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ABSTRACT
We describe an approach for detecting and segmenting hu-
mans with extensive posture articulations in crowded video
sequences. In our method we learn a set of mean posture
clusters, and a codebook of local shape distributions for hu-
mans in various postures. Detection proceeds in two stages:
first instances of the codebook entries cast votes for loca-
tions of humans in the video and their respective postures.
Subsequently, consistent hypotheses are found as maxima
within a voting space. The segmentation of humans in the
scene is initialized by the corresponding posture clusters and
contours are evolved to obtain precise and consistent seg-
mentations.

Our experimental results indicate that the framework pro-
vides a simple yet effective means for aggregating local and
global shape-based cues. The proposed method is capable
of detecting and segmenting humans in crowded scenes as
they perform a diverse set of activities and undergo a wide
range of articulations within different contexts.

Categories and Subject Descriptors
I.4.8 [Image Processing and Computer Vision]: Scene
Analysis—Object recognition; I.4.6 [Image Processing and
Computer Vision]: Segmentation

General Terms
Algorithms

Keywords
Object Recognition, Human Detection, Segmentation.

1. INTRODUCTION
The ability to accurately detect and segment humans in

video sequences represents an essential component in a wide
range of application domains such as dynamic scene analysis,
human-computer interface design, driver assistance systems,
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Figure 1: A typical crowded real-world urban scene
along with a series of detections from our method.

and the development of intelligent environments. Neverthe-
less, the problem of human detection has numerous chal-
lenges associated with it. Effective solutions must be able
to account not only for the nearly 250 degrees of freedom
of which the human body is capable[14], but also the vari-
ability introduced by various factors such as different cloth-
ing styles, and the presence of occluding accessories such as
backpacks and briefcases. Furthermore, a significant per-
centage of scenes, such as urban environments, contain sub-
stantial amounts of clutter and occlusion.

Despite these challenges, detecting humans within video
sequences has constituted an active area of research for a
number of years, resulting in the proposal of numerous ap-
proaches. Nevertheless, only a small subset of the existing
methods has been demonstrated to be effective in the pres-
ence of considerable overlaps and partial occlusion in video
sequences, such as those seen in Figure 1.

The shape of the human silhouette is often very different
from the shape of other objects in a scene. Therefore, shape-
based detection of humans represents a powerful cue which
can be integrated into existing lines of research. As opposed
to the appearance-based models, human shapes tend to be
somewhat isotropic. Hence, shape-based methods coupled
with other cues, such as motion, can provide a discriminat-
ing factor for recognition.

In this paper we address the challenge of detecting and
segmenting humans in video sequences containing crowded
real-world scenes. Due to the difficulty of this problem, re-
liance on any single global model or feature alone would be



Figure 2: The main steps in human detection. (a) Input frame, (b) Foreground blobs, (c) Contours extracted
from the foreground blobs are depicted at the top. The bottom row depicts the votes cast by codebook
instances, representing hypotheses of human centroids in the scene, (d) Final detection and segmentation.

ineffective. Therefore, successful approaches must be capa-
ble of integrating both global and local shape cues.

2. RELATED WORK
Currently, the most prevalent class of methods present in

the literature is the detector-style method, in which detec-
tors are trained to search for humans within a video sequence
over a range of scales. A number of these methods use global
features such as edge templates [3], while others build clas-
sifiers based on local features such as SIFT-like descriptors
[6], Haar wavelets [11] and the histogram of oriented gradi-
ent descriptor [2].

Another family of approaches models humans as a collec-
tion of parts [5], [7], [8] and [9]. Typically this class of ap-
proaches relies on a set of low-level features which produce
a series of part location hypotheses. Subsequently, infer-
ences are made with respect to the best assembly of existing
part hypotheses. Approaches such as AdaBoost have been
used with some degree of success to learn body part detec-
tors such as the face [10], hands, arms, legs, and torso [5]
[8].While this class of approaches is attractive, detection of
parts is itself a challenging task. This is particularly diffi-
cult in the class of scenes in which we are interested, which
consist of crowded scenes containing significant occlusion
amongst many parts.

