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Abstract

We use concepts from chaos theory in order to model

nonlinear dynamical systems that exhibit deterministic be-

havior. Observed time series from such a system can be em-

bedded into a higher dimensional phase space without the

knowledge of an exact model of the underlying dynamics.

Such an embedding warps the observed data to a strange

attractor, in the phase space, which provides precise infor-

mation about the dynamics involved. We extract this infor-

mation from the strange attractor and utilize it to predict

future observations. Given an initial condition, the pre-

dictions in the phase space are computed through kernel

regression. This approach has the advantage of modeling

dynamics without making any assumptions about the exact

form (linear, polynomial, radial basis, etc.) of the mapping

function. The predicted points are then warped back to the

observed time series. We demonstrate the utility of these

predictions for human action synthesis, and dynamic texture

synthesis. Our main contributions are: multivariate phase

space reconstruction for human actions and dynamic tex-

tures, a deterministic approach to model dynamics in con-

trast to the popular noise-driven approaches for dynamic

textures, and video synthesis from kernel regression in the

phase space. Experimental results provide qualitative and

quantitative analysis of our approach on standard data sets.

1. Introduction

We propose a new approach to model and predict time

series data observed in different types of videos. Such data

would comprise of a sequence of observations over time,

for instance, joint location or angle of a particular human

body joint, pixel intensity at a particular location, etc. These

time series would typically be generated by a deterministic

nonlinear dynamical system with known initial condition.

A good model of the underlying dynamics is important for

predictions that are used in applications like video synthe-

sis. When synthesizing longer sequences from a short sam-

ple video, it is desirable to generate realistic and smooth

transitions. A trivial approach would be to concatenate the

sample video multiple times, but this results in non-realistic

transitions. Fig. 1 shows an example of a scalar time se-

ries signal from running action. This data is from one of

the three dimensions corresponding to the 3D location of

the human foot. The predicted signal (broken red) gener-

ated by the proposed approach creates a smooth transition

and continues to depict the same dynamics as earlier. Such

a mechanism could be useful in synthesizing repetitive hu-

man actions and dynamic textures for long durations. This

can have a variety of applications in computer vision and

graphics including: human motion animation, noise han-

dling from motion capture data, more realistic dynamic tex-

ture synthesis, etc.

This paper presents a novel approach for synthesizing

such sequences using the relevant concepts from dynamical

systems and chaos theory. In dynamical systems the time

evolution of data points is defined in some higher dimen-

sional phase (or state) space. Chaos theory is related to the

study of chaotic systems; that is, nonlinear dynamical sys-

tems that exhibit deterministic behavior with a known initial

condition (starting point). Human actions such as walking,

running, jumping, etc. have been studied before by Ali et

al. [1] and are found to exhibit the deterministic properties

of the chaotic systems. The observed scalar time series sig-

nals are transformed into a higher dimensional phase space

through delay reconstruction (see Sec. 2.1). This results in

a strange attractor which is characteristic of the underlying

chaotic system. Note that a chaotic signal can be irregu-

lar and less predictable in the observed time series space,

while in phase space it has a regular structure due to its de-

terministic nature. For prediction in phase space, several

regression techniques can be used to compute the temporal

mapping function. Many of these techniques often assume a

particular underlying form of the mapping function (linear,

polynomial, radial basis function etc.). However, in case of

human actions and dynamic textures we are not aware of

the exact forms of the mapping functions responsible for

generating the dynamics. Hence, instead of approximat-
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Figure 1. Abrupt vs. smooth transition: Original time series signal

(solid blue) is repeated at the 1600 mark where it shows an abrupt

transition. The predicted signal (broken red) shows a smooth tran-

sition and synthesizes the signal persistently.

ing a the functional form from the observed data, we rely

on a more general approach. We use a nonparametric data

driven model, based on kernel regression [16], to predict the

future points along the strange attractor. These predictions

are then transformed back into time series of longer duration

with continuous motion. In order to generate more realistic

and synchronized multiple time series signals, we investi-

gate the use of multivariate vs. univariate reconstruction

for prediction. The use of multivariate time series embed-

ding for human actions and dynamic textures is novel. The

predicted time series signals of body-pose parameters are

used to synthesize and track human motion. In addition, the

predicted pixel intensities are used to synthesize dynamic

texture sequences.

