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Video Compression Using Spatiotemporal
Regularity Flow
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Abstract—We propose a new framework in wavelet video coding
to improve the compression rate by exploiting the spatiotemporal
regularity of the data. A sequence of images creates a spatiotem-
poral volume. This volume is said to be regular along the directions
in which the pixels vary the least, hence the entropy is the lowest.
The wavelet decomposition of regularized data results in a fewer
number of significant coefficients, thus yielding a higher compres-
sion rate. The directions of regularity of an image sequence depend
on both its motion content and spatial structure. We propose the
representation of these directions by a 3-D vector field, which we
refer to as the spatiotemporal regularity flow (SPREF). SPREF uses
splines to approximate the directions of regularity. The compact-
ness of the spline representation results in a low storage overhead
for SPREF, which is a desired property in compression applica-
tions. Once SPREF directions are known, they can be converted
into actual paths along which the data is regular. Directional de-
composition of the data along these paths can be further improved
by using a special class of wavelet basis called the 3-D orthonormal
bandelet basis. SPREF -based video compression not only removes
the temporal redundancy, but it also compensates for the spatial re-
dundancy. Our experiments on several standard video sequences
demonstrate that the proposed method results in higher compres-
sion rates as compared to the standard wavelet based compression.

Index Terms—Image and video multi-resolution processing
(2-MRP), wavelet based video coding (1-COD-WAVY).

1. INTRODUCTION

IDEO compression is very important for many appli-
Vcations, such as video conferencing, video storage,
and broadcasting, since their performance largely relies on
the efficiency of the compression. The most popular video
compression algorithms are the ones used in the industrially
accepted compression standards, MPEGI1 [1], MPEG2 [2], and,
recently, MPEG4 [3].

In MPEG1 and MPEG?2, the frames are labelled as I, B, and
P. Only the I (key) frames are compressed spatially. The P
frames can be interpolated from the I frames, and B frames can
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be interpolated from both I and P frames using block motion
compensation. This interpolation removes the temporal redun-
dancy in B and P frames. The I frame compression algorithm
is built on the JPEG image compression standard, which uses
the discrete cosine transform (DCT).

Recently, the DCT transform has been found to be outper-
formed by the wavelet transform, which offers lower image dis-
tortion and, therefore, better visual performance at very low bit
rates [4], [5]. Moreover, due to the desirable properties of the
wavelets, such as scalability and coding efficiency, they have be-
come very popular in a relatively short time. For example, the
latest image compression standard, JPEG2000, uses the wavelet
transform in its main compression algorithm [6].

A wavelet basis [7] consists of the dilated and translated ver-
sions of a wavelet function, ¢ and a scaling function, ¢. Inimage
compression, a 2-D wavelet basis is used to decompose the data
along fixed horizontal and vertical axes.

In a recent work, Mallat and Le Pennec proposed a
wavelet-based image compression framework [8], where
they exploited the image geometry to achieve higher compres-
sion rates. In this work, the geometry of an image patch is
approximated with a 2-D vector field, called geometric flow.
The geometric flow shows the local directions in which the
patch varies regularly. Hence, compressing the patch with a
wavelet basis along these directions outperforms the standard
wavelet compression that takes place along fixed axes. The
authors exploit the regularity along the flow lines further by
bandeletizing the warped wavelet basis. In this step, the scaling
functions are replaced with wavelet functions at higher levels
so that the number of significant coefficients are reduced. The
compression of an image with this framework involves its quad
tree segmentation into smaller patches. After computing the
compression cost of all nodes in the tree, the final segmenta-
tion is obtained by a split-merge algorithm that optimizes the
compression cost of the whole image.

Besides image compression, the wavelets have also turned out
to be a very useful tool in video compression. A wavelet video
coding algorithm was proposed for the first time by Karlsson
and Vetterli [9]. In this algorithm, a sequence is first segmented
into group(s) of frames (gof). Then, each gof is decomposed
along the three major axes: temporal, horizontal, and vertical.
However, this decomposition does not take the regularity of the
gof into account.

In the presence of global motion in a gof, uniform 3-D paths
of regularity are defined in the temporal direction, and these
paths extend along the direction of motion. The situation gets
more complicated when the motion is a mixture of the local and
global components. In this case, subgroups of frames (subgofs)
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with different motion types result in multiple directions of reg-
ularity. One way of modeling this regularity is to compute the
motion to find the directions, in which the gof is regular. Once
the pixel correspondence information is accumulated over mul-
tiple frames, it can be treated as a 3-D vector field that gives the
directions of regularity of the gof. In wavelet-based approaches,
the motion-compensated (MC) wavelet coding algorithms aim
to use this solution. As a matter of fact, it has been shown that
the compression along the motion directions is more efficient
compared to the standard wavelet decomposition [10]. However,
in MC wavelet coding, the motion information also needs to be
coded in order to reconstruct the sequence. Therefore, the choice
of the motion model is an important factor in such algorithms,
as the precision and compressibility of its parameters directly
affect the bit rate.