A considerable amount of work has also focused on shape-
based detection. Zhao et al [16] use a neural network that is
trained on human silhouettes to verify whether the extracted
silhouettes correspond to a human subject. However, a po-
tential disadvantage of the approach resides in the fact that
they rely on depth data to extract the silhouettes. Our work
is similar in principle to the framework presented in [4], in
which a patch-based approach is used to learn an implicit
shape model for walking humans. Others, such as Davis et
al [15] have also attempted to make use of shape-based cues
by comparing edges to a series of learned models. Wu et al
[12] have proposed learning human shape models and rep-
resenting them via a Boltzmann distribution in a Markov
Field. Although a number of these methods have proved to
be successful in detecting humans in still images, most of
them assume isolated human subjects with a minimal pres-
ence of clutter and occlusion. We are interested in methods
that enable effective use of shape-based cues in the pres-
ence of heavy occlusion of the kind present in most urban
environments.

3. APPROACH
In this section we describe our approach for detecting

and segmenting humans in cluttered video sequences. The
method is based on a formulation that integrates local shape
distributions and mean posture contours.

The method begins by learning a set of global posture
clusters which are used to initialize segmentation. Addition-
ally, we learn a codebook of local shape distributions based
on humans in the training set. When the system is pre-
sented with a new frame from the testing video sequence, it
extracts contours from the foreground blobs in each frame,
samples them using shape context, finds instances of the
learned local shape codebook, and casts votes for human
locations and their respective postures in the frame. Sub-
sequently, the system searches for consistent hypotheses by
finding maxima within the voting space. Given the locations
and postures of humans in the scene, the method proceeds
to segment each subject. This is achieved by projecting the
mean posture shape corresponding to the posture cluster of
every consistent hypothesis around the centroid vote.

3.1 Learning
Given a a set of training videos, we perform background

subtraction and extract contours from each frame by per-
forming edge detection on foreground blobs corresponding
to humans in the scene. Each contour is sampled at d points
(in our experiments d ranges from 1000-3000). For a point
pi on the contour, we identify a distribution over relative
positions by computing a coarse histogram hi of the rel-
ative coordinates of the d − 1 points that remain. These
histograms are concatenated into a single shape vector for
every silhouette. Shape vectors are then clustered into n
clusters using K -means. In our experiments n was set to
150, these cluster centers represent a set of typical global
human shapes in the training set (Figure 3).

Once the posture clusters are created the second phase of
the process consists of learning a codebook of local shapes
and their spatial distribution for different posture clusters.
The intuition behind this lies in the fact that in crowded
scenes reliance on global shape models alone would likely be
ineffective. Therefore, we create a codebook of local shapes
by sampling points on silhouettes using shape context de-
scriptors [1]. Subsequently, all of the shape context descrip-
tors are clustered into M clusters using K -means. The sim-
ilarity of the shape descriptors is given by the χ2 distance



Cluster center

Figure 3: Each posture cluster is represented by
a mean contour (depicted here in the center). The
collection of all posture cluster centers represent the
set of typical global human shapes in the training
data.

between the two K -bin histograms g(k) and h(k). χ2 is
given by:

χ2 =
1

2

K∑

k=1

[g(k)− h(k)]2

g(k) + h(k)
. (1)

For each of the M clusters we store the cluster center as
a codebook entry (in our experiments the size of the code-
book was set to 400). We then learn the spatial distribution
of the codebook entries for different postures. This is done
by iterating through all of the foreground blobs from the
training set, sampling each silhouette via shape context de-
scriptors, and matching these against codebook entries. For
each instance of a codebook entry we record two pieces of
information: The position with respect to the centroid of
the human silhouette on which it occurred, and the closest
posture cluster to which the silhouette belongs.

3.2 Detection and segmentation
Given a testing video sequence, at each frame we extract

contours from the foreground blobs produced by background
subtraction. These contours are then sampled using shape
context, producing a series of shape context descriptors for
each contour. Each descriptor is then compared to the
learned codebook of local shapes. If a match is found, the
corresponding codebook entry will cast votes for the possible
centroid of a human in the scene (Figure 4) and a posture
cluster to which it belongs. Votes are aggregated in a voting
space and Mean-Shift is used to find maximums. The var-
ious steps associated with detection are depicted in Figure
2.

