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Abstract

This paper proposes a framework in which Lagrangian

Particle Dynamics is used for the segmentation of high den-

sity crowd flows and detection of flow instabilities. For this

purpose, a flow field generated by a moving crowd is treated

as an aperiodic dynamical system. A grid of particles is

overlaid on the flow field, and is advected using a numeri-

cal integration scheme. The evolution of particles through

the flow is tracked using a Flow Map, whose spatial gra-

dients are subsequently used to setup a Cauchy Green De-

formation tensor for quantifying the amount by which the

neighboring particles have diverged over the length of the

integration. The maximum eigenvalue of the tensor is used

to construct a Finite Time Lyapunov Exponent (FTLE) field,

which reveals the Lagrangian Coherent Structures (LCS)

present in the underlying flow. The LCS divide flow into

regions of qualitatively different dynamics and are used to

locate boundaries of the flow segments in a normalized cuts

framework. Any change in the number of flow segments

over time is regarded as an instability, which is detected by

establishing correspondences between flow segments over

time. The experiments are conducted on a challenging set of

videos taken from Google Video and a National Geographic

documentary.

1. Introduction

Management of large gatherings of people at events such

as religious festivals, parades, concerts, football matches,

etc., pose significant challenges to public safety manage-

ment officials. Often these gatherings involve movement

of crowds in confined spaces such as city streets, overhead

bridges, or narrow passageways. Figure 1 depicts some ex-

ample scenarios. It is quite obvious that an incident free

management of such huge gatherings is a daunting task,

simply due to shear number of people involved in these

events. One way to reduce the incidence of any catastrophic

event in situations involving large crowds is through better

coordination and remodelling of expected bottleneck areas.

(a) (b) (c)

Figure 1. Example scenarios involving thousands of people. (a) A scene

from New York City marathon. (b) A large crowd participating in a politi-

cal rally in Los Angeles. (c) Pilgrims circling around Kabba in Mecca.

However, numerous occurrences of stampedes in the recent

past have shown that better coordination between public

safety organizations and remodelling alone cannot solve the

problem of managing large crowds. For instance, 270 pil-

grims were killed at Jamarat bridge in Mecca in May 1994

and another 251 were killed in February 2004. This led

to redesigning of the approach towards the bridge and exit

points, but unfortunately in January 2006, 345 lives were

again lost at the same bridge due to a stampede.

Over the last few years, computer vision based algo-

rithms have been integrated into wide area surveillance sys-

tems for in areas such as city streets, subway stations, malls,

etc. However, one common weakness among these systems

is their inability to handle crowded scenes. As soon as the

density of objects in the scene increases, a degradation in

their performance in terms of object detection, tracking and

event detection, is observed. Limited research effort, if any,

has been spent in building computer vision systems that can

model high density scenes and provide useful information

to public safety officials. One reason for the lack of effort

in this direction is the complexity of the problem.

This research effort is a first step towards building an au-

tomated monitoring system capable of modelling high den-

sity crowd scenes. For this paper, the term modelling in-

cludes tasks of segmenting dominant crowd flows present

in the scene, and detection of any abnormalities that may

arise in these flows. Our proposed approach for solving this

modelling problem starts by treating moving crowds as an

aperiodic dynamical system, which is manifested by a time

dependent flow field. Such a flow field in a general scene

will consist of regions with qualitatively different dynam-
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ics, reflecting the motion patterns emerging from the spatio-

temporal interactions of the participants between each other,

as well as with the physical world. These emerging motion

patterns which have dynamical and physical interpretations

in a given scene are referred to as ‘flow segments’.

Now, in order to locate these flow segments, we propose

a flow segmentation framework which makes use of recent

advances in the areas of nonlinear dynamical systems [2],

fluid dynamics [4][6], and turbulence theory [1][11]. The

basis of the idea is to use Lagrangian Particle Dynamics to

uncover the spatial organization of the flow field by exam-

ining clouds of particles as they mix and get transported

under the action of the flow field generated by the crowd

motion. The motivation behind the idea is the observation

that the trajectories generated from the advection of parti-

cles through a flow reveal representative characteristics of

flow such as locations of the barriers, mixing properties,

sources, sinks, etc. Since the flow fields we are dealing with

are generated by moving crowds, their characteristics will

have a direct relationship with the physical properties of the

scene and the crowd such as physical barriers in the scene,

heading direction, number of crowd segments, locations at

which segments merge or split, etc.

