
Monitoring Head/Eye Motion for Driver Alertness with One Camera

Paul Smith, Mubarak Shah, and N. da Vitoria Lobo
Computer Science, University of Central Florida, Orlando, FL 32816�

rps43158,shah,niels � @cs.ucf.edu

Abstract

We describe a system for analyzing human driver alert-
ness. It relies on optical flow and color predicates to
robustly track a person’s head and facial features. Our
system classifies rotation in all viewing directions, detects
eye/mouth occlusion, detects eye blinking, and recovers the
3D gaze of the eyes. We show results and discuss how this
system can be used for monitoring driver alertness.

1. Introduction

A system for classifying head movements would be use-
ful in warning drivers when they fell asleep. Also, it could
be used to gather statistics about a driver’s gaze.

We describe a framework for analyzing movies of driv-
ing and determining when the driver is not paying adequate
attention to the road. We use a single camera placed on the
car dashboard. We focus on rotation of the head and blink-
ing, two important cues for determining driver alertness.

Our head tracker consists of tracking the lip corners, eye
centers, and sides of face. Automatic initialization of all
features is achieved using color predicates[5] and connected
component algorithms.

Occlusion of the eyes and mouth often occurs when the
head rotates or the eyes close, so our system tracks through
such occlusion and can automatically reinitialize when it
mis-tracks. We implement blink detection and demonstrate
that we can obtain 3-D direction of gaze from a single cam-
era. These components allow us to classify rotation in all
viewing directions and detect blinking, which, in turn, are
necessary components for monitoring driver alertness.

First, we describe previous work and then describe our
system in detail. We then present results, discuss driver
alertness, and conclude.

1.1. Previous Work

Work on driver alertness [3] [4] [7] [8] [9] [10], to our
knowledge, has not yet led to a system that works in a mov-
ing vehicle. The most recent of these [3], did not present
any methods to acquire the driver’s state. Further their

method relies on LEDs, and uses multiple cameras to es-
timate facial orientation. A moving vehicle presents new
challenges like variable lighting and changing backgrounds.
The first step in analyzing driver alertness is to track the
head. Several researchers have worked on head tracking [6]
[2], and the various methods each have their pros and cons.

1.2. Input Data

The movies were acquired using a video camera placed
on the car dashboard. The system runs on an UltraSparc us-
ing 320x240 size images with 30 fps video. Two drivers
were tested under different daylight conditions ranging
from broad daylight to parking garages. Some movies were
taken in moving vehicles and others in stationary vehicles.

1.3. Parts Used from Other Research

A color predicate was originally developed by Kjeldsen
et al. [5]. The idea, there, is to manually mark subsets of
the RGB color space that the algorithm should recognize in
future test images.

Anandan’s optical flow algorithm [1] produces affine op-
tical flow. It computes the global motion of a scene.

2. The Algorithm

Here is an overview of our algorithm.
1. Automatically initialize lips with color predicate and

connected components
2. Automatically initialize eyes using color predicate and

connected components
3. Track lip corners with dark line and color predicates
4. Track eyes with affine optical flow and color predicates
5. Construct a bounding box of head using color predicate
6. Determine rotation using distance between eye and lip

feature points and sides of face
7. Determine blinking and eye disappearance using the number

and intensity of pixels in eye region
8. Reconstruct 3D gaze using constant projection assumptions
9. Make inferences regarding driver’s state using rotation and

eye occlusion information
10. Decide, using rotation and distance constraints, if eye or lip

tracking needs reinitialization
11. Repeat from step 3 for next frame



2.1. Initializing Lip and Eye Feature Points

2.1.1. Automatic Lip Initialization

A color predicate was generated using 7 images of people’s
lips. A few of the training images together with their manu-
ally drawn lip regions and automatically selected lip colored
pixels by the color predicate are shown in Fig 1.

Figure 1. lip color predicate training.