The aim of this paper is to investigate the relevant con-

cepts from chaos theory and propose a novel and robust

model for video synthesis. The novelty of this work lies

in:

• The formulation of phase space reconstruction from

the multivariate time series data of human actions

and dynamic textures. Previously [1], only univariate

phase space models of human actions have been stud-

ied for action recognition.

• A new deterministic dynamical model for dynamic

textures in contrast to previously popular stochastic

noise-driven dynamical systems [9, 24].

• A new nonparametric model based on kernel regres-

sion in phase space.

We also provide experimental validation of viability of

chaotic modeling approach for video synthesis. We show

that our approach outperforms many recent approaches for

dynamic textures synthesis.

1.1. Related Work

Polana and Nelson [17] classified visual motion into

three classes: motion events, activities, and temporal tex-

tures. Motion events (e.g. sitting, opening window) don’t

exhibit temporal or spatial periodicity. Activities (e.g.

walking, jumping) are formed by the motion patterns that

are periodic in time and localized in space. Temporal tex-

tures (e.g. waves on water surface, smoke) present statis-

tical regularity but have indeterminate spatial and temporal

extent. In this paper we focus on the temporal regularity

of the last two classes. For this we rely on the powerful

tools from chaos theory to model deterministic dynamical

systems [13].

In computer vision, dynamical systems have been used

in a variety of applications, including human motion (ac-

tion) modeling [1, 2, 3, 10] and dynamic textures [7, 9, 12,

15, 24, 23, 20].Most of these approaches model underly-

ing system dynamics by using linear systems, while others

use nonlinear dynamical systems. In many cases, nonlin-

ear approaches provide a more accurate model but have to

approximate the parametric form of the underlying system.

This parameter learning may be imprecise and that can be a

source of error. Our approach belongs to the category of the

nonlinear dynamical systems that use nonparametric model,

which therefore do not require parameter learning.

Human actions have been modelled by a nonparametric

chaotic system by Ali et al. [1]. They proposed the nonpara-

metric chaotic model for human actions and demonstrated

the viability for action recognition. We extend their uni-

variate delay embedding model of human action to the mul-

tivariate case. This model is then used for predictions that

are used for synthesis. Wang et al. [10] have presented an-

other strong model for human motion. They propose a non-

parametric dynamical system based on Gaussian processes.

This approach is only demonstrated for human motion and

not for the higher dimensional data, such as dynamic tex-

tures. The case of dynamic textures is more challenging

than human action because of the higher dimensional ob-

servations and more irregular variations in the system state.

Our approach is general enough to be applicable to both hu-

man actions and dynamic textures. In addition, our method

does not require multiple exemplars for training in order to

learn a particular action, making it more practical.

Many of the previous approaches for dynamic texture

rely on stochastic noise-driven linear [9, 24] and nonlinear

[7] dynamical systems. Instead, we show that the typical

dynamic textures can be modelled accurately by determin-

istic dynamical systems. The detailed experimental valida-

tion proves our argument. In [14] and [15], authors present

approaches for learning nonlinear manifold for the observed

time series. We have compared our method with [15] and

show that our approach generates more realistic dynamic

textures, because it does not suffer from the errors due to

imprecise learning.

Time series modeling and prediction has been an active

area of research due to the wide variety of applications in

the financial market, weather, biology, etc. The initial ap-

proaches typically relied on AR, MA, or ARMA univariate

models. More sophisticated approaches rely on nonlinear

modeling [6] and state space projection of the time series

[18]. Our approach has both of these properties. Ralaivola

et al. [18] present an approach for time series prediction

based on kernel trick and support vector regression. In com-

parison, our approach is based on delay embedding [22]



Figure 2. Main steps of the proposed approach for time series syn-

thesis.

and kernel regression [16]. Delay embedding generates the

unique strange attractor that can be used for system mod-

eling and classification. [13].

