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Abstract—Videos are composed of many shots that are caused by
different camera operations, e.g., on/off operations and switching
between cameras. One important goal in video analysis is to group
the shots into temporal scenes, such that all the shots in a single
scene are related to the same subject, which could be a particular
physical setting, an ongoing action or a theme. In this paper, we
present a general framework for temporal scene segmentation
in various video domains. The proposed method is formulated
in a statistical fashion and uses the Markov chain Monte Carlo
(MCMC) technique to determine the boundaries between video
scenes. In this approach, a set of arbitrary scene boundaries are
initialized at random locations and are automatically updated
using two types of updates: diffusion and jumps. Diffusion is
the process of updating the boundaries between adjacent scenes.
Jumps consist of two reversible operations: the merging of two
scenes and the splitting of an existing scene. The posterior prob-
ability of the target distribution of the number of scenes and
their corresponding boundary locations is computed based on
the model priors and the data likelihood. The updates of the
model parameters are controlled by the hypothesis ratio test in
the MCMC process, and the samples are collected to generate
the final scene boundaries. The major advantage of the proposed
framework is two-fold: 1) it is able to find the weak boundaries
as well as the strong boundaries, i.e., it does not rely on the fixed
threshold; 2) it can be applied to different video domains. We have
tested the proposed method on two video domains: home videos
and feature films, and accurate results have been obtained.

Index Terms—Markov chain Monte Carlo, video scene segmen-
tation.

I. INTRODUCTION

VIDEOS are often constructed in the hierarchical fashion:
. The lowest

level contains the individual frames. A series of continuous
frames with consistent background settings constitute a shot.
A scene or a story is a group of semantically related shots,
which are coherent to a certain subject or theme. At the highest
level, the entire video is composed of multiple scenes, which
result in the complete storyline. Scenes are the semantic units
of the video, and temporal scene segmentation is defined as a
process of clustering video shots into temporal groups, such
that the shots within each group are related to each other with
respect to certain aspects. This is an important and fundamental
problem in video processing and understanding, and it provides
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more meaningful and complete information for the video
content understanding compared to the shot-level analysis.
Scene segmentation has many applications in various domains.
For example, in the feature films, scene segmentation provides
the chapters that correspond to the different subthemes of
the movies. In television videos, segmentation can be used
to separate the commercials from the regular programs. In
news broadcast programs, segmentation can be used to identify
different news stories. In home videos, scene segmentation may
help the consumers to logically organize the videos related to
the different events [(e.g., birthday, graduation, weddings, or
vacation (e.g. city tours, sightseeing)].

Scenes are composed of the video shots. The video shots are
caused by different camera operations, e.g., turning the camera
on/off, the switching between cameras, and other video editing
techniques. Consider this: a tourist is recording a video around
a monument. He wants to have different views of the monu-
ment. Therefore, he takes one sequence from the frontal view
and shuts the camera off. Then, he walks to the side of the monu-
ment and records another sequence. In this case, the entire scene
is composed of two shots, which are generated by the opera-
tions (on/off) of a single camera. On the other hand, in movies
or TV programs, the shots are generated from different cameras
and are appended one after another to constitute the story lines.
A scene sometimes can be composed of a single shot. For in-
stance, in the example described above, the tourist could have
the camera on all the time and keeps recording the video. In
this case, the scene and the shot are the same. However, more
often, scenes are composed of multiple shots, such as movies
or TV programs. Hence, a single shot is insufficient to reveal
the semantic meaning of the video content. For example, in fea-
ture films, how could one answer a query related to a suspense
scene based only on the content of a single shot? These types
of scenes can only be identified with multiple shots showing the
increasing tension in the video. In other domains, more often the
semantic concepts are difficult to be determined by using only a
single shot, since they are introduced to viewers over time. Thus,
a meaningful result can only be achieved by exploiting the video
scenes, which are the interconnections of the shot contents.

