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Abstract—This paper presents a framework for finding point correspondences in monocular image sequences over multiple frames.

The general problem of multiframe point correspondence is NP-hard for three or more frames. A polynomial time algorithm for a

restriction of this problem is presented and is used as the basis of the proposed greedy algorithm for the general problem. The greedy

nature of the proposed algorithm allows it to be used in real-time systems for tracking and surveillance, etc. In addition, the proposed

algorithm deals with the problems of occlusion, missed detections, and false positives by using a single noniterative greedy

optimization scheme and, hence, reduces the complexity of the overall algorithm as compared to most existing approaches where

multiple heuristics are used for the same purpose. While most greedy algorithms for point tracking do not allow for entry and exit of the

points from the scene, this is not a limitation for the proposed algorithm. Experiments with real and synthetic data over a wide range of

scenarios and system parameters are presented to validate the claims about the performance of the proposed algorithm.

Index Terms—Point correspondence, target tracking, motion, occlusion, point trajectory, data association, bipartite graph matching,

path cover of directed graph.
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1 INTRODUCTION

IN motion correspondence, given an image sequence, the
problem is to find the correspondences between the

feature points in the images that occur due to the same
object in the real world at different time instants. Once these
correspondences among all feature points are available,
they can be used for many applications like object tracking,
motion analysis, optical flow, and structure from motion
[1], [15], [17], [26], [33], [34], [38].

The output of a correspondence algorithm is a set of
tracks, where each track ideally corresponds to a unique
point or an object in the realworld and specifies its position in
every frame from entry to exit in the scene. We assume that
the only information available about the feature points is
their position in the image and there is no other distinguish-
ing feature among these points. This type of scenario occurs
in applications like particle tracking or tracking of a large
number of similar objects. Psychological experiments have
shown that human vision is less sensitive to the form and
appearance of objects as compared to their velocity and
position [9]. It has also been shown that humans are capable
of making inferences about the type of object and its motion
by using the minimal information of velocity and position of
a small number of otherwise indistinguishable points on the
object [19].

We formulate the problem as follows. The same notation
will beused throughout the restof thepaper.Let a sequenceof
n framesFi (eachof dimensionsSx � Sy) correspond ton time
instances ti,1 � i � n,andletXi ¼ fxi

1; x
i
2; . . . ; x

i
rgbethesetof

r points detected in the frame Fi (the number of points
detected ineach frameneednotbe thesame).Wedefinea track
T of length m to be a sequence of m points hxi1

a1
; xi2

a2
; . . . ; xim

am
i

such that 1 � i1 < i2 < . . . � n and 1 � aj � jXij j. The length
of a track T is denoted by jT j. The backward correspondence of a
point x

ij
aj in track T is defined by the point preceding x

ij
aj , i.e.,

x
ij�1
aj�1 , while the forward correspondence of a point is the point

succeeding x
ij
aj , i.e., x

ijþ1
ajþ1 . The first point of a track T has no

backward correspondence and the last point has no forward
correspondence. We assume that the detected points occur
either due to sensory response of one or more real-world
points or due to sensor noise.

The problem is to find a set of tracks A ¼ T1; T2; . . . ; Tmf g
such that 8Ti 2 A, either one of the following is true:

. If 9xkj 2 Ti, such that xk
j is a sensor response of

only point Zi in the real world, then every point in
Ti is a sensor response of Zi (or more points in
occlusion with Zi) and no other track Tr contains
a sensor response of only Zi.

. 8xk
j 2 Ti; x

k
j occurs due to sensor noise.

The first condition requires each real-world point to have
exactly one track associated with it (element integrity
principle [9]) and each track to be associated to exactly one
worldpoint. The second condition disallowsnoisydetections
or false positives to be part of any track corresponding to a
real-world point. Thus, by the above definition, a track is
either composed of sensor responses of a single world point
(may include responses due to the occlusion of that point by
other points) or it is composed of points occurring fromnoise
only. Hence, the problem is not only to find these tracks, but
also to distinguish between these two types of tracks for noise
removal. This distinction is usually done by higher level
processes and is not in the scope of this paper.

We propose a look-ahead technique to solve the corre-
spondence problemby using a slidingwindow overmultiple
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frames. This information gathering over time for systems
simulating the cognitive processes is supported by many
researchers in both vision and psychology (e.g., [13], [21],
[22]). Neisser [22] proposed a model according to which the
perceptual processes continually interact with the incoming
information to verify hypotheses formed on the basis of
available information up to a given time instant. Marr’s
principle of least commitment [21] states that any inference
in a cognitive process must be delayed as much as possible.
The use of active information pickup by a human observer in
an environment is supported by [13]. Todd [32] argued that
most human observers require several frames to infer the
structure of moving objects, even in simple experimental
settings. Many existing algorithms use similar look-ahead
strategies or information gathering over longer intervals of
time (for example, by backtracking) [10], [23], [27], [30]. The
comparison of these techniques with our work is presented
in later sections.