The reason for the salt and pepper noise throughout the
image is that backgrounds have lip-like colors in them.
Also, parts of the faces were lip colored due to lighting
conditions. Fig 2 shows the results of running the lip color
predicate on non-training images. After obtaining this lip

Figure 2. color predicate non-trained images.

image, we apply a connected component algorithm to it,
and the biggest lip colored region is identified as the mouth.
We compute edges of this mouth region and declare these
as the lip corners. The initialization does not need pinpoint
accuracy as the lip tracker itself will overcome inaccuracies.
Fig 3 shows the results of automatic lip initialization on the
previously shown input images.

2.1.2. Automatic Eye Initialization

Automatic eye initialization uses skin color predicates as
well, though in a different way. Fig 4 shows input images,
manually selected skin regions, and the output of the color
predicate program on training images.

Figure 3. Output of automatic lip initialization

Figure 4. skin color predicate training

Figure 5. skin found in non-trained images

Fig 5 shows output of the skin color predicate on non-
training images. Since eyes are not skin, they always show
up as holes. Hence, we find connected components of non-
skin pixels to find the eye holes. We find the two holes that
are above the previously found lip region, and that satisfy
the following size criteria for eyes. Since our dashboard
camera is at a fixed distance from the face, we estimate the
relative size of eyes to be between 15 and 800 pixels. For all
images we tested(several hundred), we found these criteria
to be reliable. Fig 6 shows results of automatic eye and lip
initialization from various data sets.

2.2. Lip Tracking

We have a multi-stage lip tracker. The first stage is the
most accurate but unstable. The second stage is not as ac-
curate but more stable. The third stage is coarse but very
stable. We use the first stage estimate, if it is correct. If not



Figure 6. automatic eye and lip initialization

we take the second stage estimate. If both stages fail, we
take the third stage estimate as the lip corners.

For the first stage, we automatically find the dark line be-
tween the lips, shown in Fig 7 as a white line. We compute
this dark line as follows. We find the center of the lips from���������
	������	����������������������������
	������	������������ �"!��# and for each side
of the mouth we start examining each pixel outward from
the lip center. For each pixel, we consider a vertical line
and find the darkest pixel, $&%
' ���)()��*+ , on this vertical
line. The darkest pixel will generally be a pixel on the dark
line between the lips. We do this for 35 subsequent pixels,
which is why the mouth line extends beyond the sides of
the mouth. To determine where the lip corners are we ob-
tain ,.-�/1032 456�78�:9���;���<���	�=>��?@	���������	��������BA 4*����@��!������C� for
each pixel; this is because we want a pixel that is close to
the previous lip corner, but if it is too bright, then it cannot
be the lip corner. The function maximum is the lip corner.
If this estimate is too far from the previous lip corner, we
run the second stage of our algorithm, described next.

Figure 7. Examples of dark line between lips

Here we use a stricter color constraint. With the darkest
line found, we select the pixel closest to the previous lip
corner that has lip colored pixels above and below it.

If the second stage fails then we employ the third stage,
which is simply reinitialization of the system, as described
above in section 2.1.1, within the most recent lip region.
In this way we have a method automatically able to correct
itself when the tracking is lost due to occlusion. In sub-
sequent frames the previous lip tracking steps will resume
control and regain the exact position of the lip corners.

The reason for our hierarchical lip tracker is that large ro-
tation, occlusion, or rapidly changing lighting breaks down
the accurate(first) stage. The two other stages are more
coarse, but they are more robust. Fig 8 shows the output
of the lip tracker for a variety of images.

Figure 8. lip tracker for a variety of sequences

2.3. Eye Tracking

We have a multi-stage eye tracker with similar con-
straints to the multi-stage lip tracker. For the first stage,
we go to the eye center in the previous frame and find the
center of mass of the eye region pixels. Then we search aDFEGD

window around the center of mass and look for the
darkest pixel, which corresponds to the pupil. If this esti-
mate produces a new eye center close to the previous eye
center then we take this measurement.