A. Related Work

Several temporal segmentation methods have been developed
for different types of videos. Hanjalic et al. [11] proposed a
method for detecting boundaries of the logical story units in
movies. In their work, inter-shot similarity is computed based on
the block matching of the keyframes. Similar shots are linked,
and the segmentation process is performed by connecting the
overlapping links. Rasheed et al. [23] proposed a two-pass al-
gorithm for scene segmentation in feature films and TV shows.
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In the first pass, potential scene boundaries of the video are ini-
tially detected based on the color similarity constraint, back-
ward shot coherence (BSC). Oversegmented scenes from the
first pass are then merged in the second pass, based on the anal-
ysis of the motion content in the scenes. Sundaram et al. [25]
used the audiovisual features of the video in the movie scene
segmentation. First, two types of scenes, audio scenes and video
scenes, are detected separately. Then, the correspondences be-
tween these two sets of scenes are determined using a time-con-
strained nearest-neighbor algorithm. Adams et al. [1] proposed
the “tempo” for the segmentation of the movies. The “tempo”
of a shot is a combination of the shot length and the motion
content of shot. The dramatic story sections or events in the
movie are detected by finding the zero-crossings of the “tempo”
plot. Yeung et al. [28] proposed a graph-based representation of
the video data by constructing a shot connectivity graph. The
graph is split into several subportions using the complete-link
method of hierarchical clustering such that each subgraph sat-
isfies a color similarity constraint. These methods are based on
the “film grammar,” which is a set of production rules of how
the movies or TV shows should be composed. For instance, in
action scenes, the shots are generally short, and their motion
content is high. On the other hand, the shots are long and the
visual appearance is smooth in drama scenes. However, these
heuristics are not applicable to the other types of videos. For in-
stance, home videos are recorded in a completely “free” style.
Shooters are not trained with recording techniques, and often
no obvious format or pattern exists in the video. Furthermore,
since the rules in the production of films and TV shows are dif-
ferent, the methods for these two domains of videos cannot be
used interchangeably.

There is a particular interest in the story segmentation of the
news broadcast videos. Hoashi et al. [13] has proposed an SVM-
based news segmentation method. The segmentation process in-
volves the detection of the general story boundaries, in addi-
tion to the special type of stories, e.g., finance report and sports
news. Finally, the anchor shots are further analyzed based on
the audio silence. Hsu et al. [14] proposed a statistical approach
based on the discriminative models. The authors have devel-
oped the BoostME, which uses the maximum entropy classi-
fiers and the associated confidence scores in each boosting it-
eration. Chaisorn et al. [4] used hidden Markov models (HMM)
to find the story boundaries. The video shots are first classified
into different categories. The HMM contains four states and is
trained on three features: type of the shot, whether the location
changes (true or false), and whether the speaker changes (true
or fase). These methods were developed based on the unique
characteristics of the news video. The video shots are com-
monly classified into news program related categories, e.g., an-
chor person, weather, commercials and lead-in/out shots. These
categories are not available in other domains of videos, such as
home videos or feature films. Furthermore, the news segmenta-
tion methods usually involve the special treatment on the anchor
person shots, which exist only in news videos.

B. Proposed Approach

In this paper, we propose a general framework for the tem-
poral video segmentation by using the Markov chain Monte

Carlo (MCMC) technique. Many of the previously developed
methods are based on the fixed global thresholds, which are not
desirable in many cases. Moreover, due to the fixed thresholds,
these methods are likely to generate either oversegmentation or
undersegmentation. Also, these methods may use some special
knowledge about a particular domain, which may not be appro-
priate for other domains. For example, there is no obvious video
structure in home videos. Due to that, it is not easy to gener-
alize these methods to other domains. In contrast, we do not use
any fixed threshold or utilize any structure information of the
video. Instead, we have developed an iterative method to eval-
uate the segmentation parameters, including the number of the
scene segments and their corresponding locations. In our formu-
lation, if the number of the segments changes, the dimension of
the vector containing the boundary locations also changes. The
solution space for these two parameters is too complex for the
direct analytical computation. Therefore, these two parameters
are estimated in a statistical fashion using the MCMC technique.

The MCMC technique has been used in several applications
in the fields of image processing, video content analysis and
computer vision in the past few years. Geman et al. [6] were the
first ones to apply the MCMC technique in the image analysis
using the Gibbs sampler. The MCMC technique involving the
jump and diffusion method was introduced by Grenander et
al. [8], and Green [7] further proposed the reversible jumps.
It has been applied in sampling and learning by Zhu et al.
[33]. For one-dimensional (1-D) signal segmentation problems,
Phillips et al. has discussed the changepoint problem in [22].
Dellaert et al. [5] proposed an EM-based technique for solving
the structure-from-motion (SFM) problem without known
correspondences. The MCMC algorithm [12] with symmetric
transition probabilities was used to generate the samples of the
assignment vectors for the feature points in each frame. Senegas
[24] proposed a method for solving the disparity problem in
stereo vision. The MCMC sampling process was applied to
estimate the posterior distribution of the disparity. Tu et al.
[27] and Han et al. [10] have applied the data-driven MCMC
(DDMCMC) to the optical and range image segmentations.