The major contribution of this paper is the formulation of
an efficient and robust solution to the multiframe correspon-
dence problem as defined above. The proposed framework
deals with the problems of occlusion handling, missed
detections, and false positives by using a single greedy
optimization scheme and, hence, reduces the complexity of
the overall algorithm as compared to most existing ap-
proaches where different heuristics are used for the same
purpose. The experimental results on both real and synthe-
sized sequences show that the proposed algorithm outper-
forms the existingmethods, is time-efficient, and is applicable
in more general scenarios.

The organization of the paper is as follows: In the next
section, we present a survey of the related work. In Section 3,
we define the terminology and notation for this paper and
provide a graph theoretical formulation of the correspon-
dence problem and its solution in Section 4. We refine the
solution of Section 4 and present details of the proposed
algorithm in Section 5. The choice of gain function is
discussed in Section 6. In Section 7, we demonstrate the
results of the proposed approach on a variety of synthesized
and real sequences and compare our results to the previous
approaches. Section 8 concludes the paper.

2 RELATED WORK

A large number of correspondence methods have been
proposed in recent years. Most of these methods first define
a motion model and use some optimization technique to
maximize (minimize) a gain (cost) function based on that
motion model. These methods differ by the choice of
motion model, optimization technique, and/or gain func-
tion. Ullman [34] proposed a minimal mapping approach,
where the probabilistic cost function was based on the
distance between the points in consecutive frames. A linear
programming approach was used to minimize the cost
function. The cost function was further improved by Jenkin
[18], who introduced the smoothness constraint along with
the nearest neighbor relationship. He used a greedy
approach for optimization. Barnard and Thompson [2]
used a relaxation-based approach to solve this problem. All
of the above algorithms use two frames for establishing the
correspondences. Sethi and Jain [29] proposed an iterative

greedy exchange algorithm using both nearest neighbor
and smoothness constraints. The self initializing version of
the algorithm repeats the optimization step in forward and
backward directions until an equilibrium state is achieved.
The algorithm however assumes that the points do not
enter or exit the scene and that there is no occlusion and
detection errors. The latter condition was relaxed by Salari
and Sethi in [28].

Rangarajan and Shah [25] proposed the proximal uni-
formity constraint and a noniterative greedy algorithm that
uses three frames to establish correspondences. The algo-
rithm assumes a fixed number of real-world points, but
allows for temporary occlusion or missed detections.

The most recent contribution in the area is by Veen-
man et al. [35], who proposed Hungarian search as an
optimization tool for their GOA Tracker, along with the
motion models defined in [4], [25], [29]. The basic
algorithm assumes that the initial correspondence be-
tween the first two frames is known and establishes
further correspondences based on consecutive frames
only. An extension to the basic algorithm for self-
initialization backtracks the correspondences over all
frames once all correspondences are established by the
basic algorithm. The algorithm also assumes that the
number of world points remains the same over all frames,
though it allows for occlusions and detection errors,
which is done by using heuristics based on the analysis of
the number of detected points in consecutive frames.

Apart from these methods, quite a few algorithms have
been proposed in the statistical domain of which the most
well-known are the Joint Probabilistic Data-Association
Filter [11] and Multiple Hypothesis Tracking (MHT) [27].
The former is a greedy approach and it is more efficient than
the latter, which suffers from combinatorial explosion. More
efficient approximations ofMHT have been presented. Some
of these techniques use Murti’s Algorithm to find the k best
hypothesis to reduce the search space [5], [7], [6], [8],
whereas others reduce the search space by using a limited
temporal scope and a sliding window technique similar to
ours. However, the problem remains intractable and further
approximations are used for efficient implementation [10],
[23], [24]. The major drawbacks of these methods are the
large number of parameters and the assumptions about the
probability distributions, which do not necessarily hold [35].
For a detailed review on statistical techniques for point
correspondence, see [5].

Our contribution in this paper is the presentation of an
optimization algorithm that optimizes the gain (cost)
function over multiple frames and is general enough to be
used for a large variety of motion models and cost functions
(including statistical based functions) that satisfy the
constraints as posed by the proposed framework. Our work
is most closely related to Veenman et al. [35]. However, we
present a solution to the “Multiframe” correspondence
problem as opposed to the 2-frame correspondence
problem in [35]. The latter is a special case of the former
and is inherently an easy problem for which a polynomial
time optimal solution exists. In addition, GOA assumes that
the number of points in the scene remains constant, which
is not a restriction for the proposed algorithm. Further, the
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self-initializing version of GOA is a two-pass algorithm

compared to the proposed algorithm, which is a single pass

algorithm and, hence, is applicable in real-time systems.

3 DEFINITIONS AND NOTATIONS

We assume that the reader is familiar with the basic graph

theory terminology. We follow the notation and terminol-

ogy of [37]. Let D ¼ ðV ;EÞ be an edge weighted directed

graph without self loops and multiple edges, where V andE

are, respectively, the set of vertices and edges of the

digraph D. A directed path P of length k in digraph D is a

sequence of vertices v1; v2; . . . ; vkþ1, where vi 2 V , and, for

every vi; 1 � i � k, there is a directed edge in E from vi to

viþ1, for example, P1; P2; P3 in Figs. 1b, 1c, and 1d are

directed paths of the digraph shown in Fig. 1a. A vertex

disjoint path cover C of D is a set P1; P2; . . . ; Pkf g of directed

paths Pi (of length � 0), if V ¼
Sk

i¼1 V ðPiÞ and V ðPiÞ \
V ðPjÞ ¼ ; whenever i 6¼ j, where V ðPiÞ is the set of vertices

of directed path Pi. In other words, a vertex disjoint path

cover C of a digraph D is a set of directed paths in D such

that every vertex ofD is in some path of C and no two paths

in C have a common vertex. For simplicity of notation, we

will refer to vertex disjoint path covers as path covers.

