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Abstract—Accurate detection of moving objects is an important precursor to stable tracking or recognition. In this paper, we present

an object detection scheme that has three innovations over existing approaches. First, the model of the intensities of image pixels as

independent random variables is challenged and it is asserted that useful correlation exists in intensities of spatially proximal pixels.

This correlation is exploited to sustain high levels of detection accuracy in the presence of dynamic backgrounds. By using a

nonparametric density estimation method over a joint domain-range representation of image pixels, multimodal spatial uncertainties

and complex dependencies between the domain (location) and range (color) are directly modeled. We propose a model of the

background as a single probability density. Second, temporal persistence is proposed as a detection criterion. Unlike previous

approaches to object detection which detect objects by building adaptive models of the background, the foreground is modeled to

augment the detection of objects (without explicit tracking) since objects detected in the preceding frame contain substantial evidence

for detection in the current frame. Finally, the background and foreground models are used competitively in a MAP-MRF decision

framework, stressing spatial context as a condition of detecting interesting objects and the posterior function is maximized efficiently by

finding the minimum cut of a capacitated graph. Experimental validation of the proposed method is performed and presented on a

diverse set of dynamic scenes.

Index Terms—Object detection, kernel density estimation, joint domain range, MAP-MRF estimation.
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1 INTRODUCTION

AUTOMATED surveillance systems typically use stationary

sensors to monitor an environment of interest. The

assumption that the sensor remains stationary between the

incidence of each video frame allows the use of statistical

background modeling techniques for the detection of

moving objects such as [39], [33], and [7]. Since “interesting”

objects in a scene are usually defined to be moving ones,
such object detection provides a reliable foundation for

other surveillance tasks like tracking ([14], [16], [5]) and is

often also an important prerequisite for action or object

recognition. However, the assumption of a stationary sensor

does not necessarily imply a stationary background. Exam-

ples of “nonstationary” background motion abound in the

real world, including periodic motions, such as a ceiling

fans, pendulums, or escalators, and dynamic textures, such
as fountains, swaying trees, or ocean ripples (shown in

Fig. 1). Furthermore, the assumption that the sensor

remains stationary is often nominally violated by common

phenomena such as wind or ground vibrations and to a

larger degree by (stationary) hand-held cameras. If natural

scenes are to be modeled, it is essential that object detection

algorithms operate reliably in such circumstances. Back-

ground modeling techniques have also been used for
foreground detection in pan-tilt-zoom cameras [37]. Since

the focal point does not change when a camera pans or tilts,

planar-projective motion compensation can be performed to

create a background mosaic model. Often, however, due to

independently moving objects motion compensation may

not be exact, and background modeling approaches that do
not take such nominal misalignment into account usually

perform poorly. Thus, a principal proposition in this work

is that modeling spatial uncertainties is important for real

world deployment, and we provide an intuitive and novel

representation of the scene background that consistently

yields high detection accuracy.

In addition, we propose a new constraint for object

detection and demonstrate significant improvements in

detection. The central criterion that is traditionally exploited

for detecting moving objects is background difference, some

examples being [17], [39], [26], and [33]. When an object

enters the field of view it partially occludes the background

and can be detected through background differencing

approaches if its appearance differs from the portion of

the background it occludes. Sometimes, however, during

the course of an object’s journey across the field of view,

some colors may be similar to those of the background and,

in such cases, detection using background differencing

approaches fail. To address this limitation and to improve

detection in general, a new criterion called temporal

persistence is proposed here and exploited in conjunction

with background difference for accurate detection. True

foreground objects, as opposed to spurious noise, tend to

maintain consistent colors and remain in the same spatial

area (i.e., frame to frame color transformation and motion

are small). Thus, foreground information from the frame

incident at time t contains substantial evidence for the
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detection of foreground objects at time tþ 1. In this paper,

this fact is exploited by maintaining both background and

foreground models to be used competitively for object

detection in stationary cameras, without explicit tracking.

Finally, once pixel-wise probabilities are obtained for

belonging to the background, decisions are usually made by

direct thresholding. Instead, we assert that spatial context is

an important constraint when making decisions about a

pixel label, i.e., a pixel’s label is not independent of the

pixel’s neighborhood labels (this can be justified on

Bayesian grounds using Markov Random Fields [11],

[23]). We introduce a MAP-MRF framework, that competi-

tively uses both the background and the foreground models

to make decisions based on spatial context. We demonstrate

that the maximum a posteriori solution can be efficiently

computed by finding the minimum cut of a capacitated

graph, to make an optimal inference based on neighbor-

hood information at each pixel.
The rest of the paper is organized as follows: Section 1.1

reviews related work in the field and discusses the
proposed approach in the context of previous work. A
description of the proposed approach is presented in
Section 1.2. In Section 2, a discussion on modeling spatial
uncertainty (Section 2.1) and on utilizing the foreground
model for object detection (Section 2.2) and a description of
the overall MAP-MRF framework is included (Section 2.3).
In Section 2.3, we provide an algorithmic description of the
proposed approach as well. Qualitative and quantitative
experimental results are shown in Section 3, followed by
conclusions in Section 4.