In the literature, two of the early studies on MC wavelet
coding were carried out by Ohm [11] and Taubman [12], where
they considered only the camera pan motion, and added a
simple image registration step before the wavelet decomposi-
tion. In [10], Marpe and Cycon used overlapped block motion
compensation, a technique that results in fewer blocking ar-
tifacts as compared to the standard block motion estimation.
Han and Podilchuk, in [13], proposed using dense motion fields
modeled by Markov random fields [14] to achieve accurate
motion estimates. However, since the density of the motion
field increased the bit rate, they implemented a lossy coding
to encode the motion information. Later, Secker and Taubman
[15] used deformable triangular meshes to model the motions
more accurately. Wang and Fowler [16] also used deformable
mesh models for motion compensation in their scheme, and
employed redundant wavelets [17] for video coding. The
deformable mesh model estimates the motion between two
consecutive frames by placing a regular mesh grid on the
first frame, and then computing the displacement of the mesh
nodes in the second frame. Once the motion vectors of the
mesh nodes are known, they can be used to interpolate the
motion at any location. One of the problems with this model is
that only consecutive pairs of frames are used to compute the
directions of regularity of the whole gof. The 3-D vector field,
constructed this way may not always be smooth. Moreover,
storing the node displacement information for each frame pair
creates a redundancy of motion information when the motions
in the consecutive frames are similar. Another disadvantage
is that the number of the nodes in the mesh models is fixed.
When the motion is complex, its precise computation calls for
denser meshes, which require an increased number of mesh
nodes. This increase in nodes boosts the overhead of storing
the motion parameters.

Another method for modeling the motion is the block motion
model. This model attempts to remove the motion information
redundancy by assigning a single flow vector to the blocks of
image regions. However, the redundancy may still remain when
the motions of (spatially and temporally) neighboring blocks are
similar. The block motion model also does not result in a smooth
3-D vector field, since the motion vectors are constructed from
pairs of frames. Therefore, an important issue in using motion
compensation is to find a good representation that is both com-
pact and accurate enough to model the motion well. Even when
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such a representation is found, the MC wavelets reduce to stan-
dard wavelets when there is no motion in the gof. This means
that it cannot exploit the spatial regularity of the frames.

The solution to the above-mentioned problems lies in real-
izing that estimating the spatiotemporal directions of regularity
of a gofrequires the analysis of all frames simultaneously. When
correctly formulated, this fusion of frame information can help
compute smooth spatiotemporal directions in which the gof is
regular as a whole. A general motion representation of the gof
can also help discard the redundant (repetitive) motion informa-
tion in case multiple frames have similar motion.

In this paper, we treat a gof not as a stack of frames but as
a 3-D volume, and propose to model the spatiotemporal direc-
tions of regularity of this volume by a 3-D vector field, called
the spatiotemporal regularity flow (SPREF). The SPREF can be
modeled in different ways, depending on whether the regularity
is spatial or spatiotemporal. Once the flow is computed, a ban-
delet basis can be constructed to decompose the gof along its di-
rections of regularity. To obtain the maximum compression, the
gof needs to be partitioned into subgofs, whose regularities can
be as closely modeled as possible by their respective SPREF's.
We also propose an oct tree based algorithm to compute the seg-
mentation of the gof according to its spatiotemporal properties,
such that the reconstruction error and the bit rate are optimized.

The organization of the rest of the paper is as follows. In Sec-
tion II, we explain the concept of SPREF and explain how it is
computed for a spatiotemporal region. Section III deals with the
construction of a bandelet basis for this region using SPREF’s. In
Section IV, we explain how this basis can be extended to com-
press the whole video, and present a segmentation algorithm for
this purpose. After showing our results on various standard se-
quences in Section V, we conclude with final remarks in Sec-
tion VL.

II. SPATIOTEMPORAL REGULARITY FLOW (SPREF)

SPREF ({(z,y,t)) is a 3-D vector field that shows the di-
rections in which a spatiotemporal region, F', varies regularly.
These directions are designed such that when a 3-D wavelet
basis is warped along the SPREF directions, the resulting basis
is also orthogonal. The orthogonality is guaranteed by a planar
(cross-sectional) parallelism of the flow field, which is defined
as all the vectors on a plane being equal in magnitude and di-
rection. In our framework, a cross-sectionally parallel flow field
can belong to one of the following three classes: 1) x — y par-
allel, 2) x —t parallel, and 3) y — t parallel. In an x — y parallel
flow, the vectors on an x — y cross section of the flow field for
a particular ¢ are cross-sectionally parallel. The planar paral-
lelisms are defined similarly for the x — ¢ and y — ¢ parallelisms

The = — y parallel SPREF models the directions of regularity
that depend on the motion in the frames that constitute the spa-
tiotemporal region. However, one should note that due to the
planar parallelism constraint, the spatiotemporal regularity flow
is not the same as the optical flow. The difference between these
two types of flows is discussed in more detail in Section II-A.
The other two classes of spatiotemporal regularity flow, i.e., z—t
and y — t parallel flows, generally model the spatial regularity
of F.
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Fig. 1.

