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Simultaneous Video Stabilization and Moving
Object Detection in Turbulence
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Abstract—Turbulence mitigation refers to the stabilization of videos with non-uniform deformations due to the influence of optical
turbulence. Typical approaches for turbulence mitigation follow averaging or de-warping techniques. Although these methods
can reduce the turbulence, they distort the independently moving objects which can often be of great interest. In this paper,
we address the novel problem of simultaneous turbulence mitigation and moving object detection. We propose a novel three-
term low-rank matrix decomposition approach in which we decompose the turbulence sequence into three components: the
background, the turbulence, and the object. We simplify this extremely difficult problem into a minimization of nuclear norm,
Frobenius norm, and `1 norm. Our method is based on two observations: First, the turbulence causes dense and Gaussian
noise, and therefore can be captured by Frobenius norm, while the moving objects are sparse and thus can be captured by `1
norm. Second, since the object’s motion is linear and intrinsically different than the Gaussian-like turbulence, a Gaussian-based
turbulence model can be employed to enforce an additional constraint on the search space of the minimization. We demonstrate
the robustness of our approach on challenging sequences which are significantly distorted with atmospheric turbulence and
include extremely tiny moving objects.

Index Terms—Three-Term Decomposition, Turbulence Mitigation, Rank Optimization, Moving Object Detection, Particle Advec-
tion, Restoring Force.
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1 INTRODUCTION

THE refraction index of the air varies based on
several atmospheric characteristics including the

air’s temperature, humidity, pressure, carbon dioxide
level, and dust density. Such conditions are typically
not homogeneous; for instance, a non-uniform tem-
perature distribution might be observed above a sur-
face receiving sunlight. Therefore, light rays travelling
through the air with such non-uniform changes in its
relative refraction index, will go through a complex
series of refraction and reflection causing extreme
spatially and temporally varying deformations to the
captured images [1], [2], [3], [4], [5].

On the other hand, if the objects of interest are
additionally moving in the scene, their motion will
be mixed up with the turbulence deformation in the
captured images, rendering the problem of detecting
the moving objects extremely difficult. In this paper,
we are interested in the dual problem of turbulence
mitigation (stabilizing the sequence) and moving ob-
ject detection under the turbulent medium. To the
best of our knowledge, such a problem has never
been explored before. Relevant previous approaches
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have either focused on detecting moving objects or
de-warping a deformed sequence, but not on both
tasks concurrently. Note that other than image defor-
mation, atmospheric turbulence may cause blur if the
camera exposure time is not sufficiently short. In this
paper, however, we focus only on image deformation
because of the inherent confusion between the motion
of the object and the motion caused by the turbulence.

Given a sequence of frames {I1, ..., IT } acquired
from a stationary camera residing in a turbulent
medium while observing relatively tiny moving ob-
jects, we decompose the sequence into background,
turbulence, and object components. More precisely,
consider the frames matrix F = [vec{I1} · · · vec{IT }]
for Ik ∈ RW×H (k = 1, 2, ..., T ), where W × H
denotes the frame resolution (width by height), and
vec : RW×H → RM is the operator which stacks the
image pixels as a column vector. We formulate our
decomposition of F as:

min
A,O,E

Rank(A) s.t. F = A+O + E, (1)

||O||0 ≤ s, ||E||F ≤ σ,

where F , A, O, and E are the matrices of frames, back-
ground, object, and error (turbulence), respectively.
Here, the ‖ · ‖0−norm counts the number of nonzero
entries, ‖ · ‖F−norm is the Frobenius norm which
is equal to the square root of the sum of squared
elements in the matrix, s represents an upper bound
of the total number of moving objects’ pixels across
all images, and σ is a constant which reflects our
knowledge of the maximum total variance due to
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Fig. 1: The various steps of the proposed algorithm.

corrupted pixels across all images.
Our decomposition is based on the intrinsic prop-

erties of each of the components:
1) The Background: The scene in the background is

presumably static; thus, the corresponding com-
ponent in the frames of the sequence has linearly
correlated elements. Therefore, the background
component is expected to be the part of the
matrix which is of low rank. Minimizing the
rank of the low-rank component of the frames
matrix F emphasizes the structure of the linear
subspace containing the column space of the
background, which reveals the background.

2) The Turbulence: Previous work dealing with
turbulence, such as [6], [7], [8], [9], [10], demon-
strated that the fluctuations of fluids (for in-
stance air and water) attain Gaussian-like char-
acteristics such as being unimodal, symmetric,
and locally repetitive; therefore, the projected
deformations in the captured sequence often
approach a Gaussian distribution (we discuss
this in more detail in Section 3.2). For this reason,
the turbulence component can be captured by
minimizing its Frobenius norm. The Frobenius
norm of a matrix is the same as the Euclidean
norm of the vector obtained from the matrix by
stacking its columns. Therefore, as in the well-
known vector case, constraining the error in the
Euclidean norm is equivalent to controlling the
sample variance of the error. Furthermore, theo-
retically, the estimate obtained by the Frobenius
norm has several desirable statistical properties
[11].

3) The Moving Objects: We assume that the moving
objects are sparse in the sequence. This means
that the number of pixels occupied by the mov-
ing objects is small (or can be considered as
outliers) compared to the total number of pixels
in the frames. This is a reasonable assumption

for most realistic surveillance videos. For this
reason, the moving objects are best captured
by restricting the number of nonzero entries
(denoted by the `0 norm of the matrix), which
is desirable for finding outliers.

In practice, parts of the turbulence could also ap-
pear as sparse errors in the object matrix O. There-
fore, an additional constraint needs to be enforced on
the moving objects. We employ a simple turbulence
model to compute an object confidence map which is
used to encourage the sparse solutions to be located
on regions exhibiting linear motion that is dissimilar
from the fluctuations of the turbulence. Under the
new constraint, the optimization problem (1) must be
reformulated as:

min
A,O,E

Rank(A) s.t. F = A+O + E, (2)

||Π(O)||0 ≤ s, ||E||F ≤ σ,

where Π : RM×T → RM×T is the object confidence
map, which is a linear operator that weights the
entries of O according to their confidence of cor-
responding to a moving object such that the most
probable elements are unchanged and the least are
set to zero.