Figs. 1b, 1c, and 1d show three different path covers, C1, C2,

and C3, of the digraph shown in Fig. 1a. Let WðCÞ denote
the weight of path cover C, where WðCÞ is defined by the

sum of weights of all the edges in the cover C. A maximum

weight path cover of D is a path cover CðGÞ such that

CðGÞ ¼ argmaxCi
WðCiÞ, for all path covers Ci of D.

A Split of an edge weighted digraph D is an edge
weighted bipartite graph G whose partite sets V þ; V � are
copies of V ðDÞ. For each vertex x 2 V ðDÞ, there is one
vertex xþ 2 V þ and one vertex x� 2 V �. For each edge e

from u to v in D, there is a corresponding edge e0 with
endpoints uþ; v� in G such that wðe0Þ ¼ wðeÞ. The split
graph of the digraph in Fig. 1a is shown in Fig. 2a.

A matching in a graph G is a set of edges with no shared
end-vertices. A maximum (minimum) matching in a weighted
graph is a matching with maximum (minimum) weight
among all matchings in the graph. A matching of the split
graph in Fig. 2a is shown in Fig. 2b.

A graph G0 ¼ V 0; E0ð Þ is a subgraph of a graph G ¼ V ;Eð Þ,
written G0 � G if V 0 � V and E0 � E \ V 0 � V 0. If S � E, the
subgraph induced by S is the graph G½S� ¼ V 0; Sð Þ such that
V 0 is a minimal subset of V containing the end vertices of all
the edges of S. For example, the subgraph induced by edges
12; 14; 45f g in graph of Fig. 1a is the graph with vertex set
1; 2; 4; 5f g and edge set 12; 14; 45f g.

4 GRAPH THEORETICAL FORMULATION

In this section, we present a graph theoretical formulation
of the multiframe correspondence problem as defined in
Section 1. There is an obvious graph theoretical formulation
of the 2-frame correspondence problem, as has been
observed in [34] and [35]. The problem can be viewed as
finding a maximum matching of a bipartite graph G, where
the partite sets V1; V2 correspond to the sets of points X1

and X2 detected in frames F1 and F2, respectively. We will
denote the vertex in G corresponding to a point x by vðxÞ.
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Fig. 1. (a) A sample digraph D. (b), (c), and (d) Three different vertex disjoint path covers C1, C2, and C3 of digraph D.

Fig. 2. (a) Split graph G of the sample digraph D shown in Fig. 1a. (b) A matching of the graph G.



The edge e ¼ vðx1
i Þvðx2

j Þ corresponds to a match hypothesis
between the point x1

i in frame F1 and the point x2
j in

frame F2, whereas the edge weight wðeÞ is the gain gðx1
i ; x

2
j Þ

associated with this match. Hence, by finding the maximum
matching of G, we find the match of every point x1i in
frame F1 with some point x2

j in frame F2 such that the total
gain is maximized. Several efficient algorithms to find the
maximum matching of a bipartite graph exist, for example,
Hungarian search [20], which is Oðn3Þ and an Oðn2:5Þ
algorithm by Hopcroft and Karp [14], where n is the total
number of vertices in graph G.

Since an efficient algorithm for the 2-frame correspon-
dence problem exists, it seems natural to apply the same
technique to the k-frame problem, k � 3. However, the
k-dimensional matching problem is NP-Hard for k � 3 [12],
i.e., all known solutions are exponential, and requires
further approximations for all practical purposes [10], [24].

To avoid the high computational complexity involved,
with thek-Dmatching, insteadofusingak-partitehypergraph
to model the k-frame problem, we construct a weighted
digraph D¼ ðV;EÞ such that V1;V2; . . . ;Vkf g partitions V ,
where each Vi corresponds to the set of pointsXi detected in
frame Fi. Further, E ¼ fvðxi

aÞvðx
j
bÞjvðxi

aÞ 2 Vi ^ vðxj
bÞ 2 Vj;

8i < jg, i.e., there is a directed edge from every vertex in set
Vi to every vertex in set Vj whenever i < j. As in the 2-frame
problem, each edge e ¼ vðxi

aÞvðx
j
bÞ corresponds to a match

hypothesis of point xia in frame Fi to point xj
b in frame Fj,

whereas the edge weight wðeÞ is the gain gðxia; x
j
bÞ associated

with this match. Let xi
a be a point detected in frame Fi. The

edge from vðxiaÞ to vertex vðxiþl
m Þ2 Viþl represents the

possibility of xia having no corresponding point in any frame
fromFiþ1 toFiþl�1 andxiþl

m being the forward correspondence
of xi

a. Thus, all the possibilities of detection errors and
occlusions (or absence of a maximum of k� 2 frames) are
considered.A sample digraph formed in thisway is shown in
Fig. 3a.