(d)

Three types of SPREF fields for a gof that has a global motion along the diagonal. (a) The original synthetic sequence (eight frames). (b) (Left) The = — y

cross section of a gof. (Middle) The flow field shown for the # — y parallel flow. (Right) The = — y cross section of the flow at t = 1, superimposed on the first
frame of the gof. Similar explanations apply for (c) y — t parallel flow and (d) x — t parallel flow.

The regularity condition that SPREF needs to satisfy can also
be perceived as a requirement to follow the directions, in which
the sum of the directional gradients is minimum. Describing the
problem in this way allows us to write a flow energy equation,
defined over V' (the support of F’), for a { as

O(F  H)(x,y,1)

BQ)= /V o¢(,y.1)

where H is a regularizing filter, such as a Gaussian.

This continuous flow energy equation can be discretized, and
then tailored to different types of parallelism depending on how
( is defined. If the flow is ¢ — y parallel, then ( is defined as

((2,y,1) = Cay(t) = (e1[t], 5[t], 1), resulting in

E(Gy) =) (F* %—f) &

v
OH

2
dxdydt (D

[t]

O |?

o 2)

Notice that the formulation of (,,(t) implies that the z and y
components of the flow, (¢} [t], ¢5[t]), are functions of time only,
which is constant for all the pixels of a certain frame, i.e., x — ¥y
cross section of the gof. Fig. 1(a) shows the frames of a synthetic
gof, which has been sampled from the Lena image by imitating
a global translational motion in the diagonal direction. Hence,
the direction of motion for all frames is uniform. Fig. 1(b), from

left to right, shows a typical x —y cross section of a gof, the sub-
sampled = — y parallel flow field (shown by the blue arrows),
and, finally, the x — y cross section of the flow at ¢ = 1, super-
imposed on the corresponding cross section of the gof.

If the flow is y — t parallel, then ((z,y,t) is formulated as
Cyt() = (1, c5]x], ¢5]x]). The vector, (ch[z], c5[x]), for a given
x, is the same for all the pixels on the y — ¢ cross section of the
flow. This definition of ( results in the following flow energy
equation:

F*a—H—i— (F*
ox

o) el

+ <F* 68—1;[) 4[]

Fig. 1(c) shows (,:(z), and its first y — ¢ cross section at
z = 1, superimposed on the corresponding cross section of the
gof. Notice that the flow directions still follow the motion.

For the © — t parallel flow, { is defined as ((z,y,t) =
Cat(y) (cily], 1, ¢5]y]), and the expansion of (1) with this
definition results in

E(Cyt) = Z

C)

E) =)

OH\ OH
(F‘k %> Cl[y]+F* 8y

+ (F* %) syl

2
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Fig. 2. Three classes of SPREF curves for the gof in Fig. 1: (a)—(c) x — y parallel Flow. Blue arrows show the SPREF directions, and the red curves show the
SPREF curves. In (a), the 3-D view of the first, fourth, and eighth frames of the sequence in Fig. 1(b) are shown. (b) The same spatiotemporal region intersected
along the flow curves. Finally, (c) is the frontal view of the intersecting plane. Notice how the SPREF curves extend in the directions, along which pixels change

the least.

Fig. 1(d) shows (;+(y), and the superimposition of its = — ¢
cross section on the gof. Similar arguments about the regularity
of the flow apply here as well.

In order to convert the flow directions into actual spatiotem-
poral paths of regularity, the SPREF curves need to be com-
puted. A spatiotemporal regularity flow curve, c[u], is an integral
curve, whose tangents are parallel to (. It defines the spatiotem-
poral paths, on which F varies regularly, and it can be used to
warp the wavelet basis along the directions of regularity. The
SPREF curve in the discrete domain is defined by the equation,

=Y el ®)
k=1

where w = 1, 2, 3. The coordinates of an x — y parallel flow
curve are given as, (z + ¢1[t], y + ¢2[t], t) for a constant (z,y)
and a varying t. If the flow is © — t parallel, the flow curve
coordinates are (x + c1[y],y,t + cs[y]) for constant (z,¢) and
varying y. Finally, if the flow is y — t parallel, then (z,y +
calz], t + c3[z]) for constant (y, t) and varying = gives the flow
curve coordinates.