The key theoretical notion that we are going to use

is the existence of Coherent Structures (CS) [6] in fluid

flows which can be discovered by fluid particle advection.

Roughly speaking, CS are separatrices that influence the

kinematics of a particle cloud over finite time intervals, and

divide the flow into dynamically distinct regions where all

particles within the same region have a similar fate, i.e.,

coherent behavior. The notion of coherent structure is ex-

tendable to flow fields generated by crowds where they map

to the boundaries of different crowd segments. Intuitively,

‘CS’ are to flow data what ‘edges’ are to image data. Note

that when CS are studied in terms of quantities derived from

trajectories, they are often named as Lagrangian Coherent

Structures (LCS). The LCS are located through a Lyapunov

Exponent approach, resulting in a FTLE field over the flow

domain. Lyapunov exponents measure the exponential rate

of convergence or divergence between two particles. It has

been shown by Haller [6] that CS are local maximizing

curves of this field appearing as ridges. These ridges can

be treated as edges separating flow segments of different

dynamics from each other. At this point, we formulate the

problem of locating physically and dynamically meaningful

segments as segmentation of a scalar field in a normalized

cut framework.

The second goal of this paper is the detection of any

changes in the dynamics of flow from its learned pattern.

Our formulation for flow segmentation allows us to achieve

this task by simply detecting presence of new flow segments

from one time instant to the next. Recall that the difference

in the dynamics of any part of the flow gives rise to CS at

the location where the change in dynamics is happening.

Therefore, any part of the flow which shows change in its

previously known dynamics will give rise to new CS, which

will be segmented out using the FTLE field. By detecting

these new segments, we can pinpoint which part of the flow

is deviating from its normal flow behavior.

2. Related Work

Recently, the computer vision community has started

taking interest in addressing different research problems re-

lated to the scenarios involving large crowds of people. The

focus so far has been on the tasks of crowd detection, and

detection and tracking of individuals in the crowd. Repre-

sentations based on xt slices of spatio-temporal video vol-

ume [7], shape and color models of individuals [9], bound-

ary contours [3], and trajectories of interest points [5] have

been used for this purpose. A dew approaches [13][8] which

explicitly count the number of people in the crowd have also

been proposed. The main difference of our work with re-

spect to this body of literature is that we are attempting to

model the dynamics of the crowd as one global entity, in-

stead of focusing on the individuals making up the crowd.

Recently, Chan et. al. [16] proposed to segment videos of

crowded environments using a dynamic texture based repre-

sentation. However, our prime focus is on using the optical

flow information for this task without making any assump-

tions about the nature of the underlying generative process.

Another related work is by Sand et. al., [17] which proposes

a particle based framework for motion computation. As op-

posed to their application of particles for motion estimation,

we use particles for high level motion interpretation in the

form of physically and dynamically meaningful segments.

In next section we describe the mathematical notations and

key concepts using the nomenclature used in [10].

3. Definitions and Notations

Let a compact set D ⊂ R
2 be the domain of the crowd

flow under study. Given a time dependent velocity field

v(x,t) defined on D and satisfying C0 and C2 continuity

in time and space, respectively, a trajectory x(t : t0, x0)
starting at point x0 at time t0 is a solution of

ẋ(t; t0, x0) = v(x(t; t0, x0), t), x(t0; t0, x0) = x0. (1)

The C0 assumption is required to keep the flow field

smooth. A trajectory x(t : t0, x0) of a particle depends on

the initial position x0 and the initial time t0. From conti-

nuity constraints of v(x,t), it follows that x(t : t0, x0) will

be C1 in time and C2 in space. The solution of a dynami-

cal system described in Equation 1 can be viewed as a map,

which takes points from their position x0 at time t0 to their

position at time t and is referred to as a flow map. It is de-

noted by φt
t0

and satisfies

φt
t0

: D → D : x0 7→ φt
t0

(x0) = x(t; t0, x0). (2)