Our proposed Markov chain contains three types of updates:
shifting of boundaries, merging of two adjacent scenes and the
splitting of one scene into two scenes. Due to these updates,
the solution can jump between different parameters spaces, (the
dimension of the parameter vector can change), as well as dif-
fuse inside the same space, (the elements in the parameter vector
are changed without changing the vector dimension). We as-
sume that each shot in the video has a likelihood of being de-
clared as the scene boundary. Shots with higher likelihoods co-
incide more with the true boundaries. Initially, two segments are
assumed, and they are separated by a randomly selected shot.
Then, in each iteration of the updates in the MCMC process,
several shots are declared as the scene boundaries. Their like-
lihoods are accumulated, while the likelihoods of other shots
are kept the same. Several Markov chains are executed inde-
pendently to avoid the possible misdetections caused by a single
chain, and the samples from all of the chains are collected for the
computation of the shot likelihoods. Finally, the shots with the
highest likelihoods in their neighborhoods are declared as the
scene boundary locations. One advantage of using the sampling
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technique is that both the weak and strong boundaries can be de-
tected without defining any specific threshold. We have tested
the proposed framework on two video domains, home videos
and feature films, and very accurate and competitive results have
been obtained.

The rest of this paper is organized as follows. Section II pro-
poses the MCMC algorithm and presents the computations of
the transition probabilities and the posterior probability. Sec-
tions III-A and III-B deal with the applications of the general
framework on the segmentations of the home videos and the
feature films, respectively. Section IV presents the discussions
of the proposed work on other video domains. Finally, Sec-
tion V provides the conclusion and discussions of the proposed
framework.

II. PROPOSED FRAMEWORK

By the problem definition, given the shots in the video, scene
segmentation of the video is a process of grouping the related
shots into clusters. In each scene, the shots are related to each
other in terms of the corresponding central concept. The cen-
tral concepts are different in various contexts. For instance, in
home videos, the central concept sometimes refers to the same
physical environmental setting, e.g., shots related to the same
historical monument, or sometimes it refers to the same event,
e.g., shots related to a birthday party or a wedding ceremony.
In the news programs, the central concept refers to a specific
story topic, e.g., shots related to a political reporting, a weather
forecast or a sports reporting. In the feature films, central con-
cept refers to the same subthemes of the story line, e.g., shots
related to an action scene or a suspense scene. Different scenes
are distinguished by their differences with respect to the central
concept, and the scene boundaries are the locations where the
intrinsic properties of the central concept change.

Based on this, we propose a statistical solution for the two
model parameters, the number of the scenes and their cor-
responding boundary locations. The boundary locations are
considered as the changepoints of the central concept, and the
problem is formulated as a changepoint problem. In a typical
changepoint problem, the random process has different control-
ling parameters over time. The goal is to find the points where
these parameters change. A simple example of a changepoint
problem is shown in Fig. 1. In this example, 600 observations
are generated from five different uniform distributions. The
changepoints are the locations where the distribution mean
changes (the steps in the plot). In our application of the tem-
poral scene segmentation, the controlling parameters become
the central concept, and the steps in the posterior mean plot
become the scene boundaries in the video. To estimate the
boundaries locations, the MCMC technique is used. In the iter-
ative process of MCMC, the posterior probability of the model
parameters is computed based on the model priors and the data
likelihood of the video. The samples are collected based on the
ratio tests involving the posterior probabilities and the transition
probabilities. In the rest of this section, we first introduce the
overall MCMC algorithm. Then, a detailed description of the
different types of update proposals is presented. Finally, we
describe the computation of the posterior probability.

Fig. 1. Example of the changepoint problem. There are five segments con-
taining over the 600 observations that are generated by the uniform distributions
with different parameters. The red plot is the posterior mean of the segments, and
the locations of the steps are the changepoints in the data, i.e., the places where
the mean changes. (Color version available online at http://ieeexplore.ieee.org.)

A. General MCMC Algorithm

We use a hierarchical Bayesian model in the MCMC process.
We assume that the model set is a countable
set, where is the number of the detected scenes, and

is a set of all the possible scene numbers. Model
has a parameter vector , which contains the scene

boundary locations (note: since the first scene always takes the
first shot as its starting boundary, it is ignored in our estimation
process). Let denote the video features selected for the data
likelihood computation. Based on the Bayes rule, the posterior
probability of the parameter and given is

(1)

where is the prior probability for the number of scenes,
is the conditional prior for the boundary locations

given , and is the likelihood of the data given the
parameters and . Since the boundary vector, , implicitly
determines , the above equation can be further simplified as

(2)

In the rest of this paper, we use the shorter term
to denote this target posterior, with

considered as a combined parameter vector of and .
The general Metropolis-Hasting-Green algorithm [7] is well

suited for our task, where the dimension of the parameter vector,
, may change during the updates. It is described as follows.
• Initialize the model parameters .
• At each iteration , perform the following actions.

1) Generate from .
2) Create a new parameter from some trial distri-

bution based only on with a proposal transition
(diffusion or jump).

3) Calculate the ratio as

(3)

4) Update , if . Otherwise, set
.
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Fig. 2. Graphical representation of three types of the updates. The top row
shows the scenes before updates, and the bottom row shows the update results.
(Color version available online at http://ieeexplore.ieee.org.)