Fig. 2(a) shows the first, fourth, and eighth frames of the se-
quence in Fig. 1(a), and its z —y parallel SPREF directions (blue
arrows) in 3-D. The red lines show the SPREF curves, on which
the gof varies regularly. Notice that the curves extend along the
direction of motion. In Fig. 2(b), the side view of the gof, in-
tersected along the flow curves is shown. Finally, in Fig. 2(c),
the intersecting plane is viewed from the front. It is clearly vis-
ible that the flow curves show the directions on which the pixels
change the least. In Fig. 2(d) and (e), the SPREF curves of the
flows in Fig. 1(d) and (f) are shown. Notice that the curves ex-
tend along the direction of motion regardless of the flow type
since motion is the factor that determines the regularity in this
sequence.

One of the most important requirements for the flow repre-
sentation is that it should be compact, such that the overhead it
will introduce to the compression is minimum. In order to satisfy
this condition, and also to obtain a smooth flow, the directions,

e lu] (m € {1,2,3}), are approximated with the translated box
spline functions of the first degree, S(u), as

ZamS

where «,, (n = 1...2") is the nth spline coefficient, | = 1-- -k
is a scale factor, 2¥ is the width of F; on the axis along which
the flow is not planarly parallel, and u is an index of this axis
(u € {z,y,t}). With this representation, the whole spatiotem-
poral regularity flow can be recovered by storing only the spline
control point values. The spline function, S(u), we used in our
experiments is formulated as

lu —n) 6)

if Ju| 1
otherwise.

s = {1

The coefficients, «,,, are solved for by quadratic minimiza-
tion of the energy functions (2), (3), or (4), the choice depending
on the parallelism class. In the final step, these coefficients are
quantized. The selection of the quantization parameter depends
on the precision requirement of the flow.

A. x — y Parallel SPREF versus Optical Flow

When the spatiotemporal regularity flow is x — y parallel, its
directions and magnitudes resemble those of the optical flow but
there are some differences between the two types of flows. The
true optical flow (u[z, y], v[z,y]) gives the directions of highest
regularity between two frames as a function of the spatial loca-
tion. These directions for all the frames of a subgof can form
a 3-D flow field, such that {(z,y,t) = (u[z,y,t],v[z,y,t],1).
However, the spatiotemporal components of the true optical
flow field are not regularized; hence, they do not necessarily
provide a one-to-one mapping of the pixels in consecutive
frames in 3-D. When this is the case, they cannot be used
to form a path of decomposition that will result in a perfect
reconstruction of the data. On the other hand, the x — y parallel
SPREF imposes a regularity condition on the flow such that
the pixels are one-to-one mapped through optimal translations
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(c1[t], e2[t]) for a gof, such that the cumulative spatiotemporal
regularity flow error is minimized. If all the pixels in a frame
have the same motion, then the SPREF and the optical flow
are the same. However, if the true optical flow is a function
of the spatial location, i.e., when the motion is a rotation or
zooming in/out, then SPREF tries to find the best translations
for each frame of the gof that can approximate those motions.
Moreover, SPREF is more suitable than optical flow since it
contains much less redundancy due to the spline representation.
Further reduction of this redundancy is also possible by a final
segmentation process, which will be described later in detail,
in Section IV.

III. ORTHONORMAL SPATIOTEMPORAL BANDELET BASIS

SPREF is designed so that it can be used to warp the 3-D
wavelet basis along the directions which a spatiotemporal re-
gion, F, is regular. Once the wavelet basis is warped, it can be
converted into a bandelet basis to take further advantage of the
regularity along the flow directions. In this section, we will ex-
plain how a 3-D orthonormal bandelet basis can be constructed
with a given SPREF, and describe an algorithm for the bandelet
decomposition of F'.

A. Constructing the Orthonormal Bandelet Basis

The standard orthonormal 3-D wavelet basis decomposes the
data in temporal, vertical and horizontal directions. The order
of these directions is not important due to the separability of the
basis. This basis can be written as

( 1/’j7m1 (x)qﬁ],mz (1j)¢j7m3 t
Vjomy (£)P5,ma (

bjomy (T),ms
(bj,ml (x)l/}J,mz(
Vo (%) Pjmo (
Vjumy (£)Pj,m (1
() (

\ ¢j,m1 € ‘b]m

(4,m1,ma,m3)€ETy

where ;. (u) = (1/V2)9h(u — 29m/27) s
the wavelet function, ¢ is the scaling function,
Gjm(u) = l/ﬁgb(u —2/im/27), j and m are the

scale and translation factors. V' is the support of F' and is a
subset of R3. Iy, is an index set that depends upon the geometry
of the boundary of V.