Figure 1 shows a diagram of the proposed ap-
proach. We first apply a pre-precessing step to im-
prove the contrast of the sequence, and reduce the
spurious and random noise. Consequently, we obtain
an object confidence map using a turbulence model
which utilizes both the intensity and the motion cues.
Finally, we decompose the sequence into its compo-
nents using three-term rank minimization.

This paper makes three main contributions: First,
we propose a new variant of matrix decomposition
based on low-rank optimization and employ it to
solve the novel problem of simultaneous moving
object detection and turbulence mitigation in videos
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distorted by atmospheric turbulence. Second, we pro-
pose a turbulence model based on both intensity and
motion cues, where the motion distribution is derived
from the Lagrangian particle advection framework
[12]. The turbulence model is used to enforce an
additional constraint on the decomposition which en-
courages the sparse solutions to be located in areas
with non-Gaussian motion. Finally, we propose an
additional force component in the particle advection
framework in order to stabilize the particles in the
turbulent medium and handle long sequences without
discontinuities.

The rest of the paper is organized as follows: In the
next section, we discuss the related works. In Section
3, we present our three-term rank minimization, fol-
lowed by our probabilistic formulation of the object
confidence map using particle advection. Section 4
discusses the details of implementation and the tech-
nical challenges of the three-term optimization. The
experiments and the results are described in Section
5. Finally, Section 6 concludes the paper.

2 RELATED WORK
Rank optimization-based video de-noising has re-
cently flourished with several successful works re-
ported, from which we will only discuss the most
related articles. Robust PCA was proposed in [13],
where a low rank matrix was recovered from a small
set of corrupted observations through convex pro-
gramming. Similar concepts were later employed in
[14] for video de-noising, where serious mixed noise
was extracted by grouping similar patches in both
spatial and temporal domains, and solving a low-
rank matrix completion problem. Additionally, in [15],
linear rank optimization was employed to align faces
with rigid transformations, and concurrently detect
noise and occlusions. In [16], Yu et. al. proposed
an efficient solution to subspace clustering problems
which involved the optimization of unitarily invariant
norms. Another variant of such space-time optimiza-
tion techniques is the total variation minimization,
where for instance in [17], Chan et. al. posed the
problem of video restoration as a minimization of
anisotropic total variation given in terms of `1-norm,
or isotropic variation given in terms of `2-norm. Con-
sequently, the Lagrange multiplier method was used
to solve the optimization function.

On the other hand, moving object detection is a
widely investigated problem. When the scene is static,
moving objects can be easily detected using frame
differencing. A better approach would be to use the
mean, the median, or the running average as the
background [18]. The so-called eigenbackground [19]
can also be obtained using PCA. However, when the
scene is constantly changing because of noise, light
changes, or camera shake, the intensities of image
pixels can be considered as independent random vari-
ables, which can be represented using a statistical

model such as a Gaussian, a mixture of Gaussians, or a
kernel density estimator. The model can then be used
to compute the probability for each pixel to belong to
either the background or the foreground. Examples
of such approaches include [20], [21], [22]. Addition-
ally, the correlation between spatially proximal pixels
could also be employed to improve the background
modelling using a joint domain (location) and range
(intensity) representation of image pixels such as in
[23].

Approaches for turbulence mitigation focused
mainly on registration-based techniques. In [6], [5],
[24], both the turbulence deformation parameters and
a super-resolution image were recovered using area-
based B-Spline registration. Moreover, in [25], Tian
and Narasimhan proposed recovering the large non-
rigid turbulence distortions through a “pull-back”
operation that utilizes several images with known
deformations. In model-based tracking [26], the char-
acteristics of the turbulence caused by water waves
were employed to estimate the water basis using PCA.
More recently, in [7], turbulence caused by water was
overcome by iteratively registering the sequence to
its mean followed by RPCA to extract the sparse er-
rors. Averaging-based techniques are also popular for
video de-noising and turbulence mitigation, includ-
ing pixel-wise mean/median, non-local means (NLM)
[27], [28], fourier-based averaging [29], and speckle
imaging [1], [3], [30]. Another category of methods
for turbulence mitigation is the lucky region approach
[4], [31], [32], where the least distorted patches of the
video are selected based on several quality statistics,
then those selected patches are fused together to
compose the recovered video.

Clearly, previous work in moving object detection
in dynamic scenes mostly focused on detecting the ob-
jects and did not consider recovering the background.
Inversely, previous work in turbulence mitigation did
not consider the possible interest in detecting moving
objects in the scene. In this paper, we pose the two
problems of moving object detection and turbulence
mitigation as one application for our proposed three-
term low-rank decomposition. We demonstrate how
to decompose a turbulent video into separate back-
ground, foreground, and turbulence components. It
is important to note that our method is not directly
comparable to background subtraction or turbulence
mitigation approaches; though, we do provide com-
petitive results on each task separately.