1.1 Previous Work

Since the late 1970s, differencing of adjacent frames in a
video sequence has been used for object detection in
stationary cameras, [17]. However, it was realized that
straightforward background subtraction was unsuited to
surveillance of real-world situations and statistical techni-
ques were introduced to model the uncertainties of back-
ground pixel colors. In the context of this work, these
background modeling methods can be classified into two
categories: 1) Methods that employ local (pixel-wise) models
of intensity and 2) Methods that have regional models of
intensity.

Most background modeling approaches tend to fall into

the first category of pixel-wise models. Early approaches

operated on the premise that the color of a pixel over time

in a static scene could be modeled by a single Gaussian

distribution, Nð�;�Þ. In their seminal work, Wren et al. [39]

modeled the color of each pixel, Iðx; yÞ, with a single three-

dimensional Gaussian, Iðx; yÞ � Nð�ðx; yÞ;�ðx; yÞÞ. The

mean �ðx; yÞ and the covariance �ðx; yÞ, were learned from

color observations in consecutive frames. Once the pixel-

wise background model was derived, the likelihood of each

incident pixel color could be computed and labeled as

belonging to the background or not. Similar approaches that

used Kalman Filtering for updating were proposed in [20]

and [21]. A robust detection algorithm was also proposed in

[14]. While these methods were among the first to

principally model the uncertainty of each pixel color, it

was quickly found that the single Gaussian pdf was ill-

suited to most outdoor situations since repetitive object

motion, shadows or reflectance often caused multiple pixel

colors to belong to the background at each pixel. To address

some of these issues, Friedman and Russell, and indepen-

dently Stauffer and Grimson, [9], [33] proposed modeling

each pixel intensity as a mixture of Gaussians, instead, to

account for the multimodality of the “underlying” like-

lihood function of the background color. An incident pixel

was compared to every Gaussian density in the pixel’s

model and, if a match (defined by threshold) was found, the

mean and variance of the matched Gaussian density was

updated, or otherwise a new Gaussian density with the

mean equal to the current pixel color and some initial

variance was introduced into the mixture. Thus, each pixel

was classified depending on whether the matched distribu-

tion represented the background process. While the use of

Gaussian mixture models was tested extensively, it did not

explicitly model the spatial dependencies of neighboring pixel

colors that may be caused by a variety of real nominal

motion. Since most of these phenomenon are “periodic,” the

presence of multiple models describing each pixel mitigates

this effect somewhat by allowing a mode for each

periodically observed pixel intensity, however performance

notably deteriorates since dynamic textures usually do not

repeat exactly (see experiments in Section 3). Another
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Fig. 1. Various sources of dynamic behavior. The flow vectors represent the motion in the scene. (a) The lake-side water ripples and shimmers.

(b) The fountain, like the lake-side water, is a temporal texture and does not have exactly repeating motion. (c) A strong breeze can cause nominal

motion (camera jitter) of up to 25 pixels between consecutive frames.



limitation of this approach is the need to specify the number

of Gaussians (models), for the E-M algorithm or the

K-means approximation. Still, the mixture of Gaussian

approach has been widely adopted, becoming something

of a standard in background subtraction, as well as a basis

for other approaches ([18], [15]).
Methods that address the uncertainty of spatial location

using local models have also been proposed. In [7],
El Gammal et al. proposed nonparametric estimation
methods for per-pixel background modeling. Kernel den-
sity estimation (KDE) was used to establish membership
and, since KDE is a data-driven process, multiple modes in
the intensity of the background were also handled. They
addressed the issue of nominally moving cameras with a
local search for the best match for each incident pixel in
neighboring models. Ren et al. as well explicitly addressed
the issue of background subtraction in a nonstationary
scene by introducing the concept of a spatial distribution of
Gaussians (SDG) [29]. After affine motion compensation, a
MAP decision criteria is used to label a pixel based on its
intensity and spatial membership probabilities (both mod-
eled as Gaussian pdfs). There are two primary points of
interest in [29]. First, the authors modeled the spatial
position as a single Gaussian, negating the possibility of
bimodal or multimodal spatial probabilities, i.e., that a
certain background element model may be expected to
occur in more than one position. Although, not within the
scope of their problem definition, this is, in fact, a definitive
feature of a temporal texture. Analogous to the need for a
mixture model to describe intensity distributions, unimodal
distributions are limited in their ability to model spatial
uncertainty. “Nonstationary” backgrounds have most re-
cently been addressed by Pless et al. [28] and Mittal and
Paragios [24]. Pless et al. proposed several pixel-wise
models based on the distributions of the image intensities
and spatio-temporal derivatives. Mittal et al. proposed an
adaptive kernel density estimation scheme with a joint
pixel-wise model of color (for a normalized color space) and
optical flow at each pixel. Other notable pixel-wise
detection schemes include [34], where topology free HMMs
are described and several state splitting criteria are
compared in context of background modeling, and [30],
where a (practically) nonadaptive three-state HMM is used
to model the background.

