

Perspective Projection (arbitrary flow)

X -fXZ X 7
u=x= =f—=-Xx=

Z° zZ Z
=—Vv= fZY- fYzzfi. E
Z? Z Z
V1+amelifi V3+éme3f
u=f( Zl +W,) '; x- W,y - —L xy+—2x°
V2+émgf V3+am%f W
v=f—2 W) +Wox - Yy Y
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Optical Flow Constraint Eq

fu+fyv+f =0

[
O

AX
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Making Faces

Guenter et a
SIGGARPH’98

Making Faces

» System for capturing 3D geometry and color
and shading (texture map).

» Six cameras capture 182 color dots on a
face.

3D coordinates for each color dot are
computed using pairs of images.

» Cyberware scanner is used to get dense wire
frame model.

12



Making Faces

» Two models arerelated by arigid
transformation.

* Movement of each node in successive
framesis computed by determining
correspondence of nodes.

Synthesizing Realistic Facial
Expressions from Photographs

Pighinet d
SIGGRAPH’ 98

13



Synthesizing Redlistic Facial Expressions

o Select 13 feature points manually in face
image corresponding to pointsin face
model created with Alias.

» Estimate camera poses and deformed 3d
model points.

» Use these deformed values to deform the
remaining points on the mesh using
interpolation.

Synthesizing Realistic Facial Expressions

» Extract texture,
» Create new expressions using morphing.
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3D Rigid Transformation

X® &Xu &, r, rlBXu eru

ryUr=5, 1y r B

28" 0 Télvu

/@‘FH ZH By o HZH ELH

Camera coordinates Wiréframe coordinates

xdf Y¢
Xid’( = fk yd’( = fk Z¢( perspective

3D Rigid Transformation

x¢ = ka_id’(,yidf = fkﬁ
Z¢ Z¢
[SX +ISY +15Z +T
r31X. + r32Y + r332i +T
X +IEY +15Z + T
[SX +IEY +rsZ + TS

x¢ = f, =

ye =f, -2
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Model Fitting

Kk K
xt = f TP T
i k .k + TK
IFz pi Z
k k
¢ =, Py
yi - k k +Tk
rzpi Z
Model Fitting
k K
¢<_ rxpi+Tx
8 ", I’zkpi"'Tzk
_ rslfpi*’Tvk
e = T TS
k . Tk
(Ilf: rxp|+ X
T Lenp,
ye& = s r;pi+TYk
| I(1-'-hkrzkpi
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Model Fitting

— rxkpi+Tk
x¢ = S"1+h"rk X
zpi
y.qf(:S r;pi-l_TYk
© f1l+h'rp,

WE(xE +xEn (i p,) - S(rlp, +T¥) =0
W (yE +yeh*(r; p;)- s(ry p +Ty) =0

Model Fitting

 Solve for unknownsin five steps:
s p;; R T, T,5h*

» Use linear least squares fit.

» When solving for an unknown, assume
other parameters are known.
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Interpolation

» Useinitial set of coordinates for the feature
points (13 points), to deform the remaining
vertices using interpolation.

Interpolation

f(p)=a cf (Ip-p, ) +Mp+t

u_p| p|’|_f(p)
aC.—O,aC.pi—

-r

f(ry=e%

16



Texture Extraction

a m< )1 (¢, e

T(p)=—"—
a m‘(p)
k
|k is k-th image
m<  isweight
Weights

» Self-occlusion

e Smoothness
 Positional certainty
* View similarity

13



Texture Extraction

*Vishbility map ru,v) iIssetto 1if the
corresponding point p isvisible in k-th
Image, and zero otherwise.

* Positional certainty, pkp) isdefineasa
dot product of surface normal at p and the
k-th direction of projection.

Texture Extraction

* VView-independent texture mapping:

m(u,v) = F*(u,v)P“(p)
* View-dependent texture mapping:
m“(u,v) = F*(x", y*)P*(p)v"(d)
V¥(d)=dd*- d'.d"™
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MPEG-4

MPEG-4

MPEG-4 will soon be international standard
for true multimedia coding.

MPEG-4 provides very low bitrate & error
resilience for Internet and wireless.

MPEG-4 can be carried in MPEG-2 systems
layer.