3 PROPOSED APPROACH
We decompose the matrix which contains the frames
of the turbulence video, into its components: the back-
ground, the turbulence, and the objects. The decompo-
sition is performed by solving the rank optimization
in equation (2), which enforces relevant constraints on
each component. In the next subsection we describe
the details of the decomposition approach.
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3.1 Three-Term Decomposition

When solving equation (2), it is more convenient to
consider the Lagrange form of the problem:

min
A,O,E

Rank(A) + τ ||Π(O)||0 + λ||E||2F (3)

s.t. F = A+O + E,

where τ and λ are weighting parameters. The opti-
mization of (3) is not directly tractable since the matrix
rank and the `0-norm are nonconvex and extremely
difficult to optimize. However, it was recently shown
in [13] that when recovering low-rank matrices from
sparse errors, if the rank of the matrix A to be
recovered is not too high and the number of non-
zero entries in O is not too large, then minimizing the
nuclear norm of A (sum of singular values

∑
i σi(A))

and the `1-norm of O can recover the exact matrices.
Therefore, the nuclear norm and the `1-norm are the
natural convex surrogates for the rank function and
the `0-norm, respectively. Applying this relaxation,
our new optimization becomes:

min
A,O,E

||A||∗+ τ ||Π(O)||1 +λ||E||2F s.t. F = A+O+E,

(4)
where ||A||∗ denotes the nuclear norm of matrix A. We
adopt the Augmented Lagrange Multiplier method
(ALM) [33] to solve the optimization problem (4). De-
fine the augmented Lagrange function for the problem
as:

L(A,O,E, Y ) = ||A||∗ + τ ||Π(O)||1 + λ||E||2F + (5)

〈Y, F −A−O − E〉+
β

2
||F −A−O − E||2F ,

where Y ∈ RM×T is a Lagrange multiplier matrix,
β is a positive scalar, and 〈, 〉 denotes the matrix in-
ner product (trace(ATB)). Minimizing the function in
equation (5) can be used to solve the constrained op-
timization problem in equation (4). We use the ALM
algorithm to iteratively estimate both the Lagrange
multiplier and the optimal solution by iteratively
minimizing the augmented Lagrangian function:

(Ak+1, Ok+1, Ek+1) = arg min
A,O,E

L(A,O,E, Yk), (6)

Yk+1 = Yk + βk(Fk+1 −Ak+1 −Ok+1 − Ek+1).

When βk is a monotonically increasing positive se-
quence, the iterations converge to the optimal solution
of problem (4) [34]. However, solving equation (6)
directly is difficult; therefore, the solution is approxi-
mated using an alternating strategy minimizing the
augmented Lagrange function with respect to each
component separately:

Ak+1 = arg min
A
L(A,Ok, Ek, Yk), (7)

Ok+1 = arg min
O

L(Ak+1, O,Ek, Yk),

Ek+1 = arg min
E

L(Ak+1, Ok+1, E, Yk).

Following the idea of the singular value threshold-
ing algorithm [35], we derive the solutions for the
update steps in equation (7) for each of the nuclear,
Frobenius, and `1 norms. Please refer to the sup-
plementary appendix for the complete derivations.
Consequently, a closed form solution for each of the
minimization problems is found:

UWV T = svd(F −Ok − Ek + β−1
k Yk), (8)

Ak+1 = US1/βk(W )V T ,

Ok+1 = Sτ/βkΠ(F −Ak+1 − Ek + β−1
k Yk),

Ek+1 = (1 +
2λ

βk
)−1(β−1

k Yk + F −Ak+1 −Ok+1),

where svd(M) denotes a full singular value decompo-
sition of matrix M , and Sα(·) is the soft-thresholding
operator defined for a scalar x as:

Sα(x) = sign(x) ·max{|x| − α, 0}, (9)

and for two matrices A = (aij) and B = (bij) of the
same size, SA(B) applies the soft-thresholding entry-
wise outputting a matrix with entries Saij (bij) .

The steps of our decomposition are summarized
in Algorithm 1. In the next subsection, we describe
our method to obtain the moving object confidence
map Π, which is employed as a prior in the rank
minimization problem.

3.2 Turbulence Model
We employ a turbulence model to enforce an ad-
ditional constraint on the rank minimization such
that moving objects are encouraged to be detected
in locations with non-Gaussian deformations. Exact
modelling of the turbulence is in fact ill-posed as
it follows a non-uniform distribution which varies
significantly in time, besides having an additional
complexity introduced during the imaging process;
thus, rendering the problem of modelling turbulence
extremely difficult. Although the refraction index of
the turbulent medium is often randomly changing,
it is also statistically stationary [3], [30], [36]; thus,
the deformations caused by turbulence are generally
repetitive and locally centered [6], [7], [8], [9], [37];
this encourages the use of Gaussian-based models
as approximate distributions that are general enough
to avoid overfitting, but rather capture significant
portion of the turbulent characteristics.

We use a Gaussian function to model the inten-
sity distribution of a pixel going through turbulence.
This is similar to [20] which employs a mixture of
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Gaussians; however, we found that a single Gaussian
worked better since more complicated models often
require a period of training which is not available in
our sequences. Therefore, the intensity of a pixel at
location x is modelled using a Gaussian distribution:

I(x) ∼ N (µI , σI), (10)

where µI and σI are the mean and the standard
deviation at x, respectively. On the other hand, the
deformation caused by turbulence can be captured in
the motion domain besides the intensity. Therefore,
we combine the intensity and the motion features
to obtain a better model of turbulence. In order to
capture the ensemble motion in the scene, we use
the concept of a “particle” in a Lagrangian particle
trajectory acquisition approach. We assume that a
grid of particles is overlaid onto a scene where each
particle corresponds to a single pixel (the granularity
is controllable). The basic idea is to quantify the
scene’s motion in terms of the motion of the particles
which are driven by dense optical flow. A so-called
particle advection [12], [38], [39] procedure is applied
to produce the particle trajectories. Given a video
clip ∈ RW×H×T , we denote the corresponding optical
flow by (U tw, V

t
h), where w ∈ [1,W ], h ∈ [1, H], and

t ∈ [1, T − 1]. The position vector (xtw, y
t
h) of the

particle at grid point (w, h) at time t is estimated by
solving the following differential equations:

dxtw
dt

= U tw, (11)

dyth
dt

= V th .