The second category of methods use region models of
the background. In [35], Toyama et al. proposed a three
tiered algorithm that used region based (spatial) scene
information in addition to per-pixel background model:
region and frame-level information served to verify pixel-
level inferences. Another global method proposed by Oliver
et al. [26] used eigenspace decomposition to detect objects.
For k input frames of size N �M a matrix B of size k�
ðNMÞ was formed by row-major vectorization of each
frame and eigenvalue decomposition was applied to
C ¼ ðB� �ÞTðB� �Þ. The background was modeled by
the eigenvectors corresponding to the � largest eigenvalues,
ui, that encompass possible illuminations in the field of
view (FOV). Thus, this approach is less sensitive to
illumination. The foreground objects are detected by
projecting the current image in the eigenspace and finding
the difference between the reconstructed and actual images.

The most recent region-based approaches are by Monnet
et al. [25] and Zhong and Sclaroff [40]. Monnet and Scarloff
and Zhong et al. simultaneously proposed models of image
regions as an autoregressive moving average (ARMA)
process, which is used to incrementally learn (using PCA)
and then predict motion patterns in the scene.

The foremost assumption made in background modeling
is the assumption of a stationary scene. However, this
assumption is violated fairly regularly, through common
real-world phenomenon like swaying trees, water ripples,
fountains, escalators, etc. The local search proposed in [7],
the SDG of [29], the time series models of [25], [40], and
KDEs over color and optical flow in [24] are several
formulations proposed for detection nonstationary back-
grounds. While each method demonstrated degrees of
success, the issue of spatial dependencies has not been
addressed in a principled manner. In context of earlier work
(in particular, [24]), our approach falls under the category of
methods that employ regional models of the background.
We assert that useful correlation exists in the intensities of
spatially proximal pixels and this correlation can be used to
allow high levels of detection accuracy in the presence of
general nonstationary phenomenon.

1.2 Proposed Formulation

The proposed work has three novel contributions. First, the
method proposed here provides a principled means of
modeling the spatial dependencies of observed intensities.
The model of image pixels as independent random
variables, an assumption almost ubiquitous in background
subtraction methods, is challenged and it is further
asserted that there exists useful structure in the spatial
proximity of pixels. This structure is exploited to sustain
high levels of detection accuracy in the presence of nominal
camera motion and dynamic textures. By using nonpara-
metric density estimation methods over a joint domain-
range representation, the background data is modeled as a
single distribution and multimodal spatial uncertainties
can be directly handled. Second, unlike previous ap-
proaches, the foreground is explicitly modeled to augment
the detection of objects without using tracking information.
The criterion of temporal persistence is proposed for
simultaneous use with the conventional criterion of back-
ground difference. Third, instead of directly applying a
threshold to membership probabilities, which implicitly
assumes independence of labels, we propose a MAP-MRF
framework that competitively uses the foreground and
background models for object detection, while enforcing
spatial context in the process.

2 OBJECT DETECTION

In this section, we describe the novel representation of
the background, the use of temporal persistence to pose
object detection as a genuine binary classification pro-
blem, and the overall MAP-MRF decision framework. For
an image of size M �N , let S discretely and regularly
index the image lattice, S ¼ fði; jÞj1 � i � N; 1 � j �Mg:
In context of object detection in a stationary camera, the
objective is to assign a binary label from the set L ¼
fbackground; foregroundg to each of the sites in S.
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2.1 Joint Domain-Range Background Model

If the primary source of spatial uncertainty of a pixel is

image misalignment, a Gaussian density would be an

adequate model since the corresponding point in the

subsequent frame is equally likely to lie in any direction.

However, in the presence of dynamic textures, cyclic

motion, and nonstationary backgrounds in general, the

“correct” model of spatial uncertainty often has an arbitrary

shape and may be bimodal or multimodal, but structure

exists because by definition, the motion follows a certain

repetitive pattern. Such arbitrarily structured data can be

best analyzed using nonparametric methods since these

methods make no underlying assumptions on the shape of

the density. Nonparametric estimation methods operate on

the principle that dense regions in a given feature space,

populated by feature points from a class, correspond to the

modes of the “true” pdf. In this work, analysis is performed

on a feature space where the p pixels are represented by

xi 2 IR5, i ¼ 1; 2; . . . p. The feature vector, x, is a joint

domain-range representation, where the space of the image

lattice is the domain, ðx; yÞ and some color space, for instance

ðr; g; bÞ, is the range [4]. Using this representation allows a

single model of the entire background, fR;G;B;X;Y ðr; g; b; x; yÞ,
rather than a collection of pixel-wise models. Pixel-wise

models ignore the dependencies between proximal pixels

and it is asserted here that these dependencies are

important. The joint representation provides a direct means

to model and exploit this dependency.

In order to build a background model, consider the

situation at time t, before which all pixels, represented in

5-space, form the set  b ¼ fy1;y2 . . .yng of the background.