Additionally, flow map φt
t0

satisfies following properties

φt0
t0

(x) = x, (3)

φt+s
t0

(x) = φt+s
s (φs

t0
(x)) = φt+s

t (φt
t0

(x)). (4)

3.1. Finite Time Lyapunov Exponent Field

The Lyapunov exponent is an asymptotic quantity which

measures the extent to which infinitely close particles sep-

arate in an infinite amount of time. In fluid dynamics lit-

erature, the finite-time Lyapunov exponent is often used to

quantify the mixing and dispersion of particles instead of

the infinite time Lyapunov exponent. Finite time exponents

depend on the initial positions of the trajectories and the

length of the integration of the trajectories, and they reveal

local properties of the flow, i.e., the properties which de-

pend on the finite time integration of particle trajectories.

When finite-time Lyapunov exponent analysis is performed

over a grid of particles, it generates a finite time Lyapunov

Exponent (FTLE) field. In our formulation, a FTLE field

σT (x0, t0) can be computed using the flow map φt0+T
t0

. The

amount of stretching around the trajectory of the particle

can be understood by considering the evolution of the per-

turbed point y = x + δx(0), where δx(0) is infinitesimal

and arbitrary oriented. After a time interval this perturba-

tion becomes [10][1]:

δx(T ) = φ
t0+T
t0

(y) − φ
t0+T
t0

(x)

=
dφt0+T

t0
(x)

dx
δx(0) + O(‖δx(0)‖

2
).

We linearize the perturbation by dropping the higher or-

der terms and calculate the magnitude of deformation along

the particle path by using following relation

∆ =
dφ

t0+T
t0

(x)

dx

∗

.
dφ

t0+T
t0

(x)

dx
, (5)

where superscript * refers to transpose operator. ∆ is known

as a finite time version of Cauchy-Green deformation tensor

while quantity
dφ

t0+T

t0
(x)

dx
is the spatial gradient tensor of the

flow map. Note that maximum stretching between infinites-

imally close particles occurs when δx(0) is aligned with the

eigenvector of maximum eigenvalue of ∆. Then, from [10]

we know that the largest finite time Lyapunov exponent with

a finite integration time T corresponding to point x ∈ D at

time t0 is

σT
t0

=
1

T
ln

√

λmax(∆). (6)

3.2. Lagrangian Coherent Structures

As mentioned earlier, the LCS reveal underlying flow

structures that are typically not evident from the raw veloc-

ity field. In the case of an aperiodic velocity field, LCS can

be located directly from the FTLE field, where they appear

as ridges. The relationship between ridges in the FTLE field
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Figure 2. Mean flow field corresponding to the sequence displayed in Fig.

1(c). Inset shows a zoomed in version of the field.

and LCS can be explained in the following way. If a flow

is experiencing qualitatively different dynamics in two re-

gions of the flow, then we expect a coherent motion of parti-

cles within each region and the eigenvalues of ∆ to be close

to 1, an indication that the fate of nearby particles is simi-

lar inside the sub-regions. At the boundary of two regions

of qualitatively different dynamics, particles will move in

an incoherent fashion. This will create much higher eigen-

values in the direction normal to the boundary, resulting in

prominent ridges in the FTLE field. In this work, we are not

interested in developing any precise mathematical definition

of LCS, since information about their location in the given

flow is enough for us to proceed with our flow segmentation

process.

4. Implementation

In this section we describe the implementation details of

our flow segmentation framework.