By definition of the correspondence problem in Section 1,
the task is to find a set of vertex disjoint directed paths
(Tracks) of length 0 or more such that the total gain is
maximum among all such paths, i.e., we want to find a
maximum weight path cover of the directed graph D. A
candidate solution to the problem is shown in Fig. 3b.

Let T ¼ hxi1
a1
; xi2

a2
; . . . ; xim

am
ibea track corresponding to some

real world point Zi, we require that 8p; q; 1 < pþ 1 < q � m,
the gain function gðxip

ap ; x
iq
aq Þ satisfies the following inequality:

g xip
ap
; xiq

aq

� �
< g xip

ap
; xipþ1

apþ1

� �
þ g xiq�1

aq�1
; xiq

aq

� �
: ð1Þ

This condition guarantees that the total gain is max-
imized only if all the edges of T are in the path cover and
penalizes the choice of a shorter track when a longer valid
track is present. Note that the inequality reduces to strong
triangular inequality when m ¼ 3.

Once again, the problem of finding maximum path cover
is NP-Hard, even in the case of unweighted graphs [3].
However, by the following theorem, a polynomial solution
exists if the directed graph is acyclic:

Theorem 1. The edges of maximum matching of the split graphG
of an acyclic edge-weighted digraph D correspond to the edges
of maximum path cover of D.

Proof. LetD be an acyclic edgeweighteddigraph andGbe its
split graph,whereV þ; V � form thepartite setsofG. LetC�

be a maximum path cover of digraph D. Every vertex y 2
V ðDÞ has indegree and outdegree at most one in digraph
D½C�� induced by the edges in C�. Since indegree and
outdegree of a vertex y 2 V ðDÞ correspond to the degrees
of vertices yþ 2 V þ and y� 2 V �, respectively, ifM� is the
set of corresponding edges of C� in G, every vertex x 2
V ðGÞ has degree at most one inG½M�� and, hence,M� is a
matching of graph G andW ðC�Þ ¼ W ðM�Þ.

Now, letM be a maximummatching in G and let C be
the set of corresponding edges in D. By an argument
similar to the one above, every vertex in V ðDÞ has at
most one edge in C coming into it and at most one edge
in C going out of it. Thus, the directed subgraph D½C� of
D induced by the edges in C consists of vertex disjoint
paths or cycles. Since D is acyclic, D½C� consists only of
vertex disjoint paths. Suppose that WðC�Þ > WðCÞ, then
W ðM�Þ ¼ W ðC�Þ > W ðCÞ ¼ W ðMÞ, which is contrary to
M being a maximum matching. Hence, C is a maximum
path cover of digraph D. tu
By the construction of digraph D as described above, all

the edges inD are in the direction of increasing time, thusD
is acyclic. Hence, given the weighted directed graph D, the
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Fig. 3. (a) An instance of digraph D as defined in Section 4 and (b) a candidate solution.



optimal set of tracks that maximizes the overall gain can be
obtained in polynomial time. Note that, when the number
of frames is two, the above problem reduces to the bipartite
graph matching problem as described in the beginning of
this section.

The above algorithm was successfully applied to the
problem of establishing correspondences across multiple
cameras with disjoint field of views (see [16]).

5 GREEDY ALGORITHM

Thus far, we have assumed that the gain function g that is
used for obtaining the edge weights of digraph is already
given or is easily computable. This, however, is not always
the case. It is easy to see that the construction of a digraph as
mentioned in Section 4 assumes the gain gðxi

a; x
j
bÞ to be

independent of the backward correspondences of xia. For
cases such as correspondence acrossmultiple cameras [16] or
gain functions based on the nearest neighborhood criteria
[34], appearance, and/or color properties of the feature
points, this condition is satisfiable. However, if the gain
function, gðxi

a; x
j
bÞ, requires velocity or accelerationof pointxi

a

(which is computable only if the backward correspondence of
xi
a is known), this condition is not true. Similarly, gain

functions based on smoothness ofmotion ([29]) do not satisfy
this condition. Thus, the frameworkdefined in Section 4 is not
directly applicable when the gain function is dependent on
backward correspondences. Since we are more interested
here in gain functions based on motion information, we

present a solution to this problem by proposing a greedy
algorithm based on the framework of Section 4.