Given this sample set, at the observation of the frame at

time t, the probability of each pixel-vector belonging to the

background can be computed using the kernel density

estimator ([27], [31]). The kernel density estimator is a

nonparametric estimator and under appropriate conditions

the estimate it produces is a valid probability itself. Thus, to

find the probability that a candidate point, x, belongs to the

background,  b, an estimate can be computed,

P ðxj bÞ ¼ n�1
Xn
i¼1

’H

�
x� yi

�
; ð1Þ

where H is a symmetric positive definite d� d bandwidth
matrix, and

’HðxÞ ¼ jHj�1=2’ðH�1=2xÞ; ð2Þ

where ’ is a d-variate kernel function usually satisfyingR
’ðxÞdx¼1, ’ðxÞ¼ ’ð�xÞ,

R
x’ðxÞdx ¼ 0,

R
xxT’ðxÞdx ¼

Id and is also usually compactly supported. The d-variate
Gaussian density is a common choice as the kernel ’,

’
ðN Þ
H ðxÞ ¼ jHj�1=2ð2�Þ�d=2 exp

�
� 1

2
xTH�1x

�
: ð3Þ

It is stressed here, that using a Gaussian kernel does not

make any assumption on the scatter of data in the feature

space. The kernel function only defines the effective region

of influence of each data point while computing the final

probability estimate. Any function that satisfies the con-

straints specified after (2), i.e., a valid pdf, symmetric, zero-

mean, with identity covariance, can be used as a kernel.

There are other functions that are commonly used, some

popular alternatives to the Gaussian kernel are the

Epanechnikov kernel, the Triangular kernel, the Biweight

kernel, and the Uniform kernel, each with their merits and

demerits (see [38] for more details).
Within the joint domain-range feature space, the kernel

density estimator explicitly models spatial dependencies,

without running into difficulties of parametric modeling.

Furthermore, since it is well known that the rgb axes are

correlated, it is worth noting that kernel density estimation

also accounts for this correlation. The result is a single

model of the background.
Last, in order to ensure that the algorithm remains

adaptive to slower changes (such as illumination change or

relocation) a sliding window of length �b frames is

maintained. This parameter corresponds to the learning

rate of the system.

2.1.1 Bandwidth Estimation

Asymptotically, the selected bandwidth H does not affect

the kernel density estimate but in practice sample sizes are

limited. Too small a choice of H and the estimate begins to

show spurious features, too large a choice of H leads to an

over-smoothed estimate, losing important structural fea-

tures like multimodality. In general, rules for choosing

bandwidths are based on balancing bias and variance

globally. Theoretically, the ideal or optimal H can be found

by minimizing the mean-squared error,

MSEff̂fHðxÞg ¼ Ef½f̂fHðxÞ � fHðxÞ�2g; ð4Þ

where f̂f is the estimated density and f is the true density.

Evidently, the optimal value of H is data dependent since

the MSE value depends on x. However, in practice, one

does not have access to the true density function which is

required to estimate the optimal bandwidth. Instead, a

fairly large number of heuristic approaches have been

proposed for finding H, a survey is provided in [36].
Adaptive estimators have been shown to considerably

outperform (in terms of the mean squared error) the fixed

bandwidth estimator, particularly in higher dimensional

spaces [32]. In general, two formulations of adaptive or

variable bandwidth estimators have been considered [19].

The first varies the bandwidth with the estimation point

and is called the balloon estimator given by

fðxÞ ¼ 1

n

Xn
i¼1

’HðxÞðx� xiÞÞ; ð5Þ

where HðxÞ is the bandwidth matrix at x. The second

approach, called the sample-point estimator, varies the

bandwidth matrix depending on the sample point

fðxÞ ¼ 1

n

Xn
i¼1

’HðxiÞðx� xiÞÞ; ð6Þ
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where HðxiÞ is the bandwidth matrix at xi. However,

developing variable bandwidth schemes for kernel density

estimation is still research in progress, both in terms of

theoretical understanding and in terms of practical

algorithms [32].

In the given application, the sample size is large, and

although it populates a five-dimensional feature space, the

estimatewas found to be reasonably robust to the selection of

bandwidth. Furthermore, choosing an optimal bandwidth in

the MSE sense is usually highly computationally expensive.

Thus, the balance between accuracy required (for matting,

object recognition, or action recognition) and computational

speed (for real-time surveillance systems) is application

specific. To reduce the computational load, the Binned kernel

density estimator provides a practical means of dramatically

increasing computational speeds while closely approximat-

ing the kernel density estimate of (1) ([38],AppendixD).With

appropriate binning rules and kernel functions the accuracy

of the the Binned KDE is shown to approximate the kernel

density estimate in [13]. Binned versions of the adaptive

kernel density estimate have also been provided in [32]. To

further reduce computation, the bandwidth matrix H is

usually either assumed to be of the form H ¼ h2I or

H ¼ diagðh21; h22; . . .h2dÞ. Thus, rather than selecting a fully

parameterized bandwidth matrix, only two parameters can

be defined, one for the variance in the spatial dimensions

ðx; yÞ and and one for the color channels, reducing computa-

tional load.