In this algorithm, is the transition probability from to
. The transition probability from one state to another depends

on the type of the updates. It should satisfy the reversibility
property. Therefore, the proposed updates should also be re-
versible to ensure this property.

Before going into the detailed description of the updating
process, we first present the notations for the variables. Let

be the current number of detected scenes, be the total
number of shots in the video, be the -th scene with shots

, where is the number of shots in scene
, be the -th scene after update, be the data

likelihood of the entire video, be the likelihood of
scene given the corresponding features . Finally,
is the maximum number of the scenes allowed.

The proposal updates contain two parts, diffusion and jumps.
Diffusion is defined as the update without changing the struc-
ture of the parameter vector . It traverses within the same sub-
space. On the other hand, jumps do change the structure and tra-
verse across different subspaces. In our case, the diffusion is the
shifting of the boundaries between the adjacent scenes. There
are two types of jumps: the merging of two adjacent scenes and
the splitting of an existing scene. Fig. 2 shows the graphical
representations of the updates. In many applications ([7], [10],
[27]), two more updates were proposed: diffusion on the seg-
ment model parameter(s) and the change of the segment models.
The segment model parameters are the ones that control the gen-
eration of the sample data, e.g., posterior means in Fig. 1. In
our application of the video scene segmentation, based on the
underlying assumption that each segment is coherent to its cen-
tral concept, there is often only one scene model for a single
video domain. Thus, changing between models is not needed
in this case. Furthermore, in some cases like home videos, the
data size (number of shots in our case) is small. The maximum
likelihood estimator is adequately effective to compute the pa-
rameter(s). Therefore, the model parameter diffusion steps can
also be dropped.

Let , and denote the probabilities of choosing
shifting, merging and splitting, respectively. They satisfy

. Naturally, and .
We use the similar computation proposed in [7], where

and ,
with constant such that , . This
results in .

B. Stochastic Diffusions

The diffusions involve the shifts of the scene boundaries
between adjacent video scenes. The update is carried out as
follows.

• A number is randomly drawn from the discrete uniform
distribution , such that the boundary between
and is updated.

• The new boundary is drawn from a 1-D normal distri-
bution with the mean at the original boundary in the
range of . The updated scene contains shots
of , and the updated scene contains

.
Assume the number of the current scenes is and the current

parameter vector is . Then, the probability for se-
lecting scene is . Since the potential shift is drawn
from a normal distribution around the original scene boundary
, this drawing probability for the new boundary is computed

as

(4)

where , and is the standard deviation of the move-
ment (in our experiment, ). The indicator function
controls the shift, such that the new boundary is within the cor-
rect range. The normal distribution is assumed since the new
boundary is not expected to deviate from the old boundary too
far. In summary, the forward transition probability for the shift
update is .

During this entire update, the total number of scenes, , is not
changed, and the new boundary remains in the original range

. The reverse transition is the process of shifting
from the new boundary back to the original boundary .
Thus, the relationship between and its reverse version

is equal due to the symmetrical property of the normal
distribution.

C. Reversible Jumps: Merge and Split

For the jump updates, the transition during a merge is re-
lated to the transition of a split, since merge and split are a
pair of reversed updates. Let us consider the splits first. The
number of scenes is increased by 1 by splitting a scene

into two new scenes
and , where is the new boundary.
The process contains two portions: selecting a scene and
selecting a new boundary between its old boundaries. The
selection of the new boundary in the split process can be
performed assuming the uniform distributions [7]. However, to
achieve better performance, the data-driven technique is often
used ([10] and [27]) to propose the jump transitions. We assume
uniform probability for selecting scene . The new boundary

is chosen, such that it provides the maximum likelihoods for
the two new scenes:

(5)

where and are the likelihoods of the
new scenes and given their corresponding features. If
we consider the video scenes are independent events in the time
series, the proposal probability for a split can be expressed in
the following form:

(6)
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Fig. 3. Prior distribution (Poisson) of the model parameter k, the number of
scenes in the video. The mean of the distribution, �, is preassigned as 2.5, and
k is 8. (Color version available online at http://ieeexplore.ieee.org.)