2. Proposed Approach

We investigate dynamical systems that define the time

evolution of underlying dynamics in a phase (or state)

space. First task is to find a way for phase space re-

construction from times series. The time series obser-

vations {x0, x1, . . . , xt, . . .} are transformed to the phase

space vectors {z0, z1, . . . , zt, . . .} through delay embed-

ding, which is explained in Sec. 2.1. In the case of deter-

ministic nonlinear dynamical (chaotic) systems, specifying

a point in the phase space identifies the state of the sys-

tem and vice versa. This implies that we can model the

dynamics of a system by modeling the dynamics of the cor-

responding points in the phase space [13]. This idea forms

the foundation of modeling the underlying chaotic system

of unknown form and predicting future states. A system

state is defined by a vector zt ∈ R
n. The dynamics of these

states are defined either by an n-dimensional mapping func-

tion

zt+1 = F(zt), (1)

or by n first order differential equations. The latter approach

is typically used for studying theoretical systems because

the exact equations are rarely known for the experimental

systems. The former approach, which is based on the map-

ping function, is more popular for the experimental systems.

Sec. 2.2 describes a kernel regression based mapping func-

tion that we adopt for predicting future system states. These

new states are transformed back to output time series as ex-

plained in Sec. 2.3.

2.1. Phase Space Reconstruction

Phase space reconstruction is performed by the delay

embedding of the observed data into phase space vectors.

The details of the univariate delay embedding for human

actions are provided by Ali et al. [1], however, we in-

clude relevant information for completion. Takens’ de-

lay embedding theorem forms the basis of this approach

[22]. It states that a map exists between the original
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Figure 3. Steps for phase space reconstruction. (a) The observed

univariate time series. (b) Mutual information plot to determine

minimum delay (first local minimum, τ = 9). (c) The embedding

dimension is computed by finding the smallest value that gives a

small number of false nearest neighbors (converging to 1, d = 5).

state space and a reconstructed state space. The the-

orem shows that the dynamical properties of the system

from the true state space are preserved through the embed-

ding transformation. Therefore, the delay vectors zt =
[xt, xt+τ , . . . , xt+(d−1)τ ] ∈ R

d, generate the phase

space. The two parameters to be computed are lag τ and

embedding dimension d.

The most popular approach for computing lag τ is based

on the amount of mutual information between xi and xi+τ

pair of observed values. The basic idea here is to look for

the minimum τ for which the mutual information between

observations is lowest. The details of the algorithm are

available in [11]. Fig. 3(a) shows a univariate time series

from one of the three dimensions of the foot of a running

person. Fig. 3(b) shows the plot of possible τ values vs.

amount of mutual information. The point of the first local

minima of this plot is chosen as the lag τ . The optimal em-

bedding dimension d can be computed by using the false

nearest neighbors method proposed in [4]. The basic idea

of this method is to find the smallest d, while minimizing

the number of false nearest neighbors due to dimension re-

duction. Fig. 3(c) shows the plot of possible values of d

vs. fraction [0,1] of the points that do not have false nearest

neighbors. Note that the fraction converges to 1 (100%) at

d = 5, so choosing d > 5 would not be an optimal choice.

The values of τ and d are used to transform the univariate

time series into the phase space (or delay) vectors zt stacked

as

Zu =











z0

z1

z2

...











=











x0 xτ · · · x(d−1)τ

x1 x1+τ · · · x1+(d−1)τ

x2 x2+τ · · · x2+(d−1)τ

...











.

(2)

Note that each observed scalar value is repeated several time

in this matrix. The sequence of the rows in this embedding

matrix is important as it generates a trajectory in the phase

space. Fig. 4(a) shows the 3D projection of 5D phase space

for the time series presented in Fig. 3. This blue trajectory

forms the strange attractor in the phase space. The metric,

dynamical, and topological properties of this strange attrac-

tor are characteristic of the underlying nonlinear dynamical
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series (blue) and predictions (red) 
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Figure 4. Predicting dynamics of a time series. Original time series is transformed into a strange attractor in the phase space. Kernel

regression is used to estimate predicted values following behavior of neighbors. The predicted points in the phase space are transformed

into a synthesized time series.

system [13]. We will be relying on modeling the evolution

(flow) of the observed points along this strange attractor to

predict the future locations.