4.1. Flow Field Calculation

Given a video sequence, the first task is to estimate the

flow field. We employ a scheme consisting of block based

correlation in the fourier domain, where displacement be-

tween blocks of consecutive frames is calculated by locating

peaks in the correlation surfaces. This process is repeated

for all of the possible blocks in the given frame. Local out-

liers are replaced by using an adaptive local median filter-

ing. A typical size of the block used is 16x16. Optical flow

fields calculated over n frames are averaged to obtained one

mean field M . Finally, T mean fields are stacked together to

obtain one block of mean fields. We use the symbol Bi+T
i

to represent a stack of flow fields Mi,Mi+1, ..,Mi+T , for

frames i to frame n×(i+T ). Fig. 2 shows a snapshot of the

mean flow computed for the Mecca sequence (Fig. 1(c)).

4.2. Particle Advection

The task is to carry out particle advection under the in-

fluence of the stacked flow field Bi+T
i , corresponding to the

time interval t to i + T . To perform this step, a grid of par-

ticles is launched over the first mean field Mi in Bi+T
i . The

Lagrangian trajectory [x(t+T ; t, x0, y0), y(t+T ; t, x0, y0)]
corresponding to a particle at grid location (x0, y0) is com-

puted by numerically solving the ordinary differential equa-

tions, dx
dt

= u(x, y, t), dy

dt
= v(x, y, t), subject to the initial



(a) (b)

Figure 3. Intermediate spatial gradient maps during the advection process.

(a) Spatial gradient of flow map of x-coordinate of particle grid i.e.
dφx

dx
(b) Spatial gradient of flow map of x coordinate of particle grid with respect

to y-axis i.e.
dφx

dy
.

conditions [x(0), y(0)] = (x0, y0). Here, t + T is the later

time up till which we want to compute the trajectory. We

use the fourth order Runge-Kutta-Fehlberg algorithm along

with cubic interpolation [12] of the velocity field to solve

this system. The above process is repeated for each block

Bi+T
i of the video. Note that we do not reseed the particles

if they go out of the image bounds.

4.3. Flow Maps and FTLE Field

A pair of flow maps, namely φx and φy , is maintained

for the grid of particles at each time instant. The first map,

φx, keeps track of how the x coordinate of the particle is

changing, and similarly, φy keeps track of the y coordinate.

At the start, these maps are populated with the initial posi-

tions of the particles, which are the pixel locations at which

the particle is placed. When the particles are advected under

the influence of Bi+T
i using the method described in Sec-

tion 4.2, the positions of the particles are updated in these

maps until the end of the integration time length T .

The FTLE field is computed from these maps, first by

taking their spatial gradients as, dφx

dx
, dφx

dy
,

dφy

dx
and

dφy

dy
.

This step can be easily accomplished by using a finite dif-

ferencing approach for taking derivatives. Fig. 3 shows an

example of dφx

dx
and dφx

dy
computed for the Mecca sequence

shown in Fig. 1(c). Finally, the Cauchy-Green deformation

tensor is computed by plugging spatial gradients of the flow

maps in Equation 6. Fig. 4 shows the FTLE field computed

for two different sequences where the ridges are clearly vis-

ible. These ridges will be used to separate out the flow seg-

ments with different dynamics.

4.4. FTLE Field Segmentation

The FTLE field is a scalar field capturing the underlying

flow dynamics and geometry. For segmenting this scalar

field we employ the normalized cuts algorithm, first pro-

posed by Shi et. al [14]. Our segmentation procedure is

composed of two main steps. The first step involves an over-

segmentation of the given FTLE field. In the second step,

we merge the segments whose boundary particles have sim-

ilar behavior in Lyapunov sense. The reason for using this

scheme is the observation that graph based segmentation al-

gorithms require the user to specify how many segments to

return. This condition is too restrictive for a system that
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Figure 4. (a) FTLE field for the Mecca sequence. Ridges are prominent at

the edges of the circle along which the pilgrims are moving, emphasizing

the fact that region inside the ridges has a coherent motion. (b) FTLE field

for the sequences shown in Fig. 6(b). Ridges are prominent at the edges of

the flow as well as between the flows of different dynamics. The sequence

has two groups of people moving side by side.

is envisaged to be deployed in crowded situation with ar-

bitrary settings. By over-segmenting the FTLE field, we

are making the algorithm responsible for finding the exact

number of flow segments. We used the standard procedure

where the weight w(i, j) between nodes is calculated from

the FTLE field.

