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Abstract
This paper presents a glove-free method for tracking hand movements using a set of 3-D mod-
els. In this approach, the hand is represented by five cylindrical models which are fit to the third
phalangeal segments of the fingers. Siz 3-D motion parameters for each model are calculated that
correspond to the movement of the fingertips in the image plane. Trajectories of the moving models

are then established to show the 3-D nature of the hand motion.
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1 Introduction

The importance of human gestures has been greatly underestimated. We each use hundreds
of expressive movements every day [2, 9], with many of these movements pertaining to hand
gestures. These movements may have radically different interpretations from country to
country — one hand gesture may represent a meaning of “good” in one country, whereas
in another country it may be viewed as offensive [9]. Finger-spelling, a subset of sign lan-
guage, permits any letter of the English alphabet to be presented using a distinct hand
gesture. Using the finger-spelling gesture set, people can communicate words to one an-
other using only hand movements [4]. The media has realized the significance of gestures
and was experienced in the final scene of the movie, Close Encounters of the Third Kind
(Columbia Pictures, 1977), where a human and alien communicated to each another using
hand movements. McDonald’s demonstrated the utilization of gestures in a 1994 television
commercial showcasing patrons ordering any one of four different meals using the appropriate
hand gesture. If we are to enhance and extend the man-machine interface, it is imperative
to enable computers to interpret hand motions and to act intelligently according to their
meanings.

Tracking hand motion becomes more realistic with a 3-D, rather than a 2-D, approach.
With 3-D information, we know the real-world location of the fingers at any time, and can
exploit this knowledge to suit applications without having to concern ourselves with the
weaker and possibly ambiguous 2-D information. Two-dimensional ambiguities which may
arise are the 3-D trajectories which, after undergoing perspective projection, have the same
corresponding 2-D trajectory. Also, using 3-D models and motion parameters avoids the
need for motion correspondence, which attempts to map feature points to their correct 2-D
trajectory , for each feature point is a member of a distinct model for a particular finger and
thus has no ambiguity in which trajectory it belongs. Therefore to remove these uncertainties
which may arise in 2-D, we can look to 3-D.

In this paper, we discuss our method for developing a computer vision system which has
the ability to model and track rigid 3-D finger movement of a glove-free hand. Advantages
over our previous method include the removal of the glove for fingertip detection, the elim-

ination of motion correspondence, and the use of more meaningful 3-D hand information.



The rest of this paper discusses our approach, which first identifies the fingers of the hand
(Section 3.1) and fits a 3-D generalized cylinder to the third phalangeal segment of each
finger (Section 3.2). Then six 3-D motion parameters are calculated for each model corre-
sponding to the 2-D movement of the fingers in the image plane (Section 4). Experiments
are shown with 3-D hand movements (Section 5). The 3-D motion trajectories of the models

are given, which may used in the tracking and recognition of gestures.

2 Related Work

Regh and Kanade [10] describe a model-based hand tracking system called DigitFEyes. This
system uses stereo cameras and special real-time image processing hardware to recover the
state of a hand model with 27 spatial degrees of freedom. In order for DigitEyes to be used
in specific hand applications, the kinematics, geometry, and initial configuration of the hand
must be known in advance. Hand features are measured using local image-based trackers
within manually selected search windows. Rendered models and state trajectories are given
demonstrating the 3-D nature of their results.

Darrell and Pentland [5] have proposed an approach for gesture recognition using sets of 2-
D view models of a hand (one or more example views of a hand). These models are matched
to stored gesture patterns using dynamic time-warping, where each gesture is warped to
make it of the same length as the longest model. Matching is based upon the normalized
correlation between the image and the set of 2-D view models. This method requires the use
of special-purpose hardware to achieve real-time performance, and uses gray-level correlation
which can be highly sensitive to noise.

Cipolla, Okamoto, and Kuno [3] present a structure from motion (SFM) method in which
the 3-D visual interpretation of hand movements is used in a man-machine interface. A glove
with colored markers is used as input to the vision system and movement of the hand results
in motion between the markers in the images. The authors use the affine transformation
of an arbitrary triangle formed by the markers to determine the projection of the axis of
rotation, change in scale, and cyclotorsion. This information is used to alter the position
and orientation of an object displayed on a computer graphics system. The information

extracted from the markers does not give the position of each finger, it only provides a



triangular reference plane for the SFM algorithm.