The algorithm assumes that the correspondences of points
in k� 1 frames,F1; F2; . . . ; Fk�1, k > 2, have been established.
These correspondences in the previous k� 1 frames were
made by the information available up to time instant tk�1 and
maybechangedoncemore information is available. For every
incoming frame, the proposed greedy algorithmmodifies the
established correspondences of the previous k� 1 frames by
either extending the tracks to the new frame (this includes the
tracks of points occluded for one or more frames) or by
correcting a previous mismatch by using the newly obtained
information. LetFk be the current frameand letCk�1 be the set
of correspondences established up to frame Fk�1. The
problem of extending the correspondences in Ck�1 to the
points in frame Fk can be represented by a digraphD ¼ ðV ¼Sk

i¼1 Vi; EÞ such that, V1; V2; . . . ; Vk are pairwise disjoint and
eachvertexvðxÞ 2 Vi corresponds toapointx 2 Xi. Each track
T ¼ hx1; x2; . . . ; xpi in Ck�1 is modeled by the directed edges
fromvertex vðxiÞ to vertex vðxiþ1Þ, 1 � i < p.We refer to these
edgesas old edges (Fig. 4).Thepossible extensionof every track
to the new frame, Fk, is modeled by connecting the terminal
vertex (vertex with no forward correspondence in Ck�1) of
each track to every vertex in the vertex set Vk (i.e., set of
vertices corresponding to frameFk) by a directed edge. These
edges are referred to as extension edges. The possibility of
previous mismatches is represented by the directed edges
from each nonterminal vertex of every track to the vertices in
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Fig. 4. (a) Initial correspondences. (b) The extension digraph D. (c) A maximum path cover of extension graph. The correction edges are shown as
dotted lines, while the old edges are shown by bold lines. (Not all edges and vertices are shown.)



the set Vk. We call these edges, correction edges (the old edges,
extension edges, and correction edges are shown as bold,
normal, and dotted arrows, respectively, in Figs. 4b and 4c).
Formally, for everyvertexpair vðxÞ 2 Vi; vðyÞ 2 Vj, there is an
edge from vðxÞ to vðyÞ if either i < j < k and there is a
correspondence from x to y in Ck�1 or i < j ¼ k. The digraph
D obtained in this way is called an extension digraph (Fig. 4b).
Since all the backward correspondences except for the points
inXk havebeenestablished, all the edgeweights inD cannow
be computed, regardless of the type of gain function used.

Once the extension digraph is constructed,we again seek a
set of vertex disjoint paths (tracks) in D that maximizes the
total gain. Thus, the same algorithm as presented in Section 4
can be applied to the digraphD. A candidate solutionCk may
contain all three types of edges, i.e., old edges, correction
edges, and extension edges.While an extension edgedoesnot
change any correspondence in Ck�1, a correction edge e0 ¼
vðxÞvðwÞ always replaces some existing edge or old edge
e ¼ vðxÞvðyÞ. Suppose now that the point y has a forward
correspondence z in Ck (Figs. 4b and 4c). Since this
correspondence was obtained by assuming the correspon-
dence xy in Ck�1 and the correspondence xy is voided in Ck,
the correspondence yz and all such forward correspondences

must be removed from Ck and, if possible, be replaced with
new edges. These edges will be referred to as false hypotheses.
We define an edge to be a false hypothesis if it has a directed
path from an edge replaced by a correction edge. The edge yz
in Fig. 4c is a “false hypothesis.” The replacement of false
hypotheses with the new edges can be performed by the
recursive scheme of Fig. 5. We have empirically determined
that the nonrecursive heuristic of Fig. 6 also performs
reasonably well in most cases and is more efficient than the
recursive version (Section 7). After the false hypotheses are
removed and replaced, we obtain a new correspondence
setCk of all the points up to frame Fk. These correspondences
canbeextended toanynumberof framesbyaddingone frame
at a time in a similar fashion.

The initialization is done by first using the 2-frames
algorithm (bipartite graph matching) to obtain the corre-
spondences between the first two frames F1 and F2. These
correspondences are then extended for each new frame by
using the algorithm described above up to the kth frame. At
this stage, a backtracking is performed by applying the
same algorithm in the reverse direction, i.e., on frames
Fk; Fk�1; . . . ; F1, using the established correspondences.
This takes care of any incorrect correspondence that was
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Fig. 5. Recursive algorithm for replacing false hypotheses.

Fig. 6. Nonrecursive heuristic for replacing false hypotheses.



made when either no or less motion information was
available (i.e., first two frames) and is done just once for the
first k frames. Once the correspondence for k frames is
established, the correspondence is extended to each new
frame Fi by using digraph D constructed from the last
k frames Fi�kþ1; Fi�kþ2; . . . ; Fi. The complete algorithm for
the window of size k is presented in Fig. 7.

6 GAIN FUNCTIONS

In this section, we address the following question: Given a
partial track T ¼ hxi1

a1
; xi2

a2
; . . . ; xir

ar
i; 1� i1< i2 < . . . < ir and a

point xb
a in frame b; b > ir, what is the gain gðxij

aj ; x
b
aÞ

associated to assigning xb
a as a forward correspondence of

x
ij
aj for all j; 1 � j � r. Let x

ij
ajx

b be the predicted motion
vector for a point x

ij
aj (this vector is predicted bymaking some

assumption about the motion of point x
ij
aj , e.g., constant

velocity or constant acceleration). The gain gðxij
aj ; x

b
aÞ is

defined based on the match between x
ij
ajx

b and the candidate
motion vector x

ij
ajx

b
a. The simplest of these gain functions is

based on the distance between the predicted and observed
position of the point and is defined as follows:

g1ðxij
aj
; xb

aÞ ¼ 1�
kxij

ajx
b � x

ij
ajx

b
akpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Sp
x þ Sp

y
p
p : ð2Þ

Here, k:kp denotes the p-norm, whereas Sx and Sy are the
x and y dimensions of the image, respectively.