Let us assume that the over-segmented field S has k

number of segments. Let s1 and s2 be the two neighbor-

ing segments and P1 and P2 be the particles belonging to

s1 and s2, which are at the shared boundary. Let the size

of P1 and P2 be n and m respectively. Fig. 5 shows an ex-

ample of these two sets of particles for a pair of segments.

In order to decide whether to merge these two segments,

the Lyapunov exponent χ is computed between each pair

of particles in P1 and P2 using the following equation first

proposed by [15],

χ(t) =
1

t
ln

d(t)

d(0)
, (7)

where d(t) is the distance between two particles at time t,

initially separated by d(0). The measure of Lyapunov di-

vergence between the two sets of particles is now computed

by

lypdiv(s1, s2) =
1

nm

m
∑

i=1

n
∑

j=1

1

t
ln

di,j(t)

di,j(0)
, (8)

where nm is the normalizing factor and di,j(t) is computed

by advecting the particles i and j and measuring the Eu-

clidian distance between them. The segments are merged if

lypdiv(s1, s2) is less then some threshold. Note that before

starting the merging process, we can remove those segments

where the magnitude of the flow is zero. We call such seg-

ments ‘vacuum segments’. Examples of over-segmentation

and subsequent merging are shown in Fig. 6.
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Boundary Particles
Boundary Particles

Figure 5. Boundary particles are highlighted which are used for measur-

ing Lyapunov divergence between the segments.

5. Flow Instability

Given flow segments, we define the problem of locat-

ing flow instability as detecting the change in the number

of flow segments. Recall that in our flow segmentation

framework, boundaries of the flow segments having differ-

ent dynamics are reflected as LCS in the FTLE field. Due

to this formulation any changes in the dynamic behavior of

the flow will cause new LCS to appear in the FTLE field at

exactly those locations where the change happens. These

new LCS will eventually give rise to new flow segments

which were not there before. By detecting these new flow

segments, we will be in a position to identify the locations

in the scene where the flow is changing its behavior.

For detecting new flow segments, we establish corre-

spondence between the flow segments which are generated

from two consecutive blocks of video. Let us denote these

as blocks A and B. The shape of a flow segment is rep-

resented by a Gaussian probability distribution of the spa-

tial coordinates of pixels belonging to the flow segment.

The mean of the Gaussian distribution is initialized with the

mean of the spatial coordinates, while the variance is ini-

tialized with the variance of the coordinates of the boundary

pixels. A voting scheme is employed for establishing corre-

spondence between flow segments of block A and B. Each

pixel within a flow segment of block B votes for one of the

flow segments in block A. A flow segment from block B

corresponds to a flow segment in block A if the majority

of the pixels from a segment in B have voted for that flow

segment in A. A flow segment in B whose correspondence

cannot be established is ‘flagged’ as an instable flow region.

6. Experiments and Discussion

The approach is tested on videos taken from the stock

footage web sites (Getty-Images, Photo-Search) and Video

Google, representing high density crowd and high den-

sity traffic scenes. The second set of videos are extracted

from the National Geographic documentary, titled ‘Inside

Mecca’. For each video, a flow field is computed using the

algorithm described in Section 4.1. The values used for pa-

rameters n and T are kept between the range of 5 to 10.

For advection, the resolution of the particle grid is kept the

same as the number of pixels on which the flow field was

calculated. The FTLE field is computed from the spatial

gradient tensor of the flow maps using Equation 6. For seg-

mentation the number of input segments to the normalized

cuts algorithm is varied from 12 to 20 segments. The output

of the normalized cuts algorithm is then merged using the

the Lyapunov divergence measure described in Equation 8.

This process is repeated for each block of frames to obtain

the flow segmentation at consecutive time intervals.