This form of the embedding Zu is feasible for predic-

tion in the case of univariate time series. However, in com-

puter vision we frequently observe time series generated by

a dynamical system that involves multiple variables (dimen-

sions) simultaneously. For instance, during human motion

directly connected body joints impose certain constraints

on the motion of each other. Similarly, in the case of dy-

namic textures the pixels values in the same neighborhood

evolve together. The trivial solution would be to proceed

with performing univariate prediction separately for each

dimension of the time series. We demonstrate through ex-

periments that this approach breaks down due to the de-

pendence between joint locations and neighboring pixels.

Hence, a phase space reconstruction is desirable where pre-

diction is performed for all the dimensions of a multivari-

ate time series simultaneously. Cao et al. [5] have shown

that a simple yet powerful extension of the univariate em-

bedding can be useful for the multivariate time series pre-

diction. For a multivariate time series, with observations

xt = [x1,t, x2,t, . . . , xD,t]
T ∈ R

D, an appropriate phase

space Zm = [z0, z1, z2, . . .]
T would be created by a set of

delay vectors redefined as

zt = [x1,t, x1,t+τ1
, . . . , x1,t+(d1−1)τ1

,

x2,t, x2,t+τ1
, . . . , x2,t+(d2−1)τ2

,

. . . ,

xD,t, xD,t+τ1
, . . . , xD,t+(dD−1)τD

] ∈ R

P

D

i=1
di .

(3)
Here τi and di are respectively the delay and the embedding

dimension for each one of the D dimension of time series.

zt maps to a point in the higher dimensional phase space

and is linked to the next point zt+1 by the order in Zm ma-

trix. Fig. 4(b) shows such points highlighted by dots and

connected through arrows showing the direction of evolu-

tion.

2.2. Prediction in Phase Space

In order to perform prediction we need to compute the

mapping function F (Eqn. 1). The exact form of F is un-

known in case of general human motions or dynamic tex-

tures. The “appropriate” selection of the model poses a

challenge when one is not aware of the exact physics of

the underlying dynamics. One popular form of the model is

given by

zt+1 = F(zt) =

M
∑

m=1

c(m, t)φm(zt), (4)

which is a linear combination of M possibly nonlinear func-

tions φm with c(m, t) providing the coefficients. φm are

usually chosen to be polynomials, radial basis functions, or

logarithmic functions while the coefficient values c(m, t)
are computed during functional approximation (e.g. least

squares).

We avoid guessing a particular model by using a non-

parametric model based on kernel regression [16]. The

main idea is to estimate the mapping function using a

weighted average of dynamics of neighboring points in the

phase space. Hence, the mapping is given by

zt+1 = F(zt) =

Nn(zt)
∑

k=1

(yk+1 − yk + zt)wk(zt,yk), (5)

where yk is one of the Nn(zt) nearest neighbors of zt. Each

of these neighbors has a corresponding next point yk+1 in

the phase space. As shown in Fig. 4(b), the vectors between

the consecutive points are used in the neighborhood. The

weights are computed from the kernel which is a decreasing

function of distance from the reference point. Nadaraya-

Watson [16] defined these weights as

wk(zt,yk) =
Kh(||zt − yk||)

∑Nn(zt)
k=1 Kh(||zt − yk||)

, Kh(b) =
1

h
K

(

b

h

)

,

(6)
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Figure 5. Comparison on synthetic data. (a) Sine, triangle, and

ramp input time series. (b) and (c) show the synthesized output

by Doretto et al.’s Dynamic Textures [9] and Chan et al.’s Kernel

Dynamic Textures [7] respectively. (d) Synthesized output of our

method provides more accurate reconstruction for all three signals.

where K is the kernel function which can be Guassian,

Epanechnikov, etc, h is the bandwidth of the kernel and

can be used for over smoothing. In our experiments we

use N (0, 1) kernel and bandwidth h = 0.5. Such a chaotic

modeling approach is generally: quite robust to noisy data,

more accurate in experimental systems, and good for pre-

diction while preserving important invariants of the dynam-

ics [13]. Such an approach has the advantage of captur-

ing a desirable balance between local and global parametric

regression approaches. Local models are known to have

the problem of large computational and memory require-

ments. On the other hand, the global models over generalize

while computing one functional representation that models

the whole attractor in the phase space.