This standard set of decomposition directions can be
described by certain values of the SPREF classes such as
ny(t) = (0707 1>’ Cmt(y) = (07 170)’ or Cyt(x) = (1707())'
Notice that, ideally, these values of ¢ are suitable only when
the frames are regular along the purely temporal, horizontal
or vertical directions. However, when the directions of reg-
ularity depend on the motion and/or the spatial structure of
the scene, which they always do, the optimal decomposition
might lie along different directions. If the true flow, (, of a
subgof is known, then the decomposition of the data along
the flow directions can be carried out using the orthonormal
bandelet basis. The construction of the bandelet basis consists
of two steps: 1) warping the standard 3-D wavelet basis and
2) bandeletization.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 15, NO. 12, DECEMBER 2006

The standard wavelet basis can be warped along the
flow curves with the operator W, which is defined as
ny(F($7y7t)) = F(fl? + Cl[t]vy + CZ[t]vt) for the © — Yy
parallel flow, (y,(t). Alternatively, F' can be warped instead of
the basis itself, and the standard wavelet basis can be defined in
the warped domain. Then, the transformation of this basis back
to the original domain produces the warped wavelet basis

o, (= 1 [0 (5= Ca[t)) By (1)
iy (&= 1 [ (g = [t e (1)
G (@ =L [0 (5 = c2[t]) o (1)
D (@ = L[]0 (4= c2lt] 5 (1)
iy (=1 ()b (9 = c2lt]) s (1)
iy (=1 [ (5= 2] s (1)
G (@=L ) D5ma (5= 2l Bims (1) ) (s syt

where V' is the support for the warped region. This basis de-
composes F' along the directions of regularity, where the en-
tropy of the data is lower. Hence, the resulting number of signifi-
cant coefficients is also lower than those of the standard wavelet
basis, which implies a higher compression rate. The warped
wavelet bases for the y — ¢ and = — t parallel spatiotemporal
regularity flows can be written in the same manner using the
warping operators Wy (F(z,y,t)) = F(z,y+ ca2[x], t + c3[z])
and W (F(z,y,t)) = F(x + c1[y], y, t + c2[y]), respectively.
After warping the wavelet basis, the last step is the bandeleti-
zation [8]. The wavelet function family {t)(¢)}; .3 consists of
high-pass filters and it has a vanishing moment at lower resolu-
tions. The scaling function family {¢(¢) }; 3, however, consists
of low-pass filters, and it does not have a vanishing moment at
lower resolutions. Hence, it cannot take advantage of the reg-
ularity of the gof along the flow curves. In order to solve this
problem, the warped wavelet basis is bandeletized by replacing
{p(t)}jms with {p(t)}1 ms for I > j. After the bandeletiza-
tion, the orthonormal bandelet family is written as follows:

(Vjmy (€= [t])¥gm, (Y —c2t]) Prm, (£) )
i (&= 1 (1)1, (Y= Ca[t]) 9 ms (1)
Djm (= C1[t])j,m, (4 —c2[t]) Yrms (1)
B (£ =1 (1) (5= C[1])05ms (1)
/l/}j7m1($_cl[t]) J,mo (y— CZ[tD?/Jl Pi,ms () (t)
b my (€= C1[t]) b, (4= [t] )0 ms (1)
(g (=1 [t]) hjme (y— 02[ DWsma (8) ) (155.my s ms)

where the underlined are the replaced functions in the warped
wavelet basis. A similar process is followed for bandeletization
if the flow is y — ¢ parallel, i.e., the bandeletization is done
by replacing the scaling function family {¢(x)}; .1 with the
wavelet function family {+)(z)}; 1 at lower resolutions, [ > j.
if the flow is © — t parallel, then the bandeletization requires
replacing the family {#(y)};mo with {t)(y)}1,m2 at lower res-
olutions, [ > j.

B. Orthonormal Bandelet Decomposition

Decomposing F' using an orthonormal bandelet basis can be
implemented by an algorithm that is very similar to the discrete
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Fig. 3. Results for the frames 98-105 of the Alex sequence at 1000 kbps. [Columns (a) and (c)] The original frames. (b) The optimal segmentation of the frames
at 1000 kbps. The SPREF of the region marked with a red rectangle is analyzed further in (d) and (e). In (d), the SPREF is superimposed on the mini frames. The
correctness of the motion directions can be observed by tracing Alex’s chin (y) and left ear (). In (e), the SPREF is shown as a 3-D vector field, where it is shown

from oblique, top and side views, respectively.

wavelet transform. The main steps of the orthonormal bandelet
decomposition can be summarized as follows.

1) Compute the SPREF of the region, F', according to (2), (3),
or (4). A 3-D Gaussian filter can be used as the regularizing
filter, H.

2) Compute the warped wavelet transform coefficients of F'
with the quantized flow parameters.