If this stage fails, we run the second stage, where we
search a window around the eyes and analyze the likelihood
of each non-skin connected region being an eye. We limit
the search space to a H EJILK

window around the eye. We find
the slant of the line between the lip corners. The eye centers
we select are the centroids that have the closest slant to that
of the lip corners. Still, this method by itself can get lost
after occlusion. For simplicity in our description, we refer
to these two stages together as the eye black hole tracker.

The third stage, which we call the affine tracker, runs in
parallel with the first two stages. Since automatic initializa-
tion yields the eye centers, we construct windows around
them, and then in subsequent frames, consider a second
window centered around the same point. We compute the
affine transformation between the windowed subimages and
then, since we know the eye center in the previous frame,
we warp the subimage of the current frame to find the new
eye center. Thus, we have two estimates for the eye centers,
one from the eye black hole tracker and one from the affine
tracker. When there is rotation or occlusion or when the eye
black hole tracker produces an estimate that is too far away
from the previous frame, we use the affine tracker solely. In
all other cases we take an average of the two trackers to be
the eye center. Later, we discuss how we detect rotation.



We use Anandan’s algorithm to compute the affine trans-
formation. It is less likely to break down during heavy
occlusion. The affine tracker is not as accurate as the eye
black hole tracker, because of the interpolation in warping,
which is why we don’t use it exclusively unless as a last re-
sort. Figs 9 and 10 show some results of the eye and mouth
tracker in various images from the data sets.

Figure 9. whole head tracker

Sometimes, after occlusion, the eye tracker mis-tracks.
To compensate, whenever the distance between the eyes
gets to more than 4� M (where M is horizontal image size),
we reinitialize the eyes. This criteria was adopted because
we know both the location of the camera in the car and the
approximate size of the head. We also reinitialize the eyes
when the the lips reappear after complete occlusion, which
we determine when the number of lip pixels in the lip region
drops below five pixels and comes back. The reasoning be-
ing that if the lips are fully occluded, then the eyes will not
be visible, so when they reappear we should reinitialize.

This eye tracker is very robust; it tracks successfully
through occlusion and blinking in our experiments. Further,
it is not affected by a moving background, and it has been
verified to track continuously on sequences of 400 frames.

2.4. Bounding Box of Face

We can determine face rotation if we have the face’s
bounding box. To find this box, we start at the center of
the head region, which is computed using the average of the

Figure 10. head tracker with eye occlusion

eye centers and lip corners. We can do this because the cen-
ter of the head is approximately located in between these
four feature points. We could have found a more accurate
centroid of the head, but only a rough estimate is needed
here. Then for each side of the face, we start our search at
a constant distance from the center of face and look inward
finding the first consecutive five pixels that are all skin. Us-
ing five pixels, protects us from selecting the first spurious
skin pixel. This approach gives an acceptable face contour.
We show each side of the face as a straight line, produced
from an average of all the positions for that (curved) side of
the face in Fig 11, along with the tracked eyes and mouth.

Figure 11. face trace with head tracker



2.5. Occlusion, Rotation, and Blinking

Often the driver blinks or rotates the head, so occlusion
of the eyes or lips occurs, which we need to detect. To clar-
ify: our tracker is able to track through most occlusion, but
it does not recognize that occlusion (from rotation or blink-
ing) occurred. For driver alertness, we need to develop algo-
rithms to model occlusion so that we can identify these ac-
tivities. Our occlusion model deals with rotation and blink-
ing, important factors for driver alertness.

Because of foreshortening, when rotation occurs, de-
pending on which direction rotation is occuring in, the dis-
tance between the feature points and sides of face will in-
crease or decrease. So, in each frame we compute the dis-
tance from the sides and top of the face to the eye centers.
We also compute the distance from the side of face from
the mouth corners. We take the derivative of these measure-
ments over time and when there is consistent decrease or
increase in the distance, this indicates rotation. Formally,
when more than half of the distances of a particular feature
point indicate rotation in the same direction, then this fea-
ture point is assumed to be involved in head rotation. Fig 11
shows how the distance between the face sides and eye and
mouth feature points increase and decrease during rotation.