The criteria defined by g1ðxij
aj ; x

b
aÞ prefers the match which

is closest to the expected position of the point x
ij
aj . It reduces to

the nearest neighborhood criteria when no motion informa-

tion about point x
ij
aj is available. However, the function

ignores any information about the direction of motion and

may allow very nonsmooth trajectories.
Sethi and Jain [29] proposed the gain function (also used

in [35]) that prefers smooth changes in the magnitude and

direction of motion. A slightly modified version of this

function is as follows:

g2ðxij
aj ; x

b
aÞ ¼ � 1

2 þ
x
ij
aj
xb�xijaj x

b
a

2kxijaj xbkkx
ij
aj
xbak

� �
þ

ð1� �Þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kxijaj xbkkx

ij
aj
xbak

q
kxijaj xbkþkxijaj xbak

2
4

3
5; � 2 ½0; 1�:

ð3Þ

The function is the convex combination of two terms

called directional coherence and speed coherence, respectively.

The first term penalizes large deviations in the direction of

motion, while the second term prefers the match with less

change in the magnitude of velocity (acceleration, etc.). The

disadvantage of this scheme is its complete reliance on

motion information, which is why it requires initialization

of correspondence using some other criteria and does not

support points entering the scene. We therefore, utilizing

the advantages of both gain functions g1 and g2, define our
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Fig. 7. Complete algorithm for the Multiframe Correspondence Problem.



gain function to be the convex combination of g1 and the
directional coherence term of g2 as follows:

g3ðxijaj ; xb
aÞ ¼ � 1

2 þ
x
ij
aj
xb�xijaj x

b
a

2kxijaj xbkkx
ij
aj
xbak

� �
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ð1� �Þ 1� kxijaj x
b�x

ij
aj
xbakpffiffiffiffiffiffiffiffiffiffi

S2
xþS2

y

p
� �

; � 2 ½0; 1�:
ð4Þ

When no velocity information is available, the function g3
reduces to the nearest neighbor criteria. To satisfy the
constraint of (1), we add a small constant penalty � to the
gain function g3ðxijaj ; xb

aÞ whenever b > ij þ 1.

7 RESULTS

In this section, we present the results of the proposed
algorithm on both synthetic and real sequences. We use the
gain function g3 of (4) in all of our experiments with the
constant acceleration motion model, � ¼ 0:1 and � ¼ �10�3.
Unless otherwise specified, a slidingwindowof size 5 is used.
The procedure NonRecursiveFalseHypothesisReplacement() is
used instead of its recursive counterpart. The results are
comparedwith the self initializingversionof theGOAtracker
with the smooth motion model as defined in [35]. Since
Veenman et al. have shown experimentally [35] that, in most
situations, the GOA Tracker outperforms the algorithms in
[4], [25], [27], [29], a comparison against the GOA Tracker
implies a comparison against all these algorithms, which also
includesMHT.

7.1 Results on Synthetic Data

The synthetic sequences in this section are generated by the
data set generator called Point Set Motion Generator (PSMG)

[36]. The generator provides control over the size of image
space, number of points, number of frames, mean and
variance of initial velocity, mean and variance of change in
velocity, probability of occlusion,maximumabsence, etc. For
every experiment, we consider the following three scenarios
separately: 1) Points are not allowed to enter or exit the scene,
though they may be occluded or misdetected. 2) Points are
allowed to exit the scene but new points may not enter.
3) Points are allowed to enter and exit the scene.

Toanalyze theperformance of trackingand to compare the
results, we use track-based error, ET [36], defined as
ET ¼ 1� Tc

Tt
, where Tt is the total number of true tracks and

Tc is the number of completely correct tracks generated by the
tracker. Since the GOA-tracker does not allow the points to
enter or exit the scene, the output of GOA is only shown for
the first scenario. To analyze the noise handling capability of
the algorithms,we consider the scenariowhen thenewpoints
are generated in the middle of the sequence. We use a
modified track-based errorEc

T ¼ 1� Tc
c

T c
t
for both theGOAand

the proposed tracker, where Tc
t is the total number of true

tracks of points that were visible in both the first and last
frame and Tc

c is the number of completely correct such tracks
generated by the tracker. The points that enter or exit the
image in these sequences are then considered as noise, while
only the points that are visible in both the first and last frames
are considered as valid tracks. The errors (and running times)
reported in this section are estimated by averaging the errors

(running times) of 100 sequences, where all the sequences are
generated by using the same parameters of the PSMG.

7.1.1 Effectiveness of the Proposed Initialization

Scheme

Our first experiment demonstrates the effectiveness of the
proposed initialization scheme (i.e., backtracking after the
first k frames). The experiments were run for varying
numbers of points with three different modes, 1) manual
initialization, 2) self-initialization by backtracking, and 3) no
initialization. The track errors are shown in Fig. 8. The
results show that the proposed initialization scheme is
almost as good as the manual initialization and improves
the results significantly as compared to no initialization.