2.2 Modeling the Foreground

The intensity difference of interesting objects from the

background has been, by far, the most widely used criterion

for object detection. In this paper, temporal persistence is

proposed as a property of real foreground objects, i.e.,

interesting objects tend to remain in the same spatial vicinity and

tend to maintain consistent colors from frame to frame. The joint

representation used here allows competitive classification

between the foreground and background. To that end,

models for both the background and the foreground are

maintained. An appealing feature of this representation is

that the foreground model can be constructed in a

consistent fashion with the background model: a joint

domain-range nonparametric density  f ¼ fz1; z2 . . . zmg.
Just as there was a learning rate parameter �b for the

background model, a parameter �f is defined for the
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Fig. 2. Foreground modeling. Using kernel density estimates on a model built from recent frames, the foreground can be detected in subsequent
frames using the property of temporal persistence, (a) Current frame and (b) theX;Y -marginal, fX;Y ðx; yÞ. High membership probabilities are seen in
regions where foreground in the current frame matches the recently detected foreground. The nonparametric nature of the model allows the arbitrary
shape of the foreground to be captured accurately (c) the B;G-marginal, fB;Gðb; gÞ, (d) the B;R-marginal, fB;Rðb; rÞ, and (e) the G;R-marginal,
fG;Rðg; rÞ.



foreground frames. However, since the foreground changes

far more rapidly than the background, the learning rate of

the foreground is typically much higher than that of the

background.

At any time instant the probability of observing a

foreground pixel at any location ði; jÞ of any color is

uniform. Then, once a foreground region is been detected at

time t, there is an increased probability of observing a

foreground region at time tþ 1 in the same proximity with

a similar color distribution. Thus, foreground probability is

expressed as a mixture of a uniform function and the kernel

density function,

P ðxj fÞ ¼ �� þ ð1� �Þm�1
Xm
i¼1

’H

�
x� zi

�
; ð7Þ

where��1 is themixtureweight, and � is a randomvariable

with uniform probability, that is �R;G;B;X;Y ðr; g; b; x; yÞ ¼
1

R�G�B�M�N , where 0�r�R, 0�g�G, 0�b� B, 0 � x �M,

0 � y � N . This mixture is illustrated in Fig. 3. If an object is

detected in the preceding frame, the probability of observing

the colors of that object in the same proximity increases

according to the second term in (7). Therefore, as objects of

interest are detected (the detection method will be explained

presently) all pixels that are classified as “interesting” are

used to update the foreground model  f . In this way,

simultaneousmodels aremaintained of both the background

and the foreground, which are then used competitively to

estimate interesting regions. Finally, to allow objects to

become part of the background (e.g., a car having been

parked or new construction in an environment), all pixels are

used to update b. Fig. 2 shows plots of somemarginals of the

foreground model.

At this point, whether a pixel vector x is “interesting” or

not can be competitively estimated using a simple likelihood

ratio classifier (or a Parzen Classifier since likelihoods are

computed using Parzen density estimates, [10]),

� ¼ � ln
P ðxj bÞ
P ðxj fÞ

¼ � ln
n�1

Pn
i¼1 ’H

�
x� yi

�
�� þ ð1� �Þm�1

Pm
i¼1 ’H

�
x� zi

� :
ð8Þ

Thus, the classifier � is,

�ðxÞ ¼ �1 if � ln P ðxj bÞ
P ðxj f Þ > 	

1 otherwise;

�

where 	 is a threshold which balances the trade-off between

sensitivity to change and robustness to noise. The utility in

using the foreground model for detection can be clearly

seen in Fig. 4. Fig. 4e shows the likelihood values based only

on the background model and Fig. 4f shows the likelihood

ratio based on both the foreground and the background

models. In both histograms, two processes can be roughly

discerned, a major one corresponding to the background

pixels and a minor one corresponding to the foreground

pixels. The variance between the clusters increases with the

use of the foreground model. Visually, the areas corre-

sponding to the tires of the cars are positively affected, in

particular. The final detection for this frame is shown in

Fig. 8c. Evidently, the higher the likelihood of belonging to

the foreground, the lower the overall likelihood ratio.
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Fig. 3. Foreground likelihood function. The foreground likelihood

estimate is a mixture of the kernel density estimate and a uniform

likelihood across the five-space of features. This figure shows a

conceptualization as a 1D function.

Fig. 4. Improvement in discrimination using temporal persistence. Whiter
values correspond to higher likelihoods of foreground membership.
(a) Video Frame 410 of the Nominal Motion Sequence (b) Log-
Likelihood Ratio values obtained using (8). (c) Foreground likelihood
map. (d) Background negative log-likelihood map. (e) Histogrammed
negative log-likelihood values for background membership. The dotted
line represents the “natural” threshold for the background likelihood, i.e.,
logð�Þ. (f) Histogrammed log-likelihood ratio values. Clearly, the variance
between clusters is decidedly enhanced. The dotted line represents the
“natural” threshold for the log-likelihood ratio, i.e., zero.



However, as is described next, instead of using only

likelihoods, prior information of neighborhood spatial

context is enforced in a MAP-MRF framework. This

removes the need to specify the arbitrary parameter 	.

2.3 Spatial Context: Estimation Using a MAP-MRF
Framework

The inherent spatial coherency of objects in the real world is

often applied in a postprocessing step, in the form of

morphological operators like erosion and dilation, by using

a median filter or by neglecting connected components

containing only a few pixels, [33]. Furthermore, directly

applying a threshold to membership probabilities implies

conditional independence of labels, i.e., P ð‘ij‘jÞ ¼ P ð‘iÞ,
where i 6¼ j, and ‘i is the label of pixel i. We assert that such

conditional independence rarely exists between proximal

sites. Instead of applying such ad hoc heuristics, Markov

Random Fields provide a mathematical foundation to make

a global inference using local information. While in some

instances the morphological operators may do as well as the

MRF for removing residual mis-detections at a reduced

computational cost, there are two central reasons for using

the MRF:

1. By selecting an edge-preserving MRF, the resulting
smoothing will respect the object boundaries.

2. As will be seen, the formulation of the problem
using the MRF introduces regularity into the final
energy function that allows for the optimal partition

of the frame (through computation of the minimum
cut), without the need to prespecify the parameter 	.