We use Euler’s method to solve them, similar to
[38]. By performing advection for the particles at all
grid points with respect to each frame of the clip,
we obtain the clip’s particle trajectory set, denoted by
{(xtw, yth)|w ∈ [1,W ], h ∈ [1, H], t ∈ [1, T ]}.

We employ the spatial locations of the particle tra-
jectories (i.e. (xtw, y

t
h)) to model the turbulence motion

in the scene. The locations visited by a particle moving
due to the fluctuations of the turbulence have a uni-
modal and symmetric distribution which approaches
a Gaussian [6], [30], [10], [9]. This is dissimilar from
the linear motion of the particles driven by moving
objects. Therefore, we associate each particle with a
Gaussian with mean µM and covariance matrix ΣM :

x ∼ N (µM ,ΣM ). (12)

By augmenting the intensity model in equation (10)
with the motion model in equation (12), the total
confidence of corresponding to the turbulence versus
the moving objects for a particle at location x is
expressed as a linear opinion pooling of the motion
and the intensity cues

C(x) = wP(I(x)|µI , σI) + (1− w)P(x|µM ,ΣM ). (13)

The parameters of our model {w, µI , σI , µM ,ΣM}
can be learned by optimization using training se-
quences or set to constant values selected empirically.
In the context of our three-term decomposition, the
obtained confidence provides a rough prior knowl-
edge of the moving objects’ locations, which can be
incorporated into the matrix optimization problem in
equation (4). Interestingly, this prior employs motion
information; therefore, it is complementary to the
intensity-based rank optimization, and can signifi-
cantly improve the result.

At frame t, we evaluate all the particles’ locations
against their corresponding turbulence models and
obtain the turbulence confidence map Ct ∈ RW×H .
While Ct corresponds to the confidence of a particle
to belong to turbulence, the desired Π in equation
(4) corresponds to the confidence of belonging to
the moving objects; therefore, we define the object
confidence map Π as the complement of the stacked
turbulence confidence maps:

Π = 1− [vec{C1} · · · vec{CT }]. (14)

3.3 Restoring Force
The particles carrying the object’s motion typically
drift far from their original locations leaving several
gaps in the sequence. In the presence of turbulence,
the drifting also occurs as a result of the turbulent
motion. Therefore, the particles need to be reinitial-
ized every certain number of frames which, however,
creates discontinuities. This is a typical hurdle in the
Lagrangian framework of fluid dynamics [12], [38],
[39], which constitutes a major impediment for the
application of particle flow to turbulence videos. In
order to handle the drifting and the discontinuity
problems associated with the particle flow, we use a
new force component in the advection equation:

dxtw
dt

= U tw +G(x, xo), (15)

dyth
dt

= V th +G(y, yo).

We refer to the new force as “Restoring Force” -
a reference to a local restoration force acting in the
direction of the original location of each particle. We
use a simple linear function to represent the restoring
force:

G(x, xo) =
x− xo
s

, (16)

where s is a scaling factor which trades off the de-
tection sensitivity and the speed of recovery for the
particles. In other words, if s is set to a high value,
the effect of the restoring force will be negligible,
and therefore the particles will require a relatively
longer time to return to their original positions. In this
case, the sensitivity of moving object detection will be
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higher, but more prone to false positives. If s is low,
the particles will be more attached to their original
location, thus less affected by turbulence, but will
have lower detection sensitivity. In our experiments,
we set s to 0.5 × W = 125, which we found to be
adequate for all sequences.

Using the restoring force allows continuous pro-
cessing of the sequence without the need to reinitialize
the particles. For instance, if an object moves to one
side of the frame then comes back, we can still capture
its motion when it returns. Additionally, the restoring
force maintains the particles’ motion within a certain
range and provides robustness against random noise,
thus reducing the number of false object detections.
Figure (2) shows the overlaid particles on selected
frames and the corresponding object particles with
and without restoring force. It is clear that the restor-
ing force stabilizes the particles and delivers better
moving object confidence.

Algorithm 1: Simultaneous Turbulence Mitigation
and Moving Object Detection

Input : Distorted image set stacked as
F ∈ RM×T = [vec{I1}...vec{IT }]

Initial Object Confidence Map
Π : RM×T → RM×T

Output: Solution to equation (1)
Background A ∈ RM×T
Turbulence E ∈ RM×T
Moving Objects O ∈ RM×T

while not converged do

\\Minimize the Lagrange function in equation (5)

UWV T = svd(F −Ok − Ek + β−1
k Yk),

Ak+1 = US 1
βk

(W )V T ,

Ok+1 = S τ
βk

Π(F −Ak+1 − Ek + β−1
k Yk),

Ek+1 = (1 + 2λ
βk

)−1(β−1
k Yk + F −Ak+1 −Ok+1),

Yk+1 = Yk + βk(F −Ak+1 −Ok+1 − Ek+1),
βk+1 = ρβk.

end

4 ALGORITHM AND IMPLEMENTATION DE-
TAILS

4.1 Pre-Processing
The noise caused by turbulence often has several
random and spurious components which are difficult
to model. Therefore, we employ temporal averaging
to mitigate such components. We use a small aver-
aging window of 8 frames to avoid distorting the
objects’ motion. In order to improve the contrast of
the sequences, we apply adaptive histogram equal-
ization, which is similar to the ordinary histogram
equalization, however it operates on small patches
of size 8 × 8. Deviation around the optimal values

of such parameters only causes smooth and graceful
degradation in the results.

4.2 Determining the Optimization Parameters
The parameters τ and λ from equation (4) correspond
to the total number of moving objects’ pixels across
all images, and the total variance due to corrupted
pixels across all images, respectively. In other words,
a higher τ leads to an increased significance in min-
imizing the O component, thus obtaining sparser
moving objects. A higher λ leads to an increased
significance in minimizing the noise in E component,
thus obtaining less noise in E, and a more turbulent
background. On the other hand, decreasing τ and λ
leads to placing more emphasis on minimizing the
rank, thus obtaining a more static background in A,
large turbulence in E, and less sparse moving objects
in O.