7.1.2 Recursive versus Nonrecursive False Hypotheses

Replacement

The second experiment analyzes the trade off between the
use of recursive and nonrecursive routines for false hypoth-
eses replacement. First, we show the running times of the
algorithm with both recursive and nonrecursive schemes
(Fig. 9a). The running times are computed over sequences
generated by varying the number of points in the scene. Each
sequence consists of 100 frames and the running times are
reported for thewhole sequence. In Fig. 9b,we show the track
errors obtained by varying the probability of occlusion per
frame (of each point). The number of points in the scene is
kept constant over all these sequences. It can be seen that
there is no significant difference between the performance of
nonrecursive and recursive schemes in terms of track errors.
As expected, the nonrecursive scheme is more efficient than
the recursive one. For the rest of the experiments, we use the
nonrecursive routine for false hypotheses replacement.

7.1.3 Computational Efficiency

Thecomputational complexityof thealgorithmisdetermined
by the number of times the maximummatching of a graph is
computed,which isanO n2:5ð Þoperationforagraphofordern.
In the nonrecursive scheme with a sliding window of size k,
this is done at most k times. Hence, the computational
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Fig. 8. Track errors with different modes of initialization. The upper curve
is obtained by no initialization, while the middle and lower curves are the
errors of backtracking and manual initialization, respectively.



complexity of the proposed algorithm is bounded byO n2:5ð Þ,
where n is the number of points in the scene. We now verify

the above claimbyempirical analysis of the running times.As

mentioned above, the computational complexity of the

algorithm depends on two parameters, 1) the number of

points in the scene and 2) the size of the sliding window.

Fig. 10a shows the running times of the proposed algorithm

with respect to both of these parameters. Fig. 10b shows the

plots of running times with sliding windows of size 10 and

20 frames, respectively. It also shows a plot of O n2:5ð Þ (with

proportionality constant 0.005), where n is the number of

points in the scene. From the graph, it is evident that the

running times are polynomial and are bounded by Oðn2:5Þ.
The proportionality constant is much lower for smaller sizes

of the sliding window. Typically, the algorithm runs at

17 frames per second for 50 points with a sliding window of

size 10 on a 2.4GHz Intel Pentium 4 CPU.

7.1.4 Size of the Sliding Window

Recall from Section 4 that the sliding window of size more

than k� 1 is required to handle the occlusion lasting for

k� 2 frames. Here, we validate this claim and also show that
this size is sufficient even when the probability of occlusion
(ormisdetection) of eachpoint in the sequence is very high. In
Figs. 11a and 11b, we show the track-based errors ET for the
sequences of varying occlusion probabilities over different
sizes of sliding windows. The maximum absence of an
occluded point in the sequences of Figs. 11a and 11b is
bounded by three frames and six frames, respectively. Notice
that the track-based errors do not change significantly by
increasing the size of slidingwindowbeyond five frames and
eight frames, respectively. Fig. 12 shows the same effect for
the sequences with fixed occlusion probability and different
number of points in the scene.

For the rest of the experiments, we fix the maximum
absence of an occluding point to three frames and the
window size to five frames.

7.1.5 Experiments with Variable Point Density, Velocity,

and Occlusion Probability

In the next experiment, we analyze the performance of the
proposed multiframe algorithm (MF) with respect to
the point density. The experiments were performed by
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Fig. 10. Running times in seconds for 100-frame sequences with varying number of points per frames and sizes of the sliding window.

Fig. 9. The trade off between recursive and nonrecursive schemes for false hypotheses replacement: (a) Running times over varying number of
points per frame. (b) Track-based errors ET over varying occlusion probability.



increasing the number of point tracks in a fixed image
space. In Fig. 13a, the track-based errors, ET , are shown for
applying MF on three different types of sequences as
described above. In addition, the track-based errors of the
GOA tracker are also shown on the sequences where points
are not allowed to enter or exit the scene. In Fig. 13b, we
show the effect of noise on both trackers by using the
modified track-based error, Ec

T , and allowing the points to
enter and exit the scene.

Similar experiments were performed on occlusion hand-

ling (Fig. 14) and variable velocity performance (Fig. 15),

where the probability of occlusion was varied in the former

and the mean velocity was increased in the latter.
These results show that the proposed algorithm per-

forms comparably to the GOA tracker when the points are

not allowed to enter or exit the scene. However, the

performance of the proposed tracker is unaltered when

the points are allowed to exit the scene or when additional

noise is introduced. The proposed tracker also performs

reasonably well on sequences where points are allowed to

enter and exit the scene simultaneously given the higher
degree of ambiguity in such sequences. In addition, the
results clearly show that the proposed algorithm outper-
forms the GOA tracker in the presence of noise.

7.1.6 Experiments with Noise Density

To further analyze the noise handling capability of the
proposed algorithm, we add random noise (up to 50 percent
of the number of points in the scene) at every frame of the
sequence. That is, if there are 50 points in the scene, then up to
25 random points per frame are added to the sequence. The
tracking errors for different point and noise densities are
shown in Fig. 16a. It can be seen from the results that, even
with a large number of noisy points, more than 90 percent of
the tracks are recovered correctly in most instances.