3. The MRF prior is precisely the constraint of spatial
context we wish to impose on L.

For the MRF, the set of neighbors, N , is defined as the set of

sites within a radius r 2 IR from site i ¼ ði; jÞ,

N i ¼ fu 2 Sjdistanceði;uÞ � r; i 6¼ u; ð9Þ

where distanceða;bÞdenotes the Euclidean distance between

the pixel locations a and b. The four-neighborhood (used in

this paper) and eight-neighborhood cliques are two com-

monly used neighborhoods. The pixels x̂x ¼ fx1;x2; . . .xpg
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Fig. 5. Three possible detection strategies. (a) Detection by thresholding using only the background model of (1). Noise can cause several spurious
detections. (b) Detection by thresholding the Likelihood Ratio of (8). Since some spurious detections do not persist in time, false positives are
reduced using the foreground model. (c) Detection using MAP-MRF estimation, 13. All spurious detections are removed and false negative within the
detected object are also removed as a result of their spatial context.

Fig. 6. A four-neighborhood system. Each pixel location corresponds to a node in the graph, connected by a directed edge to the source and the sink,
and by an undirected edge to it’s four neighbors. For purposes of clarity the edges between node 3 and nodes 5 and 1 have been omitted in (b).

Fig. 7. Object Detection algorithm.



are conditionally independent given L, with conditional

density functions fðxij‘iÞ. Thus, since eachxi is dependant on

L only through ‘i, the likelihood function may be written as,

lðx̂xjLÞ ¼
Yp
i¼1

fðxij‘iÞ ¼
Yp
i¼1

fðxij fÞ‘i fðxij bÞ1�‘i : ð10Þ

Spatial context is enforced in the decision through a

pairwise interaction MRF prior. We use the Ising Model

for its discontinuity preserving properties,

pðLÞ / exp
�Xp

i¼1

Xp
j¼1



�
‘i‘j þ ð1� ‘iÞð1� ‘jÞ

��
; ð11Þ

where 
 is a positive constant and i 6¼ j are neighbors. By

Bayes Law, the posterior, pðLjx̂xÞ, is then equivalent to

pðLjx̂xÞ ¼ pðx̂xjLÞpðLÞ
pðx̂xÞ

¼

�Qp
i¼1 fðxij fÞ

‘ifðxij bÞ1�‘i
�
pðLÞ

pðx̂xÞ :

ð12Þ
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Fig. 8. Background Subtraction in a nominally moving camera (motion is an average of 12 pixels). The top row are the original images, the second

row are the results obtained by using a five-component, Mixture of Gaussians method, and the third row results obtained by the proposed method.

The fourth row is the masked original image. The fifth row is the manual segmentation. Morphological operators were not used in the results.



Ignoring pðx̂xÞ and other constant terms, the log-posterior,
ln pðLjx̂xÞ, is then equivalent to,

LðLjx̂xÞ ¼
Xp
i¼1

ln

 
fðxij fÞ
fðxij bÞ

!
‘i

þ
Xp
i¼1

Xp
j¼1



�
‘i‘j þ ð1� ‘iÞð1� ‘jÞ

�
:

ð13Þ

The MAP estimate is the binary image that maximizes L
and since there are 2NM possible configurations of L an
exhaustive search is usually infeasible. In fact, it is known
that minimizing discontinuity-preserving energy functions
in general is NP-Hard, [2]. Although, various strategies
have been proposed to minimize such functions, e.g.,
Iterated Condition Modes [1] or Simulated Annealing [11],
the solutions are usually computationally expensive to
obtain and of poor quality. Fortunately, since L belongs to
the F 2 class of energy functions, defined in [22] as a sum of
function of up to two binary variables at a time,

Eðx1; . . .xnÞ ¼
X
i

EiðxiÞ þ
X
i;j

Eði;jÞðxi; xjÞ; ð14Þ

and, since it satisfies the regularity condition of the so-called

F 2 theorem, efficient algorithms exist for the optimization

of L by finding the minimum cut of a capacitated graph,

[12], [22], described next. We assert that such conditional

independence rarely exists between proximal sites. Instead

of applying such ad hoc heuristics, Markov Random Fields

provide a mathematical foundation to make a global

inference using local information (see Fig. 5).