Next, a voting system is constructed where each feature
point predicts the direction of rotation. When half or more
of the feature points detect rotation, then we declare rota-
tion in this particular direction. Each feature point can be
involved in rotation along combinations of directions, but
some cases are mutually exclusive(e.g. simultaneous left
and right rotation). We have verified that the system can
detect rotation along combined directions (e.g. up and left).
By considering the distance from the sides and top of head
we can discriminate rotation from translation of the head.

Fig 12 shows the output of the whole head tracker includ-
ing rotation analysis messages, automatically displayed by
the system. Next, we present a method to determine when
blinking occurs.

We have two methods to eye occlusion detection. The
first method computes the likelihood of rotational occlusion
of the eyes. To determine occlusion of the eyes we look for
the number of skin pixels in the eye region, and when this
increases to more than

�

��� , where S is the size of the eye
region, then we assume rotational occlusion is occuring. We
know the size of the eye region because we have the non-
skin region from the skin color predicate. The reason why
we do not just announce rotational occlusion when rotation
occurs is that rotation is not a sufficient condition to infer
eye occlusion. During small rotation, both eyes will still be
visible. Our method works well in rotational occlusion of
the eyes.

The next method computes the likelihood of the eyes be-
ing closed (blinking). This method relies on the simple fact

Figure 12. head tracker rotation messages

that the eyes contain eye whites. In each frame as long as
there are eye-white pixels in the eye region then we assume
that the eyes are open. If not, then we assume blinking in
the particular eye is occuring. To determine what is consid-
ered eye-white color, in the first frame of each sequence we
find the brightest pixel in the eye region. This allows the
blink method to adapt to various lighting conditions.

For the above eye occlusion detection, each eye is in-
dependent of the other. Now we are able to distinguish
between rotational occlusion of eyes and the eyes clos-
ing(blinking). These methods give very good results. Fig
14 shows some of the results from blink detection for both
short blinks and long eye closures.



2.6. Reconstructing 3D Gaze Direction

The problem of 3D reconstruction is a difficult one. Al-
ready, we have determined rotation information and now
we provide a solution to 3D gaze tracking problem with a
single camera. The reason we can do this is that we only
need the direction of the gaze. For all practical purposes,
the gaze could go on through the windshield. By making
this assumption we eliminate the need to know the distance
from the head to the camera. Also, if we assume that head
size is relatively constant between people then we have all
the information we need. Since we only want the direc-
tion of gaze, we need the x,y locations of the eyes and back
of head. With this information, we can construct the line
which passes through all the z coordinates. We know the
eye locations, so if we can find the back of the head, then we
can reconstruct the gaze. We have found through our exper-
imentation that when rotation occurs, the back of the head
can be approximated well by the average of the two eyes
subtracted from its distance from the center of the head in
the first frame. This assumption is valid because when ro-
tation occurs, the average position of the two eyes moves in
the opposite direction to the back of the head. When head
translation occurs, we add the translation of the average po-
sition of the eyes to the original back of the head. This gives
us the relative location of the back of the head(relative to
the first frame). Since we have the x,y location of the eyes
and the back of the head, we can draw lines in xyz space
showing the direction of the gaze. This method allows us to
derive the gaze direction.

Fig 13 shows some results from acquiring 3D gaze in-
formation. The first two pictures are the input pictures. The
next two figures are the graphical 3D representation of the
scene from the y,z plane (with the x axis coming out of the
page). The lowest figure was just one of the pictures from
the sequence which shows that the head moves up in this
picture with no rotation. This is an important component of
the system because now it is possible to generate statistics
of where the driver’s gaze is.

The system is not foolproof. Given a low-lighting picture
the method of head tracking would break down. However,
we have tested our program on twelve sequences ranging
from 30-400 frames, and the system appears to be very ro-
bust and stable.