(a) F can be decomposed with a warped wavelet basis
by a subband filtering that goes along the flow curves.
The subband filtering can be implemented by using
the lifting scheme [18], which requires that the right
and left neighbors of a point be known. In the standard
wavelet decomposition, the temporal neighbors of a
pixel at the location (x, y, t) are located at (x, y, t—1)
and (z,y,t + 1). However, in the warped wavelet fil-
tering, these neighborhoods have to be defined on the
flow curves. In order to establish this neighborhood

relationship, the curve coordinates are stored in a grid
G(x,y,t). If the parallelism is of the © — y class, then
G(z,y,t) = (x+c1[t], y + colt], t) if (x4 1 [t], y +
c2[t],t) € V; and is null otherwise. Since the z — y
parallel flow curves are the sets of points with con-
stant (z,y) and varying ¢, the pixels stored at the lo-
cations G(z,y,t — 1), G(z,y,t) and G(z,y,t + 1)
are temporal neighbors on the same curve. The spa-
tial neighborhoods of the pixels, on the other hand,
are still defined based on their spatial coordinates, not
the flow curves. Similarly, if the parallelism is of the
x — t class, then G defines the horizontal neighbor-
hoods, ie., G(z,y,t) = (x + c1[y],y,t + c3[y]) if
(z + c1y], v, t + csly]) € V.G is null otherwise. The
neighbors of the pixel stored in G(z,y,t) are stored
in G(z,y — 1,¢) and G(z,y + 1,t). Finally, if the
parallelism is of the y — ¢ class, then G is defined as
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Fig. 4. Bit-rate versus PSNR plots of (a) Alex, (b) Akiyo, (c) mobile, and (d) foreman sequences. The plots (a) and (b) show the comparison of SPREF-based
compression and standard (non motion-compensated) wavelet video compression. The plots (c) and (d) show a comparison of SPREF-based compression and the

LIMAT (motion-compensated) framework.

(z,y + colz], t + c3[z]) if (x,y + coz], t + c3[z]) €
V.G is null otherwise. The neighboring pixel coordi-
nates are stored in G(z — 1,y,t) and G(z + 1, y,1).
Note that when G(z,y,t) is a noninteger value, the
data has to be carefully sampled at that point. In our
experiments, we used nearest-neighbour interpolation
technique to prevent loss of data during sampling.

3) Bandeletize the warped wavelet coefficients.

(a) The coefficients resulting from the scaling function,
¢(u) (u € {z,y,t}, depending on the parallelism
class) are further decomposed, using subband filtering
at the lower resolutions. This concludes the bandelet
transformation of the subgof.

The reconstruction of the gofis implemented by inverting the
decomposition steps. In order to do this, the coordinate grid, G,
needs to be reconstructed. Once G is known, the rest is simply
inverse filtering of the data along the flow curves.

1) Compute the grid, GG, from the quantized spline coeffi-

cients.

2) Unbandeletize the quantized bandelet coefficients by in-
verse subband filtering to recover the warped wavelet co-
efficients.

3) Apply inverse subband filtering steps once more along the
flow curves to reconstruct the subgof.

IV. VIDEO COMPRESSION

In wavelet video compression, a video sequence is first parti-
tioned into gof, then each gofis compressed separately. Our aim
is to achieve a higher compression rate by analyzing the direc-
tions of regularity of the gof, which are modeled by SPREF. The
direct extension of the compression we described in the previous

section to a video sequence does not always work because most
of the times the directions of regularity of a gof are not uniform.
This becomes the case when the gof has multiple directions of
regularity due to different types of motions taking place in the
video, and/or the different spatial arrangements in it.

The solution to this problem is segmenting a gof into sub-
gofs, such that the directions of regularity of each subgof is as
closely estimated as possible by its corresponding SPREF. The
challenge here is finding the optimal segmentation of the gof’s
support, V', into V;s, (V = |, V;), so that the compression cost

D+AR=Y"D;+\R; )

is minimized, where D;

D; = Z Z Z(Fi,original(x7 Y, t)
x Yy t

_Fi,rcconstructod(x7 Y, t))2 (8)

is the sum of squared reconstruction error of F;, R; is the bit
cost of the encoded decomposition coefficients and SPREF pa-
rameters, and A is a Lagrange multiplier. In order to achieve
this segmentation, we initially partition the gof into rectangular
prisms (cuboids) using an oct tree data structure,The width of
each dimension of a cuboid is 2%/, where j € {1,2, 3} denotes
the particular dimension. The bit cost (R;) of a subgof consists
of three different types of costs: R.; (the position and size of
F}), R, ; (the SPREF coefficients) and I ; (the quantized ban-
delet/wavelet coefficients). R, ; also encodes whether a certain
type of spatiotemporal regularity flow exists or not. If a subgof,
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Fig. 5. Results for frames 11-18 of the Akiyo sequence compressed at 480 kbps. (a), (c) Original frames; (c) shows the optimal segmentation at this bit rate. The
motion of Akiyo’s head results in segmentation of the region that contains both the static background and her head. Moreover, even the static regions are segmented
according to their regularity. For example, most of the corners in the background are segmented where they contain both horizontal and vertical edges. The SPREF
analysis of the region marked with red rectangles is shown in (d) and (e). In (d), the global motion of Akiyo’s head can be seen by following her brows. This motion
is captured by the SPREF and shown by the red arrows superimposed on the frames. In (e), the same SPREF is shown from oblique, top and side views.