To maximize the energy function (13), we construct a

graph G ¼ hV; Ei with a four-neighborhood system N as

shown in Fig. 6. In the graph, there are two distinct terminals

s and t, the sink and the source, andnnodes corresponding to

each image pixel location, thus V ¼ fv1; v2; � � � ; vn; s; tg. A
solution is a two-set partition, U ¼ fsg [ fij‘i ¼ 1g and

W ¼ ftg [ fij‘i ¼ 0g. The graph construction is as described

in [12], with a directed edge ðs; iÞ from s to node i with a
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Fig. 9. Poolside sequence. The water in this sequence shimmers and ripples causing false positive in conventional detection algorithms, as a remote

controlled car passes on the side. The top row are the original images, the second row are the results obtained by using a five-component, Mixture of

Gaussians method, and the third row are the results obtained by the proposed method. The fourth row is the masked original image. Morphological

operators were not used in the results.
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Fig. 10. Fountain Sequence. Background Subtraction in the presence of dynamic textures. There are three sources of nonstationarity: 1) The tree

branches oscillate, 2) the fountains, and 3) the shadow of the tree on the grass below. The top row are the original images, the second row are the

results obtained by using a five-component, Mixture of Gaussians method, and the third row results obtained by the proposed method. The fourth

row is the masked original image. Morphological operators were not used in the results.

Fig. 11. Three more examples of detection in the presence of dynamic backgrounds. (a) The lake-side water is the source of dynamism in the

background. The contour outlines the detected foreground region. (b) The periodic motion of the ceiling fans is ignored during detection. (c) A bottle

floats on the oscillating sea, in the presence of rain.



weight wðs;iÞ ¼ �i (the log-likelihood ratio), if �i > 0, other-

wise a directed edge ði; tÞ is added between node i and the

sink t with a weight wði;tÞ ¼ ��i. For the second term in (13),

undirected edges of weight wði;jÞ ¼ 
 are added if the

corresponding pixels are neighbors as defined in N (in our

case if j is within the four-neighborhood clique of i) . The

capacity of the graph is CðLÞ ¼
P

i

P
j wði;jÞ, and a cut

defined as the set of edges with a vertex in U and a vertex

in W. As shown in [8], the minimum cut corresponds to the

maximum flow, thus, maximizing LðLjx̂xÞ is equivalent to

finding theminimum cut. Theminimum cut of the graph can

be computed through a variety of approaches, the Ford-

Fulkerson algorithm or a faster version proposed in [12]. The

configuration found thus corresponds to an optimal estimate

of L. The complete algorithm is described in Fig. 7.

3 RESULTS AND DISCUSSION

The algorithm was tested on a variety of sequences in the

presence of nominal camera motion, dynamic textures,

and cyclic motion. On a 3.06 GHz Intel Pentium 4

processor with 1 GB RAM, an optimized implementation

of the proposed approach can process about 11 fps for a

frame size of 240 � 360. The sequences were all taken

with a COTS camera (the Sony DCR-TRV 740). Compara-

tive results for the mixture of Gaussians method have also

been shown. For all the results, the bandwidth matrix H

was parameterized as a diagonal matrix with three equal

variances pertaining to the range (color), represented by

hr and two equal variances pertaining to the domain,

represented by hd. The values used in all experiments

were ðhr; hdÞ ¼ ð16; 25Þ.

3.1 Qualitative Analysis

Qualitative results on seven sequences of dynamic scenes

are presented in this section. The first sequence that was

tested involved a camera mounted on a tall tripod. The

wind caused the tripod to sway back and forth causing

nominal motion of the camera. Fig. 8 shows the results

obtained by the proposed algorithm. The first row are the
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Fig. 12. Swaying trees sequence. A weeping willow sways in the presence of a strong breeze. The top row shows the original images, the second

row are the results obtained by using the mixture of Gaussians method, and the third row are the results obtained by the proposed method. The

fourth row is the masked original image. Morphological operators were not used in the results.



recorded images, the second row shows the detected

foreground as proposed in [33], and it is evident that the

nominal motion of the camera causes substantial degrada-

tion in performance, despite a five-component mixture

model and a relatively high learning rate of 0:05. The third

row shows the foreground detected using the proposed

approach. It is stressed that no morphological operators like

erosion/dilation or median filters were used in the

presentation of these results. Manually segmented fore-

ground regions are shown in the bottom row. This sequence

exemplifies a set of phenomenon, including global motion

caused by vibrations, global motion in static hand-held

cameras, and misalignment in the registration of mosaics.

Quantitative experimentation has been performed on this

sequence and is reported subsequently.

Figs. 9, 10, and 12 show results on scenes with dynamic

textures. In Fig. 9, a red remote controlled car moves in a

scene with a backdrop of a shimmering and rippling pool.

Since dynamic textures like the water do not repeat exactly,

pixel-wise methods, like the mixture of Gaussians ap-

proach, handle the dynamic texture of the pool poorly,

regularly producing false positives. On the other hand, the

proposed approach handled this dynamic texture immedi-

ately, while detecting the moving car accurately as well.

Fig. 10 shows results on a particularly challenging outdoor

sequence, with three sources of dynamic motion: 1) The

fountain, 2) the tree branches above, and 3) the shadow of

the trees branches on the grass below. The proposed

approach disregarded each of the dynamic phenomena

and instead detected the objects of interest. In Fig. 12,

results are shown on sequence where a weeping willow is

swaying in a strong breeze. There were two typical paths in

this sequence, one closer to the camera and another one

farther back behind the tree. Including invariance to the

dynamic behavior of the background, both the larger objects
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Fig. 13. Numbers of detected pixels for the sequence with nominal
motion (Fig. 8). (a) This plot shows the number of pixels detected across
each of 500 frames by the Mixture of Gaussians method at various
learning rates. Because of the approximate periodicity of the nominal
motion, the number of pixels detected by the Mixture of Gaussians
method shows periodicity. (b) This plot shows the number of pixels
detected at each stage of the proposed approach, 1) using the
background model, 2) using the likelihood ratio, and 3) using the
MAP-MRF estimate.