3. Driver Alertness

In this section we propose ideas about how to use our
system to acquire the driver’s state.

When the driver is looking away for too long, then we
warn that the driver’s alertness is too low. Similarly, when
the driver’s eyes are occluded (either from blinking or rota-
tion occlusion), for too long we warn that the driver’s alert-

Figure 13. Acquiring 3D info

ness is too low. More of a rigorous analysis on the physi-
ology of sleep behaviors is necessary before accurately de-
termining when a driver has fallen asleep. For our system
however, we are able to determine a basic set of criteria to
determine driver vigilance. We can do the following. Since
we know when the driver’s eyes are closed we assume the
driver has a low vigilance level if the eyes are closed for
more than 40/60 frames. In each frame we always know the
number of lip pixels in the image. So we can threshold this
number, and whenever there are too few lip pixels we will
assume that the head is heavily rotated. We can then print
that the driver’s vigilance level is too low. However, since
it is natural for a driver to look left and right we will only
print a driver inalertness message if the heavy lip occlusion
occurs for more than 10/20 frames. Finally for general ro-
tation that does not completely occlude the eyes, we will
not give driver inalertness warnings unless the rotation is
prolonged.

Again, it is not our intention to delve into the physiology
of driver alertness at this time. We are merely demonstrat-
ing that with our framework, it is possible to collect driver
information and begin to make inferences as to whether the
driver is alert or not.

4. Summary and Future Directions

We presented a method to track the head, using color
predicates to find the lips, eyes, and sides of the face. It was



tested under varying daylight conditions with good success.
We compute eye blinking, occlusion information, and rota-
tion information to determine the driver’s alertness level.

There are many future directions for driver alertness. For
aircrafts and trains, the system could monitor head motions
in general and track vehicle operator alertness.

As we can recognize all gaze directions, we could de-
velop a larger vocabulary and classify checking left/right
blind spots, looking at rear view mirror, checking side mir-
rors, looking at the radio/speedometer controls, and looking
ahead. Also we could recognize yawning. Other improve-
ments could be coping with hands occluding the face, drink-
ing coffee, conversation, or eye wear.

References

[1] J.R. Bergen, P. Anandan, K. Hanna, R. Hingorani. “Hierarchi-
cal Model-Based Motion Estimation.” Procs. ECCV, pp. 237-
252, 1992.

[2] A.Gee and R. Cipolla. “Determining the Gaze of Faces in Im-
ages.” Image and Vision Computing, 30:639-647, 1994.

[3] Qiang Ji and George Bebis “Visual Cues Extraction for Mon-
itoring Driver’s Vigilance.” Procs. Honda Symposium, pp. 48-
55, 1999.

[4] M.K. et al. “Development of a Drowsiness Warning System.”
11th International Conference on Enhanced Safety of Vehicle,
Munich, 1994.

[5] Rick Kjedlsen and John Kender “Finding Skin in Color Im-
ages.” Face and Gesture Recognition, pp. 312-317, 1996.

[6] C. Morimoto, D. Koons, A. Amir, M. Flickner. “Realtime de-
tection of eyes and faces.” Workshop on Perceptual User Inter-
faces, pp. 117-120, 1998.

[7] R. Onken. “Daisy, an Adaptive Knowledge-Based Driver
Monitoring and Warning System.” Procs. Vehicle Navigation
and Information Systems Conference, pp. 3-10, 1994.

[8] H. Ueno, M. Kaneda, and M. Tsukino. “Development of
Drowsiness Detection System.” Procs. Vehicle Navigation and
Information Systems Conference, pp. 15-20, 1994.

[9] Wierville. “Overview of Research on Driver Drowsiness Def-
inition and Driver Drowsiness Detection.” 11th International
Conference on Enhanced Safety of Vehicles, Munich 1994.

[10] K. Yammamoto and S. Higuchi. “Development of a Drowsi-
ness Warning System.” Journal of SAE Japan, 46(9), 1992.

Figure 14. Blink detection with head tracker