Let s be our local shape observed at location l. If s
matches to a set of codebook entries Ci, each activation Ci

will be weighted by the quality of the match given by the χ2

distance between s and Ci. Each codebook activation will
cast a set of votes for the possible centroid x and posture pn

of humans within the scene.
Given a set of hypotheses Hi corresponding to (pn, x), we

search for consistent votes by integrating hypotheses within
a search window using Mean-Shift.

After selecting the strongest set of hypotheses for human
locations and their postures contours are initialized by pro-
jecting the silhouettes associated with the posture cluster
pn at location x in the video frame. Subsequently, contours
are evolved using a level-set based segmentation approach

Figure 4: Local shape codebook instances (which
are depicted as small colored dots on the contour)
vote for the location of humans within the scene.

proposed in [13]. Both texture and color features are used
in order to guide the segmentation of humans present in the
scene (Figure 5).

Figure 5: Given a hypothesis for x and hn, segmenta-
tion is initialized with the stores posture cluster sil-
houette. (a) The posture cluster silhouette to which
the subject on the right belongs. (b) Segmentation
based only on foreground pixels results in a inac-
curate segmentation. (c) When the segmentation is
initialized by the posture cluster silhouette and con-
tours are evolved we obtain improved precision and
consistency.

4. EXPERIMENTS AND RESULTS
We evaluated the performance our system for detecting

and segmenting humans on a set of challenging video se-
quences containing significant amounts of partial occlusion.
Furthermore, the videos included in the testing procedure
featured humans performing a diverse set of activities within
different contexts, such as walking on a busy city street,
running a marathon, playing soccer, and participating in a
crowded festival.

Our training set ranged from 700 to 1,100 frames from the
various video sequences containing human samples. Meta-
data in the training set included the centroid of each silhou-
ette, along with the posture cluster to which it belonged.
Our testing database consisted of a wide range of scenes,
totalling 34,100 frames in size and contained a total of 312
humans for which the torso is visible. The size of the humans
across the video sequences averaged 22x52 pixels. Figure 6
shows some examples from the data set.

The quantitative analysis of the method centered around
measuring correct detection as well as the reported locations
of humans within the scene. We employed the evaluation
framework proposed in [4], which consist of three criteria:
The first criteria, relative distance, measures the distance
between bounding box centers with respect to the size of the
ground truth box. The second and third criteria (cover and
overlap) measure the common area between the detected



Figure 6: Example detections from the testing set
are depicted by a colored bounding box and posture-
based segmentations.

bounding box and the ground truth. In our experiments
a detection is classified as being correct if the deviation in
relative distance is less than 25% and less then 50% for cover
an overlap.

In addition to evaluating the detection results of the method
we also assessed the effect of the training set size. This was
achieved by varying the number of frames used to learn the
spatial distribution of local shapes. Figure 7 depicts the re-
ceiver operating characteristic (ROC) curve for the different
modes.

Our detection results show that the method achieves high
recognition rates and performs reliable segmentations, de-
spite the presence of significant occlusions in the scene. On
the most challenging video sequence the system achieved
on average a 75.3% recognition rate. Whereas on the best
video we achieved an recognition rate of 94%. The false
positive rate was low, most of the erroneous detections were
caused by moving vertical structures that resembled the hu-
man shape. Given the difficulty of the data set, these results
are encouraging.

As demonstrated by Figure 7, the effect of the size of the
training set on the performance of the method was minimal.
Although an overall increase in performance is observed with
a larger training set, a reduction of the training set size
does not lead to a drastic decrease in the performance of
the method.

5. CONCLUSIONS
We have presented a framework for detecting and seg-

menting humans in real-world crowded scenes which inte-
grates both local and global shape cues. Cluttered scenes
containing many occlusions render the lone use of global
shape representations as ineffective. Instead we aggregate
local shape evidence via a codebook of local shape distri-
butions for humans in various postures. Additionally, we
found that a set of learned global posture clusters aids the
segmentation process.Our experiments indicate that local
shape distribution represents a powerful cue which can be
integrated into existing lines of research.
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