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Abstract

We propose an intermediate represenation of video data to simplify the design of event detectors. This
approach allows the description of complex spatio-temporal actions on objects in terms of measurable
image and video properties, such as color, texture, spatio-temporal patterns, motion, and shot boundary
information. We show the usefulness of the color and texture measures for the recognition of natural
objects, and the combination of color, texture, motion, and shot boundary information for the detection
of hunt events in wildlife documentaries. The proposed approach allows the annotation of video data
with both low level color, texture, and motion pattern tags, as well as higher level object and event
information. A description of video data in terms of the derived primitives reduces the gap between
semantic and syntactic descriptions of events, thus simplifying the design of event detection methods.
We conclude this report by suggesting solutions for a number of sample events in terms of the proposed

intermediate representation.
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I. INTRODUCTION

We propose a rich intermediate representation of video data to simplify the design of event
detectors.

Consider the following examples of events: wildlife hunts, kissing, explosions, overtaking on
the highway, turning a corner, picking an orange, feeding the cat, buying a car, surfing, entering
a building, rock-climbing, a car crash, etc.

For many of these events we do not need complete object or motion descriptions in order
to establish their occurrence. For wildlife hunts it would be difficult to model the terrain, the
predators’ shape, motivation, and health, the occlusions, the lighting conditions, the camera
parameters, the effects of the video compression scheme on the objects, etc. We might not care
about the kind of predator, the predator’s limp due to a thorn in its foot, the prey, the prey’s
speed or global motion parameters, the weather, the camera, the compression scheme, etc.

Likewise, we may not know or need to know the people who are kissing; we may not know or
need to know what exploded; we may not care about the absolute or relative speed and the kind
of vehicles that are involved in the overtaking manouver, etc.

However, there are spatial, temporal, and spatio-temporal patterns that are significant, and
without which the detection of an event would be very difficult. While we may have a good
idea about what it is that defines an event in terms of objects and actions it may be difficult to
specify how to detect the objects and actions. Many actions can operate on a number of objects.
For instance, to recognize a running action we need not know whether the running object is a
human, an animal, or a cartoon character. Similarly, to recognize a zebra we do not need to
know if it is running, sleeping, or feeding.

We propse a rich intermediate representation of video data to narrow the gap between abstract
event descriptions and pixel intensities. For this purpose we derive spatial features from color and
texture measures, motion measures from the locations of corresponding image regions in multiple
frames, qualitative motion information from spatio-temporal measures. Since shots are natural
building blocks of events we also gather shot boundary information and maintain statistics for
regions of interest throughout shots. Spatial, temporal, spatio-temporal frame measures together
with a range of shot characteristics provide a rich representation of video content that simplifies

the design of event detectors.
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A. Rich Image Descriptions

Rich descriptions of the world are known to simplify classification and recognition tasks, since
the potential of simple decision surfaces that separate the classes increases monotonously with the
dimensionality of the input representation. If a problem is, linearly separable in a k dimensional
representation it is guaranteed to be linearly separable if further dimensions are being used to
describe the problem. Perhaps more interesting is the fact that a problem that is only non-linearly
separable in a k dimensional representation may be linearly separable if further dimensions
are beeing added to describe the problem. This is important, since simpler decision surfaces
often produce better classifications, as noted by Sir Occam around 1325 A.D.: “The simplest
explanation is the best”.

Note also that this fact is not dependent on orthogonality between existing and additional
dimensions. The greater discernibility of patterns in higher dimensional problem representations

facilitates the description of more complex semantic spatio-temporal events of interest.

B. Constructing Visual Primitives

Most work in object recognition and event detection aims to solve fairly complex tasks in
simple environments. We suggest an alternative approach that
1. constructs an internal representation of visual data,
2. creates simple object and event detectors based on this internal representation, and
3. constructs more complex events in terms of both the internal representation, as well as the

simple object and event detectors.

C. Object Recognition

An insightful definition of the goal of object recognition was given at the Workshop on 3D
Object Representation for Computer Vision [