Several theoretical considerations were previously
studied to derive optimal values for similar parame-
ters in [13]. However, such analysis does not apply to
all practical scenarios. In the context of our three-term
decomposition, the matrix to be decomposed is not an
exact composition of the expected components. In ad-
dition, the components do not correspond exactly to
their expected model. For instance, the background is
expected to be of low rank; however, the exact desired
rank is debatable, as a background of rank 1 is often
not desirable since it will be a repetition of a static
image, which is not realistic. Similarly, the desired
sparsity of error varies significantly among different
applications. Therefore, we argue that, in practical
scenarios, such parameters are problem-dependant
and highly heuristic. Therefore, we empirically set τ
to 0.1 and λ to 2.0, which, as we will show, worked
as a good compromise among the constraints of the
optimization in all sequences.

4.3 Discussion of the Three-Term Model
Our method relies on a special three-term decompo-
sition of matrices, which we formulated as the opti-
mization problem (4). A similar optimization model
has been proposed and studied very recently in [40],
[41], and [33]. In [40], sufficient conditions are ob-
tained in order to find an optimal solution to (4),
recovering the low-rank and sparse components of
F . In this paper, however, we are interested in the
computational methods for finding the desired de-
compositions. This leads us to scheme (7) via the Al-
ternating Directions Method of Multipliers (ADMM),
which was first introduced in the mid-1970’s by [42],
[43], and is the current method of choice for large-
scale non-smooth convex optimization, as in [41], [44],
[45], [46].

A formulation similar to (7) can be obtained by re-
placing E with F−A−O in the objective function in (4)
in order to solve minA,O ‖A‖∗+τ‖O‖1+λ‖F−A−O‖2F .
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Fig. 2: Overlaid particles (the end points of the particle trajectories), and the corresponding moving object confidence
(equation (14)) for sample frames. Rows one and three show the overlaid particles (the granularity is reduced for better
visualization). Shown in red, in rows two and four, are the particles with high confidence of belonging to a moving object
rather than turbulence (a fixed threshold is used). After frame 1, the object starts moving to the right, gets occluded at
frame 300, then moves back to the left at frame 420. In the top two rows, the restoring force is employed; therefore, the
particles gain two new properties: First, they become intact and attached to their original position, which make them
robust against drifting due to the turbulence. Second, the particles automatically return to their original positions after the
moving object disappears, which can be seen on frame 300. In the bottom two rows, the restoring force is not employed
and such properties are not available; therefore, the particles continue to float and drift along the sequence, resulting in
a poor object confidence performance.

This was indeed done by Lin et. al. [33], in which
they proposed two methods to solve this optimiza-
tion: the Augmented Lagrange Multiplier (ALM) and
the Inexact Augmented Lagrange Multiplier (IALM).
The IALM is an alternating direction approach which
converges almost as fast as the exact ALM, but with
significantly fewer partial SVDs. This was further
explored in [41] where an additional three-term al-
ternation method was discussed. As noted in [41],
the convergence of the scheme with more than two
terms alternation is still an open problem in general,

although numerical experiments strongly suggest that
the alternation scheme is globally optimal under rel-
atively mild conditions. However, for special three-
term alternations with very strict and potentially non-
practical assumptions, there do exist proofs as given
in [45] and [44].

The convergence of scheme (7) to the optimal solu-
tion of (4) clearly requires further study; however, we
are able to prove the feasibility of the accumulation
points produced by the iterations of the algorithm.

Theorem 1: The sequences {Ak}, {Ok}, and {Ek}
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Fig. 3: Three-term decomposition results for two example frames from four testing sequences. Column F shows the original
sequence (after pre-processing) which was decomposed into background (column A), turbulence (column E, absolute value
of E is shown), and moving object (column O). Please refer to our website for the complete videos as the results of correcting
the deformations are difficult to observe in a single frame.
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Fig. 4: Our moving object detection results on sample frames from sequences 1 and 2 compared to [22], [19], and [23]. For
every sequence, the first row shows the frames, the second row shows the result from our method (taken from matrix O
after the decomposition), the third, forth, and fifth rows show the background subtraction result obtained using [22], [19],
and [23], respectively. Please zoom in to see the details.
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Fig. 5: Our moving object detection results on sample frames from sequences 3 and 4 compared to [22], [19], and [23]. For
every sequence, the first row shows the frames, the second row shows the result from our method (taken from matrix O
after the decomposition), the third, forth, and fifth rows show the background subtraction result obtained using [22], [19],
and [23], respectively. Please zoom in to see the details.
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Fig. 6: Example frames illustrating the contribution of the turbulence model and the low-rank optimization in the total
moving object detection performance, separately. The first row shows the frames, the second row shows the object
confidence map obtained from the turbulence model (confidence values are mapped to [0−255], the highest confidence is
black), and the third row shows the final object blob after the three-term low-rank decomposition. Clearly, the turbulence
model provides a rough estimation of the object location, while the low-rank optimization refines the result to obtain an
accurate detection.