F;, consists of spatially smooth frames with no motion, then its
directions of regularity are not well defined; hence, there ex-
ists no SPREF. In this case, F; is compressed with the stan-
dard wavelets. If the flow is defined, then it is represented by
n = 2ki=lay) 4 2(ki=ley) quantized spline parameters (o, ),
where a; and ap are the axes that constitute the plane of the
flow parallelism. The scale parameter, /,;, and the flow coeffi-
cients are coded with fixed length codes. The bandelet/wavelet
coefficients to be stored in 2 ; are encoded using 3-D SPIHT
encoding [19], followed by a run-length encoding step.

The minimization of the sum in (7) starts with computing
the compression cost for all cuboids in the oct tree. The cost,
(D; + AR;), can be minimum for only one of the four flow hy-
potheses, including the no-flow case. When computing the cost

of the SPREFs for a certain parallelism, the optimal scale pa-
rameter [(1 < | < k) in (6) is found by trying all possible
values of [, and selecting the one that results in the smallest com-
pression cost. In the end, the flow that results in the minimum
cost determines the flow type of F;. The optimal segmentation
of V is found by a split/merge algorithm starting from the leaf
nodes (the smallest cuboids) of the oct tree. At each level, eight
child nodes are merged into a single node if their cumulative
cost is greater than the parent’s cost, otherwise they stay split.
This merging constraint can be formulated as

8
D; +AR; < Z Diq+ AR 4 9

q=1
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Fig. 6. Results for a gof of the Mobile sequence (frames 99-106) at 350 kbps. (a), (c) Original frames; (b) shows the segmentation at this bit rate, with a marked
region, whose SPREF is analyzed in (d) and (e). Notice that the train, calendar, and the moving background have different motions; hence, the gofis segmented in
these regions so that each region can contain a certain type of motion. The motion of the ball and the swinging toy cannot be modeled well with SPREF; hence,
those regions stay unsegmented. In (d), it can be seen that the horizontal motion of the background is captured by SPREF and superimposed on the mini frames.

(e) SPREF from oblique, top, and side views, respectively.

where D; , is a child of the node D;. The split-merge algorithm
is applied until the top of the tree is reached, which concludes the
optimal segmentation of the gof in terms of the bit rate and the
reconstruction error. The 3-D SPIHT encoding allows the user
to fix the bit rate to a certain number, so in our experiments, we
dropped the A term since R; was the same for all children of a
node. However, when other encoding techniques are to be used,
this term should be incorporated. The basis for the whole gof is
called the block orthonormal bandelet basis, and it consists of
the union of the bases of the subgofs in the final segmentation,
on their own supports.

V. RESULTS

In this section, we show the results of the bandelet video com-
pression on some standard video sequences, i.e., Akiyo, Alex,
Foreman, and Mobile. All sequences are at QCIF resolution
except for Alex, whose resolution is CIF. In sequences with
low motion content (Alex and Akiyo), our results demonstrate

the success of SPREF in improving the non motion compen-
sated wavelet compression. In other ones where the motion is
dominant, we compare the performance of SPREF-based com-
pression with a motion-compensated wavelet compression tech-
nique, namely the LIMAT framework of Secker and Taubman in
[15].

In our experiments, we used Daubechies 7-9 filters, and de-
composed the data in two levels using the lifting scheme for
both bandelets and wavelets. In the bandelet decomposition, the
smallest subgof in the oct tree is 16 x 16 x 8 (z X y x t). The
motion parameters are quantized with a step size of 1/8. When
the frame size is not an integer multiple of the spatial size of our
largest subgof (64 x 64), as in QCIF (176 x 144) frames, the
oct-tree segmentation uses noncuboid subgofs near the image
boundaries.

The directions of regularity in a video are usually not uniform.
Our algorithm handles this nonuniformity by segmenting the
gof into smaller regions. Fig. 3 shows the results of the SPREF-
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Fig. 7. SPREF-based compression of frames 26-33 of the Foreman sequence at 500 kbps. (a), (c) Original frames; (b) optimal segmentation at this bit rate;
(d) SPREF of the marked region superimposed on foreman’s face; (e) 3-D view of the SPREF from oblique, top, and side views. Notice that the horizontal transla-
tional motion of the foreman’s head is captured as seen in (d). Moreover, the top and side views shown in (e) also tell us that the motion is dominantly horizontal.

Hence, decomposing the sequence along this direction is a better choice.

based compression of the frames 98—105 of the Alex sequence
at 1000 kbps. Fig. 3(a) and (c) shows the original frames, and
Fig. 3(b) shows the final segmentation at this bit rate. Notice
that segmentation occurs when the spatial or temporal regularity
cannot be modeled by a single SPREF, such as at the boundary
of Alex’s head and the background, and/or the right and left
ends of the frame where the frame is padded with gray pixels.
The SPREF of the region bounded by red rectangle in Fig. 3(c)
is analyzed further in Fig. 3(d) and (e). In Fig. 3(d), the SPREF
directions are superimposed on the subgof. From the motion of
Alex’s chin and her left ear, it can be seen that the z and y
components of SPREF capture the motion of her head well. In
Fig. 3(e), the SPREF is shown from various angles so that the
motion components can be seen independently.