The reversed update of the split is the merging of two scenes
into one. The construction of the proposal probability for the
merge can be carried out similarly to the one for the split. Again,
we assume the uniform distribution for selecting scene , such
that scenes and are merged into . The proposal
probability for the merge transition is constructed as follows:

(7)

D. Posterior Probability

Since Poisson distribution models the number of incidents
happening in a unit time interval, we assume the number of
scenes, , is drawn from a such distribution with mean . The
model prior on is computed as

(8)

where is an indicator function. , if
; otherwise. A plot of the prior distribution is shown

in Fig. 3.
If there are segments (scenes) in the video, then there are

scene boundaries, since the boundary for the first scene is
always the beginning of the video. The probability of is
the same as the probability of selecting a subset with size
from the remaining shots. Therefore, the conditional prior
can be defined in terms of the combinations

(9)

The last term to be computed is the likelihood. Let
denote the global likelihood of the video data given

the parameter vector . As discussed in Section II, each scene
possesses a different central concept. It is meaningful to make
an assumption that each scene is independently recorded from
others. Therefore, the overall likelihood can be expressed as

(10)

where is the individual likelihood of data in scene
, based on the feature values . The geometric mean of

the individual likelihoods is considered for the normalization
purpose. In order to make the ratio test meaningful, the likeli-
hood should be scaled to the same level during each iteration.
The definition of the central concept is different across domains.
Therefore, the features selected to compute the likelihoods are
different for the different types of videos. Here, is a
general representation of the likelihood rather than a specific
computation.

The target posterior probability is proportional to the product
of the model prior , the conditional prior , and the
data likelihood ,

(11)

To determine if the proposed update in the parameter space
is accepted or rejected, we compute the ratio of the two terms:

and . If the ratio, , satisfies
the stochastically generated threshold, the proposed update is
accepted; otherwise, the model parameters are kept the same as
in the previous iteration.

III. APPLICATIONS AND DISCUSSIONS

In this section, we demonstrate the proposed scene segmen-
tation method on two video domains. If we examine the gen-
eration process of the videos, we can classify them into two
categories.

• Produced Videos: This group contains the feature films,
television news programs and other television talk or game
shows. They are initially recorded in the raw format and
are later modified to produce the carefully organized video
programs with accordance to the certain video production
rules.

• Raw Videos: Compared to the previous group, this cate-
gory involves little post-modification and contains videos
that are mostly in the forms in which they were originally
recorded.

Common domains in this category are home, surveillance and
meeting videos.

Due to the large variety of video domains, we have selected
two representative domains to demonstrate the effectiveness and
the generality of the proposed method, with one domain from
each of the categories described above. The home video domain
is chosen as the representative domain of the Raw Video cate-
gory, and the feature film domain is selected for the Produced
Videos category. In this paper, we assume the video shots are
available. In the experiment, we used a multi-resolution method
provided in [30] to detect and classify the video shot boundaries
in both home videos and feature films.

A. Home Videos

Home video is a broad term that refers to the videos com-
posed with a “free-style,” e.g., family videos, tour videos,
wedding tapes or ground reconnaissance videos (GRV). They
are recorded from hand-held cameras, spy cameras, cameras
mounted on ground vehicles, etc., and come in different forms.
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Fig. 4. Five example home video scenes with their keyframes. Some of them are (c) the indoor scene; some are (a), (b), (d), (e) the outdoor scenes. Scenes (a), (b)
were taken by the cameras mounted on the ground vehicles, (e) was taken by a spy camera in a bag, and (c), (d) were taken by hand-held cameras. (Color version
available online at http://ieeexplore.ieee.org.)

Some are with high resolutions, while some others have low
quality. Some have full field of view, and some may be recorded
by cameras hidden in the bags (GRV), so part of their field of
view is blocked by the carrier. Some example keyframes are
shown in Fig. 4. Temporal scene segmentation of home videos
provides the logical units related to the interesting locations
or events, and the output segments can be used for the further
analysis and processing of the videos, e.g., indexing, storage,
retrieval of the video and action recognition. Since there is no
grammar involved in the production process of the home videos,
the temporal segmentation emphasizes more on the analysis
of the features derived from the video than on the video struc-
ture. As mentioned in Section I, this type of analysis could be
threshold-based, zero-crossing based, etc., with or without the
training of the features. Home videos are not well-controlled as
other domains like television programs. The scene boundaries
sometimes are clearly identifiable (strong boundaries), but many
times they are difficult to be determined using the same criteria
for the strong boundary detection. Due to this uncertainty in
the home videos, it is likely to create either undersegmentation
or oversegmentation using any fixed threshold, and it is not
practical to train the system for the threshold selection. On the
other hand, the proposed approach finds the boundary locations
by detecting the local peaks in the likelihood plot of the video
shots, and therefore, avoids the previously mentioned problems.

1) Feature Selection: In the context of temporal scene seg-
mentation, a variety of features have been exploited. The com-
monly used features include color, motion content, shot length,
etc. Since the home videos are taken in a “free style,” the pat-
terns for the motion content and the shot length are not distinc-
tive across different scenes. Usually the shots in the same tem-
poral scene are coherent with respect to the same environment.
There are visual similarities that exist among these shots. On the
other hand, the shots from different scenes should be visually
distinctive. Therefore, we have focused our efforts on the anal-
ysis of the color information in the shots. We use the histograms
to represent the color information of the video frames. The color
histogram for each frame is the three-dimensional histogram in
the RGB space with eight bins in each dimension. Let be the
histogram for frame . Furthermore, we define the histogram
intersection between frames and as

(12)

where is the individual bin in the histogram.