Original Frame Proposed Method Registration [7]

Contour

Overlay

Frames

Fig. 7: Our turbulence mitigation results compared to non-rigid registration [7] for an example frame. The first row shows
from left to right: The original frame, the recovered background using our proposed method, and the recovered background
using [7]. The second row shows a zoomed-in version of the frames with overlaid contours of a vehicle near the moving
object. Note how the object’s motion near the vehicle caused a deformation in the contour of the vehicle. The third row
demonstrates another visualization of the artifacts experienced by registration due to the moving object. We inserted each
of the frames into the R color channel with the original frame in the G channel, and set the B channel to zero. It is obvious
that, using our proposed method, the object is eliminated from the background (appears as a green blob) and the vehicle’s
shape is maintained, while using registration methods such as, [7] and [6], do not handle moving objects and accordingly
result in deformations in the region surrounding the object (appears as several green and red blobs). The figure is best
observed in colors. Please zoom in to see the details and refer to our website for the complete videos.
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Original Registration [7] 3-Term Decomp.
Sequence 1 26.55 32.20 31.62
Sequence 2 27.49 34.05 34.11
Sequence 3 27.71 31.79 32.25
Sequence 4 27.82 32.72 33.13

TABLE 1: Comparison of the average PSNR in dB for the
original sequences, after applying registration, and three-
term decomposition.
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Fig. 8: Performance of our method compared to background
subtraction methods.

generated by Algorithm 1 are bounded, and any
accumulation point (A∗, O∗, E∗) of (Ak, Ok, Ek) is a
feasible solution: F = A∗ +O∗ + E∗.

Refer to the supplementary appendix for an outline
of the proof of Theorem 1. Our theorem indicates
that the iterations of our algorithm are guaranteed to
yield a decomposition of low-rank, sparse, and turbu-
lence components, which is sufficient in our problem.
Proving that the solution that we arrive at is globally
optimal is, however, still an open problem which we
leave for future work. However, our experimental
evaluations agree with [41] and suggest the optimality
of the alternation scheme.

5 EXPERIMENTS

We experimented extensively on the proposed ideas
using four infrared sequences significantly distorted
by atmospheric turbulence and also contain a moving
human. The sequences and the code are available
on our website: http://www.cs.ucf.edu/∼oreifej. Each
frame is 250 × 180 with 450 frames per sequence.
The moving object occupies around 40 pixels in the
frame and moves arbitrarily in the FOV. Typically,
the object is static at the beginning of the sequence;
therefore, we use the first 50 frames to compute the
parameters of the intensity and the motion Gaussian

models at every pixel. Our three-term decomposition
converges quickly in about 25 − 35 iterations, which
takes approximately three minutes on a conventional
laptop. Figure 3 shows our decomposition results. Our
algorithm is able to decompose all the turbulence se-
quences generating a clear background and detecting
the moving objects. The results are better observed in
the videos available on our website.

Since this problem is novel, there are no directly
comparable approaches. Therefore, we consider com-
paring each of the moving object detection and the
turbulence mitigation tasks separately. We compare
our moving object detection results with the back-
ground subtraction method described in [22], where
the background is modelled using a mixture of Gaus-
sians. Moreover, we compare our result with an eigen-
background model similar to [19], where the back-
ground basis for every 3×3 patch is found using PCA,
then the patch is marked as foreground if it is not well
represented by the PCA basis (i.e. its reconstruction
error is above a threshold). We also compare our
results with [23], which employs a nonparametric
kernel density estimation method (KDE) over the joint
domain (location) and range (intensity) representation
of image pixels. Figures 4 and 5 illustrate the results of
the comparison on sample frames from our sequences.
It is clear that even state-of- the-art methods suffer
in turbulence sequences; therefore, our method out-
performs such methods significantly. In figure 6 we
demonstrate the contribution of each of the turbulence
model and the sparse optimization in the detection
performance. As can be observed from the figure, our
method leverages multiple constraints (sparsity, mo-
tion model, and intensity model) which complement
each other to finally determine the object regions, thus
significantly reducing miss-detection rates.

To evaluate the results quantitatively, we used a
region-based measure where we applied connected
components to the binary mask resulting from the
background subtraction in order to obtain contiguous
detection regions. Consequently, a detection region is
considered correct if at least 50% of it is overlapping
with the groundtruth, otherwise it is considered a
miss-detection. The ROC curve in figure 8 summarizes
the obtained results for all sequences.

In addition, we compare our turbulence mitigation
results with the robust registration algorithm pre-
sented in [7]. The robust registration is an iterative
process which recovers the original de-warped se-
quence by registering the frames to their mean, and
then updating the frames and the mean at every
iteration. The registration is performed using non-
rigid alignment by a means of control points overlaid
on the frames. To evaluate the performance, we mea-
sured the peak signal-to-noise ratio (PSNR) between
the first frame of the sequence and the rest of the
frames, and reported the average results for all the
frames in table 1. It is clear that both our method and

http://www.cs.ucf.edu/~oreifej
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registration can significantly stabilize the sequences
and improve the PSNR. However, the moving object
is not explicitly handled in the registration; therefore,
it impedes the process by causing the control points to
incorrectly shift in the direction of the object’s motion,
resulting in several artifacts in the surrounding area,
as demonstrated in figure 7. In contrast, our three-
term decomposition handles such difficulties by sepa-
rating the moving object; therefore, we recover a clear
background without artifacts and with significantly
reduced turbulence.

6 CONCLUSION AND FUTURE WORK

We presented a novel method for concurrent turbu-
lence mitigation and moving object detection. Our
method leverages the low-rank, the Gaussian, and
the sparse properties of the sequence, decomposing it
into the background, the turbulence, and the moving
objects, respectively.

In the future, we will investigate further applica-
tions of our three-term decomposition. In particular,
we have recently shown in [39] how RPCA can be
employed in action recognition to decompose the
trajectories of an action in a moving camera scenario
into low-rank components corresponding to camera
motion and rigid object motion, and a sparse compo-
nent corresponding to the articulated object motion.
In an extension to that, we will investigate the use
of the three-term decomposition to achieve finer de-
compositions of action sequences, and extract further
components including the component corresponding
to the Gaussian noise. We are also investigating the
potential extension of the three-term-decomposition
into a generic n-component decomposition, and its
possible applications in clustering and segmentation
problems.

7 APPENDIX

Here we first provide the derivation of equation set
(8), which is the solution for the minimization prob-
lem in equation set (7). Consequently, we provide the
proof of theorem 1. In all derivations we refer to the
Lagrange function L defined in equation (5).