Fig. 4(a) shows a comparison of the SPREF-based compres-
sion and wavelet video compression at various bit-rates. The
improvement as a result of the directional decomposition and
bandeletization in SPREF-based compression can be clearly ob-
served in this plot.

Fig. 5 shows the frames 11-18 of the Akiyo sequence com-
pressed at 480 Kbps with our method. Following the format
in Fig. 3, Fig. 5(a) and (c) shows the original frames, and
Fig. 5(b) is the optimal segmentation at this bit rate. Notice
the segmentation around Akiyo’s head, which is moving in
front of a static background. The background is also segmented
in regions, where the spatial directions of regularity cannot
be modeled by a single x — ¢ or y — t parallel SPREF, such
as the corners of the screens behind Akiyo. A more detailed
analysis of the region marked with a red rectangle, and its
SPREF is presented in Fig. 5(d) and (e). The motion of Akiyo’s
head in Fig. 5(d) can be observed from her brows, which can
also be verified by the superimposed SPREF directions. In
Fig. 5(e), we see this SPREF from oblique, top, and side views.
Fig. 4(b) shows the bit rate versus PSNR plot of this sequence
for both SPREF-based compression and standard wavelet video
compression.

In Fig. 6, we show various outputs from the compression of
the frames 99-106 of the Mobile sequence at 355kbps. The seg-
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mentation here is mainly determined by the motion of the cal-
endar, the train and the background. Fig. 6(a) and (c) shows
the original frames, and Fig. 6(b) shows the optimal segmen-
tation at this bit rate. Notice that the motion boundaries are seg-
mented into smaller regions. The SPREF of the marked region
in Fig. 6(b) is analyzed further in Fig. 6(d) and (e). The motion
in this region is purely horizontal, as can be seen from the su-
perimposed directions in Fig. 6(d), and the top and side views of
the SPREF in Fig. 6(e). Fig. 4(c) shows a comparison of com-
pression between SPREF-based compression and the LIMAT
framework at multiple bit rates. The motion in this sequence
consists of many components such as global zooming out, ro-
tating ball. In addition, the nonrigid motions of the objects, such
as the swinging toy, can be modeled well with SPREF only if
the group of frames is broken into much smaller spatiotemporal
regions. The mesh model used in LIMAT, however, can model
some of these nontranslational motion types better than SPREF.
Hence, LIMAT performs marginally better than SPREF in this
particular example.

We conclude this section with an example from the Foreman
sequence. In Fig. 7, we see the frames 26-33 of the Foreman
sequence compressed at 500kbps. In this clip, both the camera
and the foreman’s head are moving. However, since their mo-
tions are different, the regions that contain both are segmented
into smaller regions. Following the same format in the previous
figures, Fig. 7(a) and (c) shows the original frames, Fig. 7(b)
shows the segmentation of the clip, and finally Fig. 7(d) and
(e) shows the SPREF of the region marked with a red rectangle
in Fig. 7(b). Notice that the global translational motion of the
foreman’s head in horizontal direction is captured by SPREF.
This can be seen more clearly in Fig. 7(e), where the x and ¥y
components of the SPREF are shown in top and side views, re-
spectively. Fig. 4(d) shows a comparison of the performance
of SPREF-based compression with the LIMAT framework. The
global motion in the Foreman sequence is mostly translational,
which can be modeled very well by SPREF with a low motion
overhead due to the spline representation. Moreover, bandeleti-
zation further takes advantage of this well-captured regularity.
Hence, the improvement in PSNR 1in this sequence is significant.

VI. CONCLUSION

In this paper, we presented a new framework for video coding,
using a special class of wavelets, the spatiotemporal bandelets.
We approached the problem as that of finding the spatiotemporal
directions, along which a group of frames is regular. Since the
entropy of regular data is low, its decomposition yields higher
compression rates. Previously, the studies on motion compen-
sated wavelets have tried to improve the compression rates by
only accounting for the temporal directions of regularities, and
ignored the spatial regularities of the frames. In contrast, we pre-
sented a novel representation that models the directions of regu-
larity that are determined by both motion and spatial structure of
the scene. This distinguishes our work from the MCWC because
SPREF allows us to exploit not only the temporal regularity but
also the spatial regularity. We compared our work with standard
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wavelet video compression and MCWC where appropriate. We
showed that as long as SPREF can model the motion well, it out-
performs these methods. Our results imply that there is room for
future work in SPREF such as modifying the model to handle
nontranslational motions more accurately. We also want to ex-
plore the possibilities of computing good optical flow using this
framework. We believe that the analysis of SPREF at different
parallelisms holds the key to computing a good optical flow.
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