Instead of using all the frames in the shot, we extract the
keyframes as the representation of the shot, and further anal-
ysis is performed based on the keyframes only. It is common to
select a single keyframe for each shot. However, for the shots
with long durations and with high activity content, multiple
keyframes form better representation. Several keyframe selec-
tion approaches have been proposed in the past few years ([9],
[11], [23], [32]). In this paper, we use the method proposed in
[23]. Assume there are a total of frames in shot , the proce-
dure for selecting the keyframes is described as follows.

• Include the middle frame into the keyframe set as the
first keyframe .

• For , do
If ,
Include into as a new keyframe.

In this algorithm, is the threshold for selecting a new
keyframe, and we use the histograms of the keyframes as their
representation.

2) Likelihood Computation: We define the visual similarity
between two shots in terms of the Bhattacharya distance. The
Bhattacharya distance between two histograms and is de-
fined as . The visual
similarity between shots and is as follows:

(13)

where , , and is a constant. After com-
puting the visual similarity between all pairs of shots in the
video, a similarity map is generated. One such map is shown
in Fig. 5. In this map, the brighter cell represents higher simi-
larity value. The shots that are in the same temporal scene form
a bright block along the diagonal in the similarity map. If the
shots are clustered into scene , the likelihood for
this scene is computed as

(14)

which is the average similarity value of the subblock in the sim-
ilarity map starting from row to row . It is intuitive that
the correct segmentation of the video gives the diagonal blocks
to reach the maximum likelihood. To compute the overall likeli-
hood, substitute (14) into (10). Up to this point, the overall likeli-
hood , the conditional prior and the model prior
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Fig. 5. Visual similarity map of the shots in a testing video. The brighter cell
represents the higher similarity. The shots in the same scene possess higher sim-
ilarity comparing across scenes. The bright blocks on the diagonal gives ideas of
the temporal scenes. The figure shows the intermediate results for one iteration,
where the red scenes (1 and 2) are not matched with correct boundaries, and the
blue scenes (3 and 4) are the correct detections. (Color version available online
at http://ieeexplore.ieee.org.)

Fig. 6. Overall votes of the shots declared as the scene boundaries from mul-
tiple independent Markov chains. The red circles represent the shots that are
declared as the final scene boundary locations, which correspond to the local
maxima in the overall vote plot. (Color version available online at http://ieeex-
plore.ieee.org.)

are determined. Therefore, the acceptance for the proposal
updates are decided by the ratio test described in the MCMC
algorithm.

3) System Performance: The proposed method has been
tested on four home videos with 23 scenes. These scenes were
recorded with various environmental settings. Each scene is
composed of multiple video shots. Some of them are indoor
scenes (Scenes (c) and (e) in Fig. 4), while others are out-
door scenes (Scenes (a), (b), and (d) in Fig. 4). Furthermore,
the videos were taken in different styles. Some scenes were
recorded from the hand-held cameras (Scenes (a), (c), and (d)
in Fig. 4). Some were recorded by spy camera hidden in the bag
(Scene (e) in Fig. 4), and others were recorded by the camera
mounted on the ground vehicles (Scene (b) in Fig. 4).

It is well known that samples generated from a single Markov
chain may not result in the accurate solution. Rather, the solu-
tion generated from a single chain may be in the neighborhood
of the true solution. To overcome this problem, we indepen-
dently execute multiple Markov chains. The results from each
individual chain provide the votes for the shots that have been
declared as the scene boundaries. After certain runs, the shots
with the locally highest votes represent the final scene bound-
aries. Fig. 6 shows the overall votes of the scene shots being
declared as scene boundaries from all runs, and the red circles

Fig. 7. (a) Plot of the posterior probability of the parameter estimation during
a single Markov chain (run). As demonstrated in the figure, after certain itera-
tions, the posterior reaches to a “confidence” level and stays there with minor
fluctuations. It should be noted that if the data size (number of shots in our ap-
plication) is small, the process reaches this level quickly. (b) Plot of the model
prior for the number of the scenes, k, where the model mean, �, is set to be 3.5.
The horizontal axis in both plots represents the number of iterations. At the end
of the process, plot (a) gives the posterior probability of the parameters given
the video data, and plot (b) gives the information on the number of scenes, k.
(Color version available online at http://ieeexplore.ieee.org.)

represent the local maxima, which correspond to the true bound-
aries. Even though one single chain may not provide the correct
result, there is an issue of the posterior probability reaching the
“confidence” level. This is referred as the “burn-in” period. As
shown in Fig. 7, after certain iterations, the posterior probability
reaches a level and stays there with only minor fluctuations. For
this particular testing video, the “burn-in” time is short due to
the small size of the data (number of shots). A simplified ver-
sion of the iteration process is shown in Fig. 8.