7.1 Derivation of the update step for A

Ak+1 = arg min
A
L(A,Ok, Ek, Yk)

Dropping indices k and k + 1 for simplicity

A = arg min
A
L(A,O,E, Y )

= arg min
A
||A||∗ + 〈Y,−A〉

+
β

2
||F −A−O − E||2F .

The Frobenious norm is induced from the inner
product, i.e. ||X||2F = 〈X,X〉. Therefore, replacing

the Frobenious norm with an inner product then
expanding the inner product and separating A we
obtain

A = arg min
A
||A||∗ + 〈Y,−A〉

+
β

2
{||A||2F − 2〈F −O − E,A〉}

= arg min
A
||A||∗ +

β

2
{||A||2F − 2〈β−1Y + F −O − E,A〉}

= arg min
A
||A||∗ +

β

2
||A− β−1Y − F +O + E||2F

= arg min
A
β−1||A||∗ +

1

2
||A− (β−1Y + F −O − E)||2F .

Using the result from Singular Value Thresholding
algorithm [35] we get

A = US 1
β

(Σ)V T ,

where UΣV T is the SVD of W , W = β−1Y +F−O−E,
and Sα(·) is the soft thresholding operator defined in
equation (9).

7.2 Derivation of the update step for O

Ok+1 = arg min
O

L(Ak+1, O,Ek, Yk)

Dropping indices k and k + 1 for simplicity

O = arg min
O

L(A,O,E, Y )

= arg min
O

τ ||Π(O)||1 + 〈Y,−O〉

+
β

2
||F −A−O − E||2F

= arg min
O

τ ||Π(O)||1 + 〈Y,−O〉

+
β

2
{||O||2F − 2〈F −A− E,O〉}

= arg min
O

τ ||Π(O)||1 +

β

2
{||O||2F − 2〈β−1Y + F −A− E,O〉}

= arg min
O

τ

β
||Π(O)||1 +

1

2
||O − (β−1Y + F −A− E)||2F .

Let X = β−1Y + F −A− E, then

O = arg min
O

τ

β
||Π(O)||1 +

1

2
||O −X||2F .
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Using convex optimization theory [47], [48], 0 is in
the subdifferential ∂ of the function:

0 ∈ ∂(
τ

β
||Π(O)||1 +

1

2
||O −X||2F )

= ∂(|| τ
β

Π(O)||1) +O −X

=
τ

β
Π sign(O) +O −X,

which can be expressed as:


0 = τ

βΠi,j +Oi,j −Xi,j if Oi,j > 0,

0 = − τ
βΠi,j +Oi,j −Xi,j if Oi,j < 0,

0 ∈ [−1, 1] τβΠi,j +Oi,j −Xi,j if Oi,j = 0,

where Oi,j is the (i, j)-element of the matrix O. Rear-
ranging the above equation we get

Oi,j =


Xi,j − τ

βΠi,j if Xi,j >
τ
βΠi,j

Xi,j + τ
βΠi,j if Xi,j < − τ

βΠi,j

0 if |Xi,j | ≤ τ
βΠi,j

This piecewise function is equivalent to the soft
thresholding operator S defined in equation (9);
hence, we can rewrite the above equation as

O = S τ
βΠ(X),

= S τ
βΠ(β−1Y + F −A− E).

7.3 Derivation of the update step for E

Ek+1 = arg min
E

L(Ak+1, Ok+1, E, Yk)

Dropping indices k and k + 1 for simplicity

E = arg min
E

L(A,O,E, Y )

= arg min
E

λ||E||2F + 〈Y,−E〉

+
β

2
||F −A−O − E||2F

= arg min
E

λ||E||2F +

β

2
{||E||2F − 2〈β−1Y + F −A−O,E〉}

= arg min
E

(
2λ

β
+ 1){||E||2F − 2

〈(2λ

β
+ 1)−1(β−1Y + F −A−O), E〉}

= arg min
E
||E − (

2λ

β
+ 1)−1

(β−1Y + F −A−O)||2F .

Therefore, the minimum is obtained at

E = (
2λ

β
+ 1)−1(β−1Y + F −A−O).

7.4 Proof of Theorem 1
The proof of Theorem 1 in Section 4.3 can be derived
from the following lemmas.

Let Ak, Ok, Ek, Yk, and βk be as generated by
Algorithm 1.

Lemma 1: Let

ak = Yk + βk(F −Ak+1 −Ok − Ek),

bk = Yk + βk(F −Ak+1 −Ok+1 − Ek),

ck = Yk + βk(F −Ak+1 −Ok+1 − Ek+1),

then the sequences {ak}, {bk}, and {ck} are bounded.
Note that according to Algorithm 1, we have Yk+1 =

ck, and recall that L(·) is the Lagrange function de-
fined in equation (5).

Lemma 2: Let

Lk+1 = L(Ak+1, Ok+1, Ek+1, Yk, βk),

ek = ‖F −Ak −Ok − Ek‖2F .

Then ek ≤ cβ−2
k−1 for some constant c > 0, and

Lk+1 − Lk ≤
βk + βk−1

2
ek, k = 1, 2, ...

At every iteration in Algorithm 1, we set βk+1 to
ρβk with ρ > 1. Therefore, the above inequality can
be rewritten as:

Lk+1 − Lk ≤
1 + ρ

cβk−1
, k = 1, 2, ...

Since {βk} is an increasing geometric sequence, we
see that Lemma 2 implies the boundedness of the
sequence {Lk} and that limk→∞(F−Ak−Ok−Ek) = 0,
which implies that any accumulation points (if any)
of (Ak, Ok, Ek) approaches a feasible solution to the
desired decomposition. The following Lemma implies
that such accumulation points exist.

Lemma 3: The sequences {Ak}, {Ok}, and {Ek} are
bounded.
Proofs of The Lemmas

Since we are dealing with finite dimensional Eu-
clidean spaces, all norms are equivalent, and a
bounded sequence in one norm is also bounded in any
other norms. Therefore, we do not specify the type of
the norm unless needed. Additionally, we are assum-
ing the positive sequence {βk} satisfies

∑
1/βk <∞.