Fukumoto, Mase, and Suenaga [6] present a system called Finger-Pointer which recog-
nizes pointing actions and simple hand forms. The system uses stereo image sequences to
determine the 3-D location of the pointing finger. Their system first locates the coordinates
of the operator’s fingertip and its pointing direction. A cursor is then displayed in the target
position on an opposing screen. The system is robust in that it is able to detect the pointing
regardless of the operator’s pointing style.

Segan’s [11] Gest is a computer vision system that learns to identify non-rigid 2-D hand
shapes and computes their pose. This system consists of three phases: data collection, learn-
ing, and recognition. In data collection, the system displays a hand in a fixed position on
the screen and the user responds by presenting that same gesture to the camera. Learning is
executed off-line and attempts to calculate the hand’s pose and classify the user’s hand ges-
ture. Recognition involves graph matching and employs a preclassifier to offset the matching
cost. Fach gesture is determined from the hand’s 2-D position, and does not use any motion
characteristics or 3-D feature locations. Gest was used to control graphics applications, such
as a graphics editor and flight simulator.

Kang and Tkeuchi [8] describe a framework for determining 3-D hand grasps. An intensity
image is used for the identification and localization of the fingers using curvature analysis, and
a range image is used for 3-D cylindrical fitting of the fingers. Lines were physically drawn
on the fingers to help identify particular segments. A contact web, a structure comprised
of contact points of the hand with the grasped object, is used to map a low-level hand
configuration to a more abstract grasp description. The grasp is then identified using a
grasp cohesive index. The three identifiable phases (pregrasp, grasp, and manipulation) are
used to determine a grasping task. The pregrasp phase performs the intended grasp without
the target object. Here the hand preshape and transportation are calculated. In the grasp
phase, the hand touches and has a stable hold of the object. The manipulation phase contains
hand motions and object movement. Though this method uses 3-D finger information, it

requires both intensity and costly range imagery to produce the finger models.



3 Finger Modelling

To generate an appropriate 3-D model for the hand, we require only one intensity image of
the user’s hand in a predefined start position. To begin, we first identify the fingers within
the image and determine each finger’s axis of orientation. Then generalized cylinders are
fit to specific finger segments. Anatomical knowledge of the human hand is exploited to

enhance the modelling process.

3.1 Identification of Finger Regions

Initially, we constrain the user to begin with the hand in a known start position (See Fig.
l.a). Using histogram thresholding, the original image is converted into a binary image in
which small regions are removed (See Fig.1.b). We then find a set of points which can be
used to differentiate the fingers from the rest of the image. Previous approaches for finding
feature points involve boundary curvature extrema [8], interest operators to detect specially
colored regions [3], and manual selection [13]. Our approach relies on knowledge of the start
position and natural design of the hand to automatically determine five fingertip points
{T,.}2_, and seven base points {B,,}¢ _, which are used to segment the fingers. Each finger
region is found by applying a connected component algorithm using the respective fingertip
and base points as bounds in the segmentation (See Fig. 1.c). We know a priori, due to the
required start position and anatomy of the hand, that the middle finger’s fingertip (75) has
the highest y-coordinate of all the fingertips, and that the thumb’s fingertip (75) has the
largest z-coordinate. Given a fingertip T, | n > 2, if there is a finger to the left in the image,
then this left fingertip must be at a lower y-coordinate and smaller xz-coordinate position
by nature of human hand design (extreme cases as in hand deformities are not considered).
Similarly, given a fingertip 7), | n < 2, if there is a finger to the right in the image, then this
right fingertip must be at a lower y-coordinate and greater z-coordinate. By first finding 75
and T, we can apply this fingertip knowledge to reduce the search space and easily find the
remaining fingertips 77, T3, and Ty. To find a base point, we move the fingertip points that
lie on either side of the targeted base point down along the inner boundary of the fingers

until they converge into the same point. This valley location is the base point. Base points

By (using Ty and Ty), Bs (using Ty and T3), By (using T3 and T3), and Bs (using T4 and



(¢) (d)

Figure 1: Determining Finger Orientation. (a) Start position of the hand in frame 000.