The matches between the ground truth data and the seg-
mented scenes are based on the matching of their starting
boundaries. For a given home video with scenes, let

denote the starting shots of the reference scenes
and denote the starting shots of the detected
scenes. Scene is declared as matched if one of the detected
scenes has the same starting shot.

Two accuracy measures are used to measure the system per-
formance: precision and recall

(15)

where is the number of the correct matches between the
system detections and the ground truth scenes; is the total
number of the system detections; and is the total number of
the ground truth references. The detailed precision/recall mea-
sures are shown in Table I. If the matches in all of the videos are
treated equally important, the overall precision and recall are
0.840 and 0.913, respectively.

To further demonstrate the effectiveness of the proposed
method, we also compare our system output with the results
generated by one of the previously developed methods. As the
most relevant technique to our scenario, we choose the Back-
ward Shot Coherence (BSC) approach proposed in [23]. The
BSC approach is a two-pass algorithm, which first segments
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Fig. 8. Demonstration of a simplified MCMC iteration process. We show ten updates during a single run. The red boxes represent the detected scenes that do
not match with the true boundaries, while the blue boxes show the detected scenes matched with the ground truth. The sample video contains 19 shots, which are
initially split into two arbitrary scenes (1). After a series of updates, including shift (6), merge (2), (7), (9) and split (3), (4), (5), (8), (10), the final detected scenes
(10) match with the true boundary locations. As illustrated in the figure, the scenes are eventually “locked” with the bright diagonal blocks in the similarity map.
(Color version available online at http://ieeexplore.ieee.org.)

TABLE I
ACCURACY MEASURES OF FOUR HOME VIDEOS. INSERTION IS THE NUMBER

OF THE OVER SEGMENTATION (FALSE POSITIVES), AND DELETION IS

THE NUMBER OF THE MISDETECTIONS (FALSE NEGATIVES)

the video into initial scenes using the color consistency and
then merges them based on the similarity between their motion
contents. In the home videos, the same recorder often exhibits
similar motion of the camera. Furthermore, unlike other do-
mains, motion content in home videos is less meaningful and
not distinctive across the scenes. Based on the experimental
observations, results obtained using both passes in the BSC
algorithm are the same as the results obtained using only its
first pass, which generates the scene segments using the color
information. Since only the visual information is useful in our
application, we compare the system performance between the
results generated by the proposed MCMC method and the BSC
method for the sake of fairness. The comparison results are
shown in Table II.

B. Feature Films

To demonstrate the generality of the proposed framework,
we have also tested the proposed system on three feature films:
Gone in 60 Seconds, Dr. No - 007, and Mummy Returns.

1) Feature Selection: Based on the definition provided by
the Webster dictionary [15], a movie scene is one of the subdi-
visions of a play, or it presents continuous actions in one place.
The movie scenes are composed according to the film grammar,
which is a set of rules about how the movies are produced.

TABLE II
COMPARISON BETWEEN THE PROPOSED MARKOV CHAIN MONTE CARLO

(MCMC) METHOD AND THE Backward Shot Coherence (BSC) [23].
THE OVERALL PRECISION AND RECALL ARE COMPUTED AS EVERY

SCENE IN ALL VIDEOS IS EQUALLY IMPORTANT. THE LAST COLUMN

SHOWS THE NUMBER OF THE REFERENCE SCENES IN EACH CLIP

In a scene, the shots often exhibit similar patterns, which can
be reflected by the low-level features. For example, in action
scenes, the shots are generally short in length, and the visual
content, which indicates the activity level of the scene, changes
rapidly. On the other hand, in drama scenes, the shots are much
longer, and the visual content is relatively consistent. For feature
films, we use these two features computed from the movies, shot
length and visual content, to group the semantically coherent
shots into scenes. Let denote the length of shot and be
the visual content in that shot. The shot length represents the
pace of the movie, and the visual content shows how much is
going on in the shot. The visual content is defined as

(16)
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Fig. 9. (a) Representative frames of some example scenes in the movie Gone In 60 Seconds. (b) Plot of the shot length variable. (c). Plot of the visual disturbance
feature. Usually, the shots with shorter length are accompanied by higher level of visual disturbance. The green bars represent the scene boundaries in the movie,
which were detected by the proposed method; (d) PDF plots on the 2-D normal distribution of the first five scenes in the movie. The distribution parameters, mean
and covariance, are different across the scenes. (Color version available online at http://ieeexplore.ieee.org.)

where is the color histogram intersection
between the th and th frames, and is the number
of frames in shot . The plots of the shot length and the visual
content are shown in Fig. 9. These two features are used in the
construction of the data likelihood.