Fig. 4 shows the phase space reconstruction and predic-

tions from the time series shown in Fig. 3(a). The predic-

tions are shown by red trajectories along with their direc-

tions of flow. Fig. 4(b) shows the starting point (initial con-

dition) of the prediction with closest neighboring points that

contribute the most (through symmetric kernel) to the first

prediction. Note that the first resultant arrow follows the

immediate neighbors very closely. The predicted trajectory

keeps evolving along the strange attractor following the sys-

tem dynamics.

2.3. Time Series Reconstruction

To recover a time series from the predictions in the phase

space we have to extract the time series from univariate Zu

or multivariate Zm matrices. For the univariate case Zu (see

Eq. 2) it is simply extracting the first column followed by

last τ rows from the rest of the columns. For a T xd matrix

Zu this generates T + (d − 1)τ time series observations

xi ∈ {Zu(1, i), Zu(k, T − j)},

where 0 ≤ i < T, τ ≥ j > 0, 1 ≤ k < d . In the mul-

tivariate case, Zm matrix (see Eq. 3) contains a row of

(a) Synthesis by univariate predictions (b) Synthesis by multivariate predictions
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Figure 6. Univariate vs. multivariate predictions for human mo-

tion. Univariate approach (a) shows irregular poses and its

global transformations while multivariate approach (b) generates

a smooth sequence with all valid poses. (c) Univariate predictions

also result in a higher error than the multivariate predictions.

D individual Zu matrices. The multivariate time series is

constructed by extracting D univariate time series from the

corresponding Zu as described above. Fig. 4(c) shows an

example of a univariate time series extracted from the pre-

dictions in the phase space shown in Fig. 4(a). Fig. 5 shows

the output of time series synthesis on three synthetic signals

where D = 2. The embedding parameters (τ , d) are cal-

culated to be (4, 5), (3, 4) and (5, 7) for each dimension in

sine, triangle and ramp signals respectively. It shows that

the output of our approach is very similar to the source sig-

nal and is better than the two recent approaches used for

dynamic texture modeling [9, 7].

3. Experimental Results

The proposed approach for predicting time series is ap-

plied to human action and dynamic texture synthesis. Sev-

eral experiments were performed to evaluate the perfor-

mance of our approach and to compare the output with that

of some of the well known methods.

3.1. Action Synthesis

We use motion capture data to acquire source time series

representing the position of the body landmarks during the

action. We use the motion capture data from FutureLight

[1] and CMU [8] data sets for the human action synthesis.

Every frame in CMU and FutureLight sequences provides a

62 and 39-dimensional body-pose descriptors respectively.

CMU’s descriptor is composed of bone length and joint an-

gles, while FutureLight is composed of the absolute 3D lo-

cations of the 13 body joints. A part of the sample sequence

of the human action is used to generate the observed time
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Figure 7. Human motion synthesis on CMU data set. Note that the

difference between the walking and running body-poses is main-

tained after synthesis. (a) Every 100th frames is shown , (b) Every

50th frame is shown. (c) Quality of our predictions are compared

against the ones generated by the GPDM based approach [10]. The

ground truth between frame 50 and 137 is used to compute predic-

tion error.

series xt ∈ R
P , where P is the dimensionality of the body-

pose descriptor. The multivariate phase space reconstruc-

tion produces Zm embedding matrix for the sample action.

For a given starting point xt, the predictions and time se-

ries reconstruction is performed as explained before. This

creates a sequence {xt,xt+1, . . .} of body-pose descriptors

used for final video synthesis.