(b) Binary image resulting from histogram thresholding and removal of small regions. (c)

Finger regions found using fingertip points {7, }2_, and base points {B,,}5 _,. (d) Frame

000 showing each finger’s orientation axis.

Ty) are found in this manner. To find base points By and Bg, we level off the base of the
respective finger with the z-axis and use the resulting corner as the base point. As for By,
it can be approximated by moving —45° from B to the opposing side of the thumb. Once
the fingers have been identified using these points, the axis of orientation for each finger can
be calculated (See Fig. 1.d). The orientation axis is established by finding the line in which
the integral of the square of the distance to points in the finger is a minimum. The integral

to be minimized over finger F' is

E://FTdedy, (1)

where r is the perpendicular distance from point (z,y) to the axis sought after [7]. The

fingers and axes will be used in generating cylindrical representations of finger segments.

3.2 Cylindrical Fitting

Cylindrical models can be employed to represent the fingers due to the inherent cylindrical
nature of fingers. A finger as a whole is a non-rigid object, with the first phalangeal (FP),
second phalangeal (SP), and third phalangeal (TP) segments (only FP and TP segments



for thumb) [12] each exhibiting rigid behavior. If the fingers were to be modeled in their
entirety, three independent phalangeal models for each finger would be required due to the
non-rigidness of fingers. Also, if all three segments were to be modelled, special concerns
arise to ensure the spatial connectedness of the three phalangeal models while deriving the
independent motions of the segments. Occlusion then becomes a major problem, for the
FP and SP segments can be occluded much of the time. Restricting the user to rigid finger
movement would allow one generalized cylinder to be fit to the entire finger. If this were
the case, only one section, e.g. TP segment, need be modelled to reduce the computational
overhead, and then this target area, e.g. fingertip, can be tracked throughout the sequence.
Using only the TP segments also reduces the spatial relation and occlusion problem. (Issues
concerning non-rigid behavior and motion misinterpretation due to particular motions are
discussed in Section 4.3.) Therefore, for simplicity, models representing only the TP segments
are used to track the movements of each fingertip. To model the TP segments, we must know
where they are located with respect to each finger in the image. In general, each FP, SP, and
TP segment length occupies nearly a third of the total finger length. Using this heuristic,
the major axis for the finger can be divided into three parts (except for the thumb, where
it is divided into two), designating the TP segment as the upper most third of the finger
(upper half for the thumb) along the axis of orientation. A straight homogeneous generalized
cylinder (SHGC)[13, 14] can then be fit to give a 3-D model to each 2-D TP segment (See
Fig. 2.a&b), such that each model’s projection conforms to the actual respective fingertip in
the image (See Fig. 2.c). Since the angle between the cross-section plane and the SHGC axis
(orientation axis or spine) is 90°, a more precise definition of right SHGCs (RSHGCs) is used
[14]. A cross-section shape of an ellipse is used to fit the natural cross-section of a finger,
with semi-major axis a and semi-minor axis b, having b = f(a) | f(a) < a. When fitting
the ellipse cross-sections near the fingertip, semi-major axis a becomes increasingly smaller.
Since b = f(a), the two ellipse axes will be in proportion to one another resulting in closure
of the cylinder into a realistic 3-D fingertip-like appearance (See Fig. 2.a). When generating
the cylinder for the thumb, it must be rotated to correspond to the real 3-D orientation of
the thumb, such that semi-major axis a makes a 45° angle with the XY plane through the
hand.



(a) (b) (¢)
Figure 2: TP Models. (a) Index finger’s 3-D cylindrical TP model shown with nodes. (b) All

five TP models representing a model set for the hand. (c) Projection of models (in white)

onto the hand in the image.

4 Motion Parameter Estimation

Given a set of TP models and a sequence of intensity images in which the hand is moving,
we would like compute the 3-D motion of the fingertips employing the 2-D motion in the
image plane. The 3-D motion of a model is represented in terms of translation (7, Ty, T)
and counter-clockwise rotation (w;,wy,w,) around the three coordinate axes based at the
model’s centroid. Our approach incorporates a direct method using spatio-temporal deriva-
tives instead of optical flow, a linearized rotation matrix (due to small motion changes), and
a 3-D model (where the depth is known) to compute the 3-D motion. An over constrained
set of equations is established and solved for the unknown motion parameters. With slight
enhancements to the algorithm to cope with multiple frame estimation, the locations of the

TP models can be continually updated in 3-D location to match the 2-D fingertip movement.