2) Likelihood Computation: In the film production, the pat-
terns for different features are related to each other. For instance,
in action scenes, the short shots are accompanied by high de-
gree of visual content. Therefore, the features and should
not be considered independent of each other. We use a two-
dimensional (2-D) normal distribution to model the features in
a scene ,

(17)

where is the feature vector . The vector is com-
puted as the sample means for the entire scene , and is the
covariance matrix with determinant . Again, by considering

the shots to be recorded independently, the likelihood in each
scene is,

(18)

We substitute (18) in (10), and perform the ratio test for
the acceptance decisions. Similar argument is applied here for
taking the geometric mean as in (10).

3) System Performance: We have experimented our ap-
proach on three feature-length films: Gone in 60 Seconds, Dr.
No - 007 and Mummy Returns. Each movie contains thou-
sands of shots. The matching follows similar procedure as
used in Section III-A3. However, the matching technique is
slightly different. In movies, there usually is not a concrete
or clear boundary between two adjacent scenes due to editing
effects. Movie chapters are sometimes changed with a smooth
transition. Therefore, matching based on the boundaries is
not meaningful and often returns incorrect measures. Instead,
we use a “recovery” method. Suppose there is a set of the
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Fig. 10. Matching of the scenes for the movie Mummy Returns. It shows the keyframes of the ground truth scenes that are obtained from the DVD chapters and the
keyframes of the detected scenes. The keyframes of the ground truth scenes are accompanied with their titles. The matches scenes are shown with their keyframes
aligned. Pairs with blank spaces are the mis-matches, i.e., insertions and deletions. (Color version available online at http://ieeexplore.ieee.org.)

reference scenes and a set of the detected
scenes . A reference scene is said to
be “recovered”, if a majority of this scene ( 50%) overlaps
one of the detected scenes. The “recovery” is a one-to-one
correspondence, i.e., one reference scene can only be matched
with at most one detected scene, and one detected scene can
cover at most one reference scene. The scene matching for the
movie Mummy Returns is shown in Fig. 10. In this example, we
consider the chapters provided by the DVD as the ground truth
scenes. The keyframes of both the ground truth scenes and the
detected scenes are presented. Again, we use the precision and
recall measures defined in Section III-A3 for the performance
evaluation. Detailed results for movie scene segmentation are
shown in Table III.

IV. DISCUSSIONS

The idea of the central concept is also applicable to other
video domains. For example, in television talk shows, one
major distinction between the commercials and the real TV talk
shows is that, in the talk shows there often exists a repeating

TABLE III
ACCURACY MEASURES FOR THREE FEATURE MOVIES

pattern between the host and the guest, which the commercials
do not possess. The feature to distinguish this central concept
involves the number of the repeating shots in the segment.
Another example is the news video segmentation. In this task,
each news segment is composed of the shots that are coherent to
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a certain news focus. Non-news segments include commercials,
lead-in/out, reporter chit-chatting, etc. The text information,
closed captions (CC) and automatic speech recognition (ASR)
output, can be used as the features for constructing the posterior
distribution. In this case, the semantic relations between the
keywords appearing in the shots can be analyzed. Shots that
have the same news focus should possess similar distributions
of the keywords. The MCMC framework can find the places
where the distributions of the keywords change to detect the
scene boundaries.

There is another temporal segmentation process on the lower-
level video structure, which is commonly known as the shot
boundary detection. Shot level segmentation and the scene seg-
mentation have their similarities and differences. A shot is de-
fined as a series of continuous frames with consistent back-
ground settings. This assumption naturally leads to the color
consistency constraints, and it does not refer to any high level
semantic meanings. On the other hand, scene segmentation in-
volves more semantic coherence. For example, in home videos,
shots within the same scene are coherent to each other in terms
of the same events or the same physical sites. In feature films,
shots in the same scene are related to the same subtheme of the
movie story line. In both the cases, the color similarity constraint
is insufficient for the segmentation. The high-level semantics
are often bridged by analyzing the patterns of other types of
low-level features, like video pace and the visual content in the
films or the narration in the news programs.

V. CONCLUSION

In this paper, we have presented a general statistical frame-
work for the temporal scene segmentation of videos. We have
solved the scene segmentation task by automatically deter-
mining the places where the central concept changes. A target
distribution of the model parameters, including the number
of scenes and their corresponding boundary locations, is con-
structed to model the probabilities of the video shots being
declared as the scene boundaries, and the solution is achieved
by performing the sampling from this target distribution using
the MCMC technique. In the iterative process of MCMC, the
posterior probability is computed based on the model prior,
conditional prior and the data likelihood given the parameters,
and the updates are determined based on the posterior proba-
bilities and the transition probabilities. The method has been
applied to several home videos and three feature films, and high
accuracy measures have been obtained (Tables I–III).
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