We have experimented with both univariate and multi-

variate predictions for this task. In the univariate case, each

dimension of the pose descriptor is used independently to

determine the phase space reconstruction followed by pre-

diction. In the second case, multivariate prediction ap-

proach is used to evolve the predictions in an even higher di-

mensional phase space (order of P -dimensional). This pro-

vides the combined evolution of different dimensions of the

pose descriptor. Fig. 6 shows the keyframes from the same

running sequence synthesized using the univariate (see Fig.

6(a)) and the multivariate (see Fig. 6(b)) predictions. These

300 frame long sequences have been synthesized from a 130

frames long model sequence. The keyframes in the multi-

variate case show normal body poses, however in the uni-

variate case, strange poses are synthesized. Towards the end

there is an unrealistic global rotation of the whole body. Fig.

6(c) shows a graph of mean absolute error in the first 130

frames from both sequences that overlap with the model se-

quence. This clearly shows that the proposed multivariate

formulation is critical for human action synthesis.

Using the CMU data set, we show results on walking

and running actions as shown in the Fig. 7. The model se-
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Figure 8. FutureLight data set. Synthesized sequences from each

of the four different types of actions is shown. Here right hand

& foot have red trajectories, left foot & hand have blue trajecto-

ries, while head has green trajectory. Faster speed in the running

sequence (as compared to walking) can be noticed by the sparse

stick figures that are drawn every 40 frames.

(a) Synthesis by univariate predictions
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Figure 9. Dynamic texture synthesis from Stripes video. (a) Pre-

dictions of many pixels quickly become unsynchronized from the

neighbors causing the noisy pixels. (b) Multivariate predictions

create more realistic and smoother videos.

quences used in our experiments are typically 100 to 500

frames long. We synthesize sequences with up to three

times the original length. The highest individual embed-

ding dimension di observed during experiments was 7. We

also compare the accuracy of predictions with the output of

GPDM based approach [10]. Fig. 7 (c) shows a graph of

mean absolute error in predictions by our approach (solid

blue) and by Wang et al. [10]. The sequence (CMU id :
09 04) shown in Fig. 7 (b) is used for this experiment, where

frame 1-100 are used for creating the model and frame 50-

137 are used to compute the error in predictions.

Using the FutureLight data set, we synthesize walking,

running, jumping, and ballet actions, as shown in Fig. 8. We

compute the relative locations of all other landmarks with

respect to the belly (reference) point. This provides us with

a 39-dimensional time series signal that will be predicted.

The phase space embedding and predictions are computed

through the aforementioned approach. During our experi-

ments, the individual embedding dimension di would typi-

cally fall between 3 and 6 for these actions. The length of a

typical model sequences used is between 220 and 500.

3.2. Dynamic Texture Synthesis

We also demonstrate the synthesis of dynamic textures

through the proposed approach of chaotic modeling. The

dynamic textures have stochastic regularity in the spatial

and temporal extent [17]. We investigate the determinism

in the structure of dynamic textures through the proposed

approach. The sequence of intensity values at each pixel is
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Figure 10. Dynamic texture synthesis from UCLA data set. 75 frame long model videos are used to generate 225 synthesized frames.

treated as a univariate time series, which is generated pos-

sibly by a chaotic system. We investigate the feasibility of

both univariate and multivariate predictions in this case as

well. The multivariate case is applied in small neighbor-

hoods of 25x25 which creates 625-dimensional multivari-

ate time series for each neighborhood. The actual dimen-

sionality of the phase space would then be a sum of the

individual 625 embedding dimensions di’s. Fig. 9(a) shows

the synthesized video in the case of univariate predictions.

Noisy pixels become more obvious as the video progresses

because predictions diverge farther from ground truth. The

multivariate case Fig. 9(b) applies better spatial constraint

and results in a synthesized video of better quality.

We first present synthesis results using the UCLA data

set [19]. It contains 50 classes of different types of dynamic

textures, including flames, trees, fountains, water etc. Each

video contains 75 frames of a cropped 48x48 textured area.

Each pixel provides a scalar time series, whose embedding

parameters are computed individually. This is followed by

multivariate phase space reconstruction and prediction. The

individual embedding dimension di for a pixel has been ob-

served to lie between 4 and 9 for typical dynamics of the

textures used here. Fig. 10 shows a few of the synthesized

frames from various types of videos in this data set.