4.1 Choosing Visible Model Nodes

A 3-D TP model is comprised of visible nodes (facing the viewing plane) and occluded nodes
(located on the model’s back-side and facing away from the viewing plane). Nodes which are
occluded cannot be used in the motion parameter calculation, for they do not correspond to
any point in the image plane.

We can determine the visibility of nodes by using together two methods for back-side

elimination [1]. To begin, the 3-D surface normal n for each node is compared with the



Figure 3: Determining Point (Node) Visibility. (a) Angle ¢ between point vector p and

surface normal n is > 90° (or equivalently, 180° — ¢ is < 90°); the point is facing the viewing

plane. (b) Angle ¢ is < 90°; the point faces away from the viewing plane and is occluded.

node’s point vector p. If the angle ¢ between the two vectors is > 90°, then the surface
normal is pointing toward the viewing plane and the node is labeled as possibly visible (See
Fig. 3.a). If angle ¢ is < 90°, then the surface normal is pointing away from the viewing
plane and the node is occluded and discarded (See Fig. 3.b). This alone is not enough to
determine the visibility of nodes for if the model contains a large number of nodes, many
possibly visible nodes may project onto the same pixel in the image plane. To reduce this
redundancy and have a one-to-one mapping of nodes to pixels, the possibly visible nodes are
projected and stored in a depth array where each cell in the array corresponds to a unique
pixel in the image plane. If two or more nodes project onto the same cell, the node with
the smallest depth (closest) is retained, and the other node(s) are discarded. After all the
possibly visible nodes are projected, only those nodes that remain in the depth array are
labeled as wisible and are used in the motion estimation process. Calculating the visible
model nodes using surface normals and a depth array gives an accurate representation of the
model which can be seen in the image plane. This process must be performed each time the
model location is updated to ensure that previously visible nodes have not become occluded

and vice-versa.

4.2 Formulation of Motion Parameter Estimation

Consider the optical flow constraint equation:

frut fyo+ =0, (2)



where f, = ar, y = 3y7 fi= —, = Cfl—gt”, and v = ':Cll—l;. Assume that the geometry projection

from 3-D space onto the 2-D image plane is perspective projection with camera focal length
F. Then the optical flow field (u,v) induced by the 3-D instantaneous motion about the

object centroid is given by:

F X
F -Y
v=" [(Ty twXe—w,Z) + — (T 4w, - wac)] : (4)

where (7, T,,T.,) is the forward translation vector, (w;,wy,,w,) is the counter-clockwise ro-
tation vector, (X, Y, 7) are the world coordinates, and (X., Y., Z.) are the object centered
coordinates.

Substituting the above equations for v and v in (2) and rearranging, we get

F -X
F -Y

which can also be written as

B [fz ]T +[fyz] [22 sz+ny)]T
_ % (f XY, + [, 227, +nyYc)] w

- F
| (L7704 LXK+ Y X

N TR o) ()

In this equation, (X,Y,Z) and (X,,Y., Z.) are known from the model, and f,, f,, and f;
can be computed from image pairs. Therefore the only unknowns are the motion parameters
(T, T,,T,) and (wy,wy,w,). An over constrained set of equations is established using visible

nodes and in matrix form is as follows
[A]Jx =D ,

with x = (T, Ty, T, Wy, wy,w,)" . A linear regression using least squares is used to approxi-

mate the six unknown motion parameters in x, and is iterated to account for linearizing.
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4.3 Motion Estimation Conditions

For successful tracking with this implementation, the hand motion must be small and avoid
occlusions. It is also important to calculate f,, f,, and f; with sub-pixel accuracy to keep
the projected nodes from moving randomly within a local neighborhood. Spatial-temporal
3 x 3 Sobel masks were used to compute f, and f,, and locations with small gradients cannot
be used for motion estimation and are excluded from the regression to yield a more stable
estimate.