Proof of Lemma 1:
(i) Proof that {ak} is bounded:

We follow Lin et. al. [33] and note that

Ak+1 = arg min
A
L(A,Ok, Ek, Yk)

⇒ 0 ∈ ∂AL(Ak+1, Ok, Ek, Yk)

⇒ 0 ∈ ∂‖Ak+1‖∗ − Yk − βk(F −Ak+1 −Ok − Ek)

Therefore,

ak = Yk + βk(F −Ak+1 −Ok − Ek) ∈ ∂‖Ak+1‖∗.
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From this, according to Theorem 4 of [33], the se-
quence {ak} is bounded.
(ii) Proof that {bk} is bounded:

Ok+1 = arg min
O

L(Ak+1, O,Ek, Yk)

⇒ 0 ∈ ∂OL(Ak+1, Ok+1, Ek, Yk)

⇒ 0 ∈ ∂(τ‖Π(Ok+1)‖1)−Yk−βk(F−Ak+1−Ok+1−Ek)

Therefore,

bk = Yk+βk(F−Ak+1−Ok+1−Ek) ∈ ∂(τ‖Π(Ok+1)‖1).

Thus, bk(i, j) = 0 if (i, j) 6∈ supp(Π), and bk(i, j) ∈
∂(τ |Qk+1(i, j)|) if (i, j) ∈ supp(Π). Using Theorem
4 of [33] (for the scalar case), the sequence {bk} is
bounded.
(iii) Proof that {ck} is bounded:

First, note that

∂(λ‖Ek+1‖2F ) = {2λEk+1}.

Therefore, using

Ek+1 = arg min
E

L(Ak+1, Ok+1, E, Yk),

we have

0 ∈ ∂EL(Ak+1, Ok+1, Ek+, Yk)

⇒ 0 ∈ ∂(λ‖Ek+1‖2F )−Yk−βk(F−Ak+1−Ok+1−Ek+1)

Therefore,

ck = Yk + βk(F −Ak+1 −Ok+1 − Ek+1) ∈ {2λEk+1}.

Thus,
ck = 2λEk+1.

In Algorithm 1, Yk+1 = ck. Hence, Yk+1 = 2λEk+1.
Now, we have obtained

2λEk+1 = Yk + βk(F −Ak+1 −Ok+1 − Ek) +

βk(Ek − Ek+1)

= bk + βkEk − βkEk+1.

Solving for Ek+1, we obtain

Ek+1 =
bk
βk
· 1

1 + 2λ
βk

+ Ek ·
1

1 + 2λ
βk

.

Using the fact that {bk} is bounded and
∑∞
k=1 1/βk <

∞, we conclude that {Ek} must be bounded, and
thus, the sequence {ck} = {Yk+1} = {2λEk+1} is also
bounded.

Remark. As a consequence of the proof, we obtained
the boundedness of {Ek} as well.

Proof of Lemma 2:
Write Lk+1 = L(Ak+1, Ok+1, Ek+1, Yk, βk). Then

Lk+1 ≤ L(Ak+1, Ok+1, Ek, Yk, βk)

≤ L(Ak+1, Ok, Ek, Yk, βk)

≤ L(Ak, Ok, Ek, Yk, βk)

= ‖Ak‖∗ + τ‖Π(Ok)‖1 + λ‖Ek‖2F +

〈Yk, F −Ak −Ok − Ek〉+
βk
2
‖F −Ak −Ok − Ek‖2F

= Lk +

〈Yk − Yk−1, F −Ak −Ok − Ek〉+
βk − βk−1

2
‖F −Ak −Ok − Ek‖2F

= Lk +

βk−1‖F −Ak −Ok − Ek‖2F +
βk − βk−1

2
‖F −Ak −Ok − Ek‖2F .

Therefore,

Lk+1 − Lk ≤
βk + βk−1

2
ek.

Finally, note that

ek = ‖F−Ak−Ok−Ek‖2F =

(
Yk − Yk−1

βk−1

)2

= O(β−2
k−1).

The last equality is due to the fact that Yk = ck−1 and
Yk−1 = ck−2 are bounded by Lemma 1. This completes
the proof of Lemma 2.

Proof of Lemma 3:
Since Yk+1 = ck, the sequence {Yk} is bounded by

Lemma 1. Also the sequence Lk is bounded as implied
by Lemma 2. Note that

‖Yk+1‖2F = ‖Yk + βk(F −Ak+1 −Ok+1 − Ek+1)‖2F
= ‖Yk‖2F + 2βk〈Yk, F −Ak+1 −Ok+1 − Ek+1〉

+β2
k‖F −Ak+1 −Ok+1 − Ek+1‖2F .

Therefore,

‖Yk+1‖2F − ‖Yk‖2F
2βk

= 〈Yk, F −Ak+1 −Ok+1 − Ek+1〉+

βk
2
‖F −Ak+1 −Ok+1 − Ek+1‖2F .

Since {Yk} is bounded and βk →∞, we see that

〈Yk, F−Ak+1−Ok+1−Ek+1〉+
βk
2
‖F−Ak+1−Ok+1−Ek+1‖2F

converges to 0 (and thus bounded). Consequently,
since

‖Ak+1‖∗ + τ‖Π(Ok+1)‖1 + λ‖Ek+1‖2F = Lk+1

−〈Yk, F −Ak+1 −Ok+1 − Ek+1〉

−βk
2
‖F −Ak+1 −Ok+1 − Ek+1‖2F ,

we see that {Ak} and {Ek} are bounded. This, to-
gether with the fact that limk→∞(F−Ak−Ok−Ek) = 0,
yields that the sequence {Ok} is also bounded.
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