A series of experiments have been performed to com-

pare our approach to some of the popular approaches for

dynamic texture synthesis. These include approaches by

Chan et al. [7], Liu et al. [15], and Yuan et al. [24]. All of

them provide means for quantitative and qualitative compar-

ison with their approach, as well as the baseline PCA based

linear dynamical system approaches and an improved ver-

sion by Doretto et al. [9]. We performed experiments on the

MIT dynamic textures data set [21], in order to present qual-

itative and quantitative comparison with these approaches.

This data set contains videos that are typically 114x170 with

120 frames. These model videos were used to produce syn-

thesized videos three times their length. The time series

with pixel intensities is embedded into a higher dimensional

phase space where prediction is performed. Fig. 11 presents

the output of our method, along with the corresponding out-

put of the two approaches presented in [15]. The first is a

baseline approach they used which relies on simple PCA

with AR model. The second is their approach based on

probabilistic PCA (PPCA). In Fig. 11 we also highlight in-

(a) PCA based approach (baseline used by Liu et al.)

(b) PPCA based approach by Liu et al’s 

(c) Our approach

Figure 11. Dynamic texture synthesis from the Stripes video. We

compare our method with the approach by Liu et al. [15] and the

baseline method they used. Results obtained from our method are

crisp and do not exhibit ghost-like effects, as highlighted by the

red box in the last column.

Table 1. Mean squared error between the original and synthesized

frames
Sequence name Stripes Flags River

(Fig. 11 )

PCA based approach 1119.8 1445.2 1198.0

(baseline in [15])

PPCA based approach [15] 2117.9 579.5 551.4

Our approach 12.2 17.8 8.6

teresting area of the image with the red box. Note that both

approaches in first two rows generate a ghost-like effect due

to imperfect projection onto a few components, however,

our approach preserves the quality. Table 1 presents quan-

titative comparison through mean squared error. This error

is computed by the mean squared difference between the

pixel values of the original and the predicted frames. We

analyze the three videos (stripes, flags, and river) used in

[15] and determine that our approach indeed outperforms

both of these methods.

Similarly, we perform another comparison with the

closed-loop LDS by Yuan et al. [24], their baseline version

LDS, and improved LDS by Doretto et al. [9]. Due to lim-

ited space, we only include the Fire sequence, which is the

more challenging than the other two. The difference be-

tween the outputs of our approach and that from the first

two approaches (basic and improved LDS) is obvious when

looking at the figure. Table 2 clearly shows that our results



(a) Basic linear dynamical system  by Soatto et al.

(d) Our approach

(c) Closed-loop dynamical system by Yuan et al.

(b) Improved open-loop linear dynamical system by Doretto et al.

Figure 12. Dynamic texture synthesis from the Fire video. We

compare our method with Yuan et al.’s [24] and the baseline they

used by Doretto et al. [9].

Table 2. Mean squared error between the original and synthesized

frames
Sequence name Fire Smoke-far Smoke-near

(Fig. 12)

Basic LDS 55264 230.7 402.6

(baseline in [24])

Improved LDS [9] 55421 250.0 428.2

Closed-loop LDS [24] 1170 21.4 34.4

Our approach 109 16.1 1.9

are closer to the original video as compared to the out put

of Yuan et al.

4. Conclusions

We have presented a new model for nonlinear dynamical

systems of human actions and dynamic textures. We ob-

served that multivariate phase space reconstruction is more

suitable for predicting time series. The benefit of the mul-

tivariate reconstruction is more obvious in case of dynamic

textures where the pixels are evolved together in the neigh-

borhood. The dimension reduction approaches relying on

principle components have been noticed to generate ghost-

like artifacts. They can be attributed to the linear/nonlinear

combination of the estimated components used for repro-

jection. We also show that the dynamic textures and hu-

man actions can be modelled very well by a deterministic

model that is inherently different from many noise-driven

models. Generalization is also another important property

of our system as it is not very sensitive to the type of pe-

riodicity in time series and the parameter values. The via-

bility, robustness, and generalization of this model has been

demonstrated empirically.
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