The presence of noise along with the high probability of
occlusion presents a formidable challenge for any point
correspondence algorithm. With a high probability of occlu-
sion, any given point is very likely to bemissing from a given
frame (although we assume that, unless the point has left the
scene, it is expected to reappear for at least one framewithin a
bounded interval of time, after which it may again disappear
with the same probability as before). In this case, if the noise
density is high, then every frame is likely to havemanymore
spurious measurements than the valid points. The perfor-
mance of the proposed algorithm with varying occlusion
probabilities and noise density is presented in Fig. 16b.

7.2 Results on Real Sequences

Next, we show the results of the proposed algorithm on real
data sets. Our first set of experiments is based on the standard
sequences in the point correspondence literature. In the first
experiment, we use the sequence from [35], where 80 black
seeds are placed on a rotating dish. This is an interesting
sequence because of the high variance of speed among the
points (from circumference to center of circle). Also note that
the proposed algorithm does not make use of the synchro-
nousmotionof thepoints. Fig. 17 shows that all of the 80 seeds
were correctly tracked over the sequence (this claim is also
verified from the ground truth).
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Fig. 12. Performance with respect to the size of sliding window: Track
based errorET for different number of points per frame with 0.4 occlusion
probability and maximum absence bounded by four frames.

Fig. 11. Performance with respect to the size of sliding window: Track-based error ET for different occlusion probabilities when the maximum
absence of a point is bounded by (a) three frames and (b) six frames.
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Fig. 13. Variable point density performance: (a)ET of proposedMultiframe algorithm (MF) and GOA algorithm. The lower three curves are the errors of
GOA (with no entry and exit) and MF (with no entry and exit, and no exit), while the upper curve is the error of MF (with both entry and exit). (b) Effect of
noise: Ec

T , when points are allowed to enter and exit the scene. The upper curve is the error of GOA and the lower curve is the error of MF.

Fig. 14. Occlusion handling: (a) ET of proposed Multiframe algorithm (MF) and GOA algorithm. The lowermost curve is MF (with no entry), the middle
two overlapping curves are GOA and MF (with no entry and exit), while the upper curve is MF (with entry and exit). (b) Effect of noise: Ec

T .

Fig. 15. Variable velocity performance: (a) ET of proposed Multiframe algorithm (MF) and GOA algorithm. The curves show the same pattern as in
the previous two experiments. (b) Effect of noise: Ec

T .



In the next two standard real sequences, we used the KLT

method [31] to only detect the feature points, then used the

proposed algorithm to establish correspondences. The rotat-

ing golf ball sequence in Fig. 18a contains roughly 180 feature

points per frame (which also enter and exit the scene in

addition to noisy detection by KLT method) and the house

sequence (where the camera is rotating about the house) in

Fig. 18b contains about 100 feature points per frame. The

visual analysis of both outputs show that most of the tracks

were perfectly tracked throughout the sequence.
Our second set of experiments is based on natural

sequences with a large number of feature points and high
occlusion scenarios. The moving objects are detected by
background subtraction and their centroids are used as the
feature points for tracking. Our first example in this set is
from particle tracking (Fig. 19a). It is a 10 frame sequence
showing particles in a cylindrical reservoir containing
liquid and a tubular heater which drives counterclockwise
rotating convection cells. There are more than 100 particles
in each frame (some of them are almost stationary, while
others appear for one or two frames only). In Fig. 19b, we

show some of the tracks of a flock of more than 150 fish in
the sea (Fig. 20).1 The next two examples (Fig. 21) show the
tracking results for bird flocks (Figs. 22 and 23). The birds
are at different altitudes and there are frequent occlusions.
Some discontinuities in tracks at the corners of images
(right edge of Fig. 21b) can be observed which are largely
due to simultaneous entrances and exits of points at about
the same location in the image. Other than that, the objects
are tracked reasonably well throughout the sequences. The
visual analysis of the results also provides a general feel of
the collective motion, although the proposed algorithm
does not model the group motion or neighborhood
coherency in the scene and each point is tracked indepen-
dently of the other points.

8 CONCLUSION

We have presented a framework for the efficient and robust
solution of the multiframe point correspondence problem.
The proposed framework provides an optimization algo-
rithm that optimizes the gain (cost) function over multiple
frames and it may be used for a large variety of motion
models and cost functions (including statistical-based
functions) that satisfy the constraints as posed therein.
The presented algorithm is applicable in more general
settings and is shown to perform well through extensive
experimentation using synthetic data. Results on real data
also support the experimental evaluation.
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Fig. 16. Performance with respect to random noise density: Track-based errors (ET ) for (a) for varying point densities and (b) for varying occlusion
probabilities.

Fig. 17. Tracks generated for rotating dish sequence.
1. The complete sequences, along with the tracking results, can be

accessed at http://www.cs.ucf.edu/~vision/projects/multiframetracking.
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Fig. 18. Tracks generated for (a) rotating ball sequence, (b) house sequence.

Fig. 19. Frames tracks generated for (a) cylindrical reservoir sequence, (b) flock of fish.

Fig. 20. Frames from fish sequence (every sixth frame).

Fig. 21. Tracks generated for two sequences of bird flocks.
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