MPEG-4 text and graphics can be overlaid
on MPEG-2 video for enhanced content:
sports statistics and player trajectories.

13



MPEG-4

» Real audio and video objects
» Synthetic audio and video
2D and 3D graphics (based on VRML)

MPEG-4

» Traditional video coding is block-based.

* MPEG-4 provides object-based
representation for better compression and
functionalities.

» Objects are rendered after decoding object
descriptions.

» Display of content layers can be selected at
MPEG-4 terminal.

13



MPEG-4

» User can search or store objects for later
use.

 Content does not depend on the display
resolution.

* Network providers can re-purpose content
for different networks and users.

Scope & Features of MPEG-4

« Authors

— reusability

— flexibility

— content owner rights
* Network providers

 End users

13



Media Objects

* Primitive Media Objects
» Compound Media Objects
« Examples
— Still Images (e.g. fixed background)

— Video objects (e.g., atalking person-without
background)

— Audio objects (e.g., the voice associated with
that person)

—€elC

MPEG-4 Versions

T T MPEG-4
A ~. Yersions
& Wersiond N
[ / \ .
\ t Version 1 . J
l"l‘.‘ '\.‘HL-‘--_ J.;-_r J‘,f
i — " -
_"‘-_‘___‘__,_'_-_,_-r"_
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MPEG-4

i lrate
High bitrate
tools
ntetl
b e Content-hased
functionalities
(shape, scalabiliy)
VLBY
core
e
flathet otaliti 3
User Interactions
e Client Side

— content manipulation done at client terminal

 changing position of an object
* making it visible or invisible
« changing the font size of text

» Server Side
— requires back channel

13



 Efficient representation of visual objects of
arbitrary shape to support content-based
functionalities
 Supports most functionalities of MPEG-1
and MPEG-2
— rectangular sized images
— severa input formats
— framerates
— bit rates
— gpatial, temporal and quality scalability

MPEG-4 VL BY Core Coder

YWiden
Ohbject hitstrearm
Flane

[Similarto H.2638PEG-1)

Generic MPEG-4 Coder

a Yideo .
Lt Ohject — Shape hitstream
TaEB piane
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Object Composition

Objects are organized in a scene graph.
VRLM based binary format BIF is used to
specify scene graph.

2-D and 3-D objects, transforms and
properties are specified.

MPEG-4 allows objects to be transmitted

once, and displayed repeatedly in the scene
after transformations.

MPEG-4 Scene

19



Scene Graph

//\\

PN AN

Standardized Ways

» To represent “media object”
— visual or audiovisual
— synthetic or natura
* To multiplex and synchronize the data
associated with media objects for
transportation over the network
* Interact with audiovisual scene generated
at the receiver’s end.

19



Standardized Ways To

place a media objects anywherein agiven
coordinate system;

apply transforms to change the geometrical
or acoustical appearances of media objects;

group primitive media objects to form
compound media objects;

apply stream data to media objects to
modify their attributes;

change interactively user’s viewing and
listening points anywhere in the scene

| nteraction with media objects

change the viewing/listening point of the
scene, e.g., by navigating through a scene;
drag objects in the scene to adifferent
position;

trigger a cascade of events by clicking on
specific objects, e.g., starting or sopping a
video stream;

select the desired language when multiple
language tracks are available;

more complex behavior

12



MPEG-4 Terminal

Textures, Images and Video

 Efficient compression of
— images and video

— textures for texture mapping on 2D and 3D
meshes

—implicit 2D meshes

— time-varying geometry streams that animate
meshes

12



Textures, Images and Video

Efficient random access to all types of visual
objects

Extended manipulation functionalitiesfor
Images and video sequences

Content-based coding of images and video

Content-based scalability of textures, images
and video

Spatial, temporal and quality scalability
Error robustness and resilience

2-D Mesh Modeling

13



2-D Mesh Representation of
Video Object

* Video Object Manipulation
— Augmented Redlity
— Synthetic-object-transfiguration/animation
— Spatio-temporal interpolation (e.g., framerate
up-conversion)
* Video Object Compression
— transmit texture maps only at keyframes

— animate texture maps for the intermediate
frames

2-D Mesh Representation of
Video Object

» Content-Based Indexing

— Provides vertex-based object shape
representation which is more efficient than the
bitmap representation of shape-based object
retrieva