After each estimation, the model nodes are updated to their new location. Previously
visible nodes which have become occluded are excluded from the next iteration, and previ-
ously occluded nodes which become visible may be used if they were utilized in a previous
estimation. Convergence can be determined by analyzing the root-mean-square error of the
intensity difference (— f;) vector.

To reduce the error accumulation associated with multiple frame estimations, the visible
nodes with intensity and gradient information from the first image are propagated through-
out the sequence. Initially, for calculating the motion parameters between frame 1 and frame
2, the visible model nodes record the corresponding intensity and gradient information from
frame 1. Then the motion parameters are determined using the model nodes and frame
2. After application of the parameters to the model from frame 1, the model is now lo-
cated to conform to frame 2. For frame 3, a new estimation is calculated using the model
(compensated from frame 1 to frame 2) and frame 3. This process continues, propagating
the intensity and gradient information from frame 1 through the remainder of the sequence
until either significant accumulated rotation causes the gradients to change, large displace-
ment from the original frame changes the intensity values, or too few original visible nodes
remain in the model. If any of these cases occur, the model from the previous estimation
is re-projected onto its corresponding frame to gather new information. In general, This
procedure segments one long sequence of images into a set of smaller length sequences, each

having its own local intensity and gradient propagation.
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5 Experiments

Our system was used to track two distinct hand movements: movement in the XY plane (See
Fig. 4), movement in the X 7 plane, i.e. scaling (See Fig. 5), These examples are sufficient
to demonstrate the advantage of a 3-D, rather than a 2-D, approach. In each sequence,
the locations of the TP models were updated in each frame to match the movement of the
fingertips in the image plane (See superimposed models in Figs 4&5). In sequence 1, with
no depth changes, the 2-D trajectories are shown to be sufficient to approximate the motion
of the hand (Compare 2-D and 3-D trajectories in Figs. 4). Sequence 2 demonstrates the
hand changing in depth. This type of motion can be shown in 3-D (See 3-D trajectories in
Fig. 5) and cannot be distinguished in 2-D, where it appears that the hand is mainly at rest
(See 2-D trajectories in Fig. 5).

As for gesture recognition, we performed Spock’s well known “Live Long and Prosper”
hand gesture from Star Trek to the system, which tracked the hand from the start position
to the fixed gesture position (See Fig. 6). The resulting calculated movements can then be

used in gesture recognition methods.

6 Conclusion

In this paper, we presented a 3-D hand modelling and motion estimation method for tracking
hand movements. This approach does not require any glove or motion correspondence, and
recovers 3-1) motion information of the hand. The orientation of the fingers in a 2-D image
are found, and a generalized cylinder is fit to each finger’s third phalangeal segment. Six
motion parameters for each finger are calculated, which correspond to the 2-D movement
of the fingertips in the image plane. Three-dimensional trajectories are then determined
from the motion of the models, which may be used in hand tracking and gesture recognition

applications.
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Frame 000 Frame 199 Frame 374

Cyls 000 Cyls 199 Cyls 374

2-D 3-D

Figure 4: Sequence 1. First Row: Sampled images from a sequence where the hand translates
in the XY plane. Second Row: Images from first row superimposed with the projection of
TP models (shown in white). Third Row: 2-D and 3-D trajectories (hand outline and models

represent the initial and final hand positions, respectively).
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Frame 000 Frame 074 Frame 149

Cyls 000 Cyls 074 Cyls 149

2-D 3-D

Figure 5: Sequence 2. First Row: Sampled images from a sequence where the hand translates
in the X7 plane, i.e. scaling. Second Row: Images from first row superimposed with the
projection of TP models (shown in white). Third Row: 2-D and 3-D trajectories (hand

outline and models represent the initial and final hand positions, respectively).
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Spock Cyls 000 Cyls 049 Cyls 099

Figure 6: Spock’s “Live Long and Prosper” hand gesture. Spock making the classic hand ges-
ture (Star Trek: Amok Time, 1967), and the corresponding image sequence superimposed
with the updated locations of the TP models (shown in white). The sequence begins with

the hand in the start position and ends with the hand in the recognizable gesture position.
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