Fig. 14. Pixel-level detection recall and precision at each level of the

proposed approach. (a) Precision and (b) recall.



closer by and the smaller foreground objects farther back

were detected as shown in Figs. 12c and 12d.
Fig. 11a shows detection in the presence of periodmotion,

a number of ceiling fans. Despite a high degree of motion,

the individual is detected accurately. Fig. 11b shows

detection with the backdrop of a lake, and Fig. 11c shows

detection in the presence of substantial wave motion and

rain. In each of the results of Fig. 11, the contour outlines the

detected region, demonstrating accurate detection.

3.2 Quantitative Analysis

We performed quantitative analysis at both the pixel-level

and object-level. For the first experiment, we manually

segmented a 500-frame sequence (as seen in Fig. 8) into

foreground and background regions. In the sequence, the

scene is empty for the first 276 frames, after which two

objects (first a person and then a car) move across the field

of view. The sequence contained an average nominal

motion of approximately 14.66 pixels. Fig. 13a shows the

number of pixels detected in selected frames by the mixture

of Gaussians method at various values of the learning
parameter and the ground truth. The periodicity apparent
in the detection by the mixture of Gaussians method is
caused by the periodicity of the camera motion. The initial
periodicity in the ground truth is caused by the periodic
self-occlusion of the walking person and the subsequent
peak is caused by the later entry and then exit of the car. In
Fig. 13b, the corresponding plot at each level of the
proposed approach is shown. The threshold for the
detection using only the background model was chosen as
logð�Þ (see (7)), which was equal to -27.9905. In addition to
illustrating the contribution of background model to the
over-all result, the performance at this level is also relevant
because, in the absence of any previously detected fore-
ground, the system essentially uses only the background
model for detection. For the log-likelihood ratio, the
obvious value for 	 (see (8)) is zero, since this means the
background is less likely than the foreground. Clearly, the
results reflect the invariance at each level of the proposed
approach to mis-detections caused by the nominal camera
motion. The per-frame detection rates are shown in Fig. 14
and Fig. 15 in terms of precision and recall, where

Precision ¼ # of true positives detected

total # of positives detected
and

Recall ¼ # of true positives detected

total # of true positives
:

The detection accuracy both in terms of recall and precision
is consistently higher than the mixture of Gaussians
approach. Several different parameter configurations were
tested for the mixture of Gaussians approach and the results
are shown for three different learning parameters. The few
false positives and false negatives that were detected by the
proposed approach were invariably at the edges of true
objects, where factors such as pixel sampling affected the
results.

Next, to evaluate detection at the object level (detecting
whether an object is present or not), we evaluated five
sequences, each (approximately) an hour long. The
sequences tested included an extended sequence of Fig. 8,
a sequence containing trees swaying in the wind, a
sequence of ducks swimming on a pond, and two
surveillance videos. If a contiguous region of pixels was
consistently detected corresponding to an object during its
period within the field of view, a correct “object” detection
was recorded. If two separate regions were assigned to an
object, if an object was not detected, or if a region was
spuriously detected, a misdetection was recorded. Results,
shown in Table 1, demonstrate that the proposed approach
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Fig. 15. Pixel-level detection recall and precision using the Mixture of

Gaussians approach at three different learning parameters: 0.005, 0.05,

and 0.5. (a) Precision and (b) recall.

TABLE 1
Object Level Detection Rates

Object detection and misdetection rates for five sequences (each one
hour long).



had an overall average detection rate of 99.708 percent and
an overall misdetection rate of 0.41 percent. The misdetec-
tions were primarily caused by break-ups in regions, an
example of which can be seen in Fig. 10c.

4 CONCLUSION

There are a number of innovations in this work. From an
intuitive point of view, using the joint representation of
image pixels allows local spatial structure of a sequence to
be represented explicitly in the modeling process. The
entire background is represented by a single distribution
and a kernel density estimator is used to find membership
probabilities. The joint feature space provides the ability to
incorporate the spatial distribution of intensities into the
decision process, and such feature spaces have been
previously used for image segmentation, smoothing [4]
and tracking [6]. A second novel proposition in this work is
temporal persistence as a criterion for detection without
feedback from higher-level modules (as in [15]). The idea of
using both background and foreground color models to
compete for ownership of a pixel using the log likelihood
ratio has been used before for improving tracking in [3].
However, in the context of object detection, making
coherent models of both the background and the fore-
ground, changes the paradigm of object detection from
identifying outliers with respect to a background model to
explicitly classifying between the foreground and back-
ground models. The likelihoods obtain are utilized in a
MAP-MRF framework that allows an optimal global
inference of the solution based on local information. The
resulting algorithm performed suitably in several challen-
ging settings.
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