Fig. 6 shows some of the qualitative results of flow seg-

mentation. The first sequence shown in Fig. 6(a) is ex-

tracted from the documentary ‘Inside Mecca’. It shows

thousands of people circling around the Kabba in an anti-

clockwise direction. Here the notion of a ‘physically and

dynamically meaningful flow segment’ implies that the en-

tire group of people circling around Kabba are part of the

same flow segment, since they are performing exactly the

same task. The flow field for this sequence (Fig. 2) offers

a unique challenge. All of the flow vectors within the circle

have different directions, which means a simple clustering

of these vectors will not assign all of the vectors to the same

cluster, when in fact, they all belong to one cluster. How-

ever, we are able to handle this situation by quantifying the

dynamics of the crowd flow using Lagrangian particles. The

LCS previously shown in Fig. 4(a) show that the dynamics

of the crowd are preserved by emphasizing the boundaries

of the coherent flow regions.

The second sequence (Fig. 6(f)) shows a high density

traffic scene. Vehicles are moving in two opposite directions

on the main section of the highway, while a third group of

vehicles is merging onto the main highway from the ramp.

The challenge is to find the right segmentation of the flow

generated by the traffic on the ramp. Based on our formula-

tion, all of the particles which have the same fate (or desti-

nation) are part of the same flow, which means the flow gen-

erated by the traffic on the ramp should be part of the flow

generated by the lanes on the right hand side of the high-

way. The result in Fig. 6(f) shows that our method is able

to handle the aforementioned situation and has accurately

(a)

.  .  .  .  .

Frame 1 Frame 10 Frame 18 Frame 32 Frame 50

(b)

(c)

.  .  .  .  .

Frame 1 Frame 14 Frame 30 Frame 39 Frame 53

.  .  .  .  .

Frame 1 Frame 8 Frame 17 Frame 32 Frame 48

(d)

.  .  .  .  .

Frame 3 Frame 15 Frame 25 Frame 33 Frame 40

.  .  .  .  .

Frame 1 Frame 25 Frame 42 Frame 61 Frame 70

(e)

.  .  .  .  .

Frame 1 Frame 15 Frame 30 Frame 44 Frame 56

(f )

Figure 6. The flow segmentation results on some of the sequences. For

each result, the image on the left shows the over-segmented field, while

the image on the right shows the final segmentation mask obtained after

the merging. Top row in each image shows the sequence of frames itself.
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Figure 7. Results of the instability detection algorithm. (a,e) Bounding

box is showing the synthetic instability. (b,f) Flow segmentation. (c,g)

Detected instable region. (d,h) LCS around the detected instability.

segmented out the flow segments which are physically and

dynamically meaningful in this scene.

The second set of experiments is performed for the de-

tection of flow instability for which we inserted synthetic

instabilities into the original video sequences. For each ex-

periment, the original video sequence is used to compute

the flow segments corresponding to the normal flow of the

crowd and the spatial pdf is initialized for each segment as

described in section 5. After the learning stage, the flow

segmentation is performed on the block of frames that con-

tain the synthetic instability. Synthetic instability itself is

created by randomly placing a bounding box within the

flow, and flipping or rotating it to change the behavior of

the flow at that location. The correspondence of the flow

segments generated from the synthetic sequence is estab-

lished with the learned set of segments, using the procedure

described in Section 5. Fig. 7 show the results of these ex-

periments. In the case of the first sequence (Fig. 7(a-d)), the

instability has caused a barrier in the flow, which resulted in

the break up of the original segment into two parts, as shown

in Fig. 7(b). The segment for which the correspondence can

not be established is flagged as a potential instable flow re-

gion, as shown in Fig. 7(c). The emergence of new LCS

in the FTLE field, as shown in Fig. 7(d) (circled in white),

validates the observation that any change in the dynamics

of the flow will result in new LCS that can be used to locate

the instabilities. The second sequence shown in Fig. 7(e-h)

captures a bird’s eye view of a New York City marathon,

where again our algorithm was able to locate and flag the

potential problem region.

7. Conclusion

We have proposed a mathematically exact framework

based on Lagrangian particle dynamics for crowd flow seg-

mentation and flow instability detection. The framework

is tested on a challenging set of videos taken from differ-

ent web sources. Future directions include improving the

flow instability detection by incorporating properties of in-

dividual particles into the spatial representation of flow seg-

ments.
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