— Provides accurate object trgjectory information
that can be used to retrieve visual objects with
specific motion

— Animated key snapshots as visual synopsis of
objects

14



MPEG-4 Video and Image
Coding Scheme

 Shape coding and motion compensation
» DCT-based texture coding

— standard 8x8 and shape adpated DCT
« Motion compensation

— local block based (8x8 or 16x16)

— global (affine) for sprites

MPEG-4 Video Coder

(I | ]

o]

m=all




Sprite Panorama

 First compute static “sprite” or “mosaic”

* Then transmit 8 or 6 global motion (camera)
parameters for each frame to reconstruct the
fame from the “ sprite”

* Moving foreground is transmitted
separately as an arbitrary-shape video
object.
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Other Objects

» Text and graphics
» Talking synthetic head and associated text
 Synthetic sound

Face and Body Animtion

* Face animationisin MPEG-4 version 1.
» Body animation isin MPEG-4 version 2.

» Face animation parameters displace feature
points from neutral position.

» Body animation parameters are joint angles.

» Face and body animation parameter
seguences are compressed to low bit rate.

» Facial expressions:. joy, sadness, anger, fear,
disgust and surprise.

12



Face Node

FAP (Facial Animation Parameters) node
Face Scene graph

Face Definition Parameters (FDP)

Face Interpolation Table (FIT)

Face Animation Table (FAT)

Face Mode

Face model (3D) specifiedin VRLM, can
be downloaded to the terminal with MPEG-
4

FAT maps FAPS to face model vertices.
FAPS are quantized and differentially coded

Typical compressed FAP bitrate is less than
2 kbps

18



Neutral Face

e Faceisgazinginthe Z direction

» Face axes parallel to the world axes
e Pupil is1/3 of irisin diameter

» Eyelidsaretangent to theiris

» Upper and lower teeth are touching and
mouth is closed

* Tongueisflat, and the tip of tongueis
touching the boundary between upper and
lower teeth

Facial Animation Parameters
(FAPS)

» 2 eyeball and 3 head rotations are
represented using Euler angles
o Each FAP is expressed as a fraction of

neutral face mouth width, mouth-nose
distance, eye separation, or iris diameter.

19



FAP Groups

Visemes & expressions 2
jaw, chin, inner lower-lip, corner lip, mid-lip 16
eyeballs, pupils, eyelids 12
eyebrow 8
cheeks 4
tongue )
head rotation 3
outer lip position 10
nose 4
ears 4

Visemes and Expressions

 For each frame aweighted combination of
two visemes and two facial expressions

» After FAPsare applied the decoder can
interpret effect of visemes and expressions

» Definitions of visemes and expressions
using FAPs can be downloaded

16



Phonemes and Visemes

* 56 phonemes
— 37 consonants
— 19 vowel g/diphthongs

» 56 phonemes can be mapped to 35 visemes

Co~NoOOUuThWwWNPE O

Visems
none na
p, b, m put, bed, mill
f, v far, voice
T,D think, that
t,d tip, doll
K, g cal, gas
tS,dzZ, S chair,_join, she
S,z sSr, zea
n, | lot, not
r red
A: car
e bed
I tip
@] top
U book
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Facial Expressions

* Joy

— The eyebrows are relaxed. The mouth is open,
and mouth corners pulled back toward ears.

» Sadness

— The inner eyebrows are bent upward. The eyes
are dightly closed. The mouth is relaxed.

« Anger

— The inner eyebrows are pulled downward and
together. The eyesarewide open. Thelipsare
pressed against each other or opened to expose
teeth.

Facial Expressions

e [ear

— The eyebrows are raised and pulled together.
The inner eyebrows are bent upward. The eyes
aretense and alert.

 Disgust

— The eyebrows and eyelids are relaxed. The upper
lip israised and curled, often asymmetrically.

e Surprise

— The eyebrows are raised. The upper eyelids are
wide open, the lower relaxed. The jaw is open.

13



FAPs

» Speech recognition can use FAPsto
Increase recognition rate.

* FAPs can be used to animate face models
by text to speech systems

* In HCI FAPs can be used to communicate
speech, emotions, etc, in particular noisy
environment.

M PEG-4 Decoder

AN
=
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MPEG-4

» Go to http://www.cselt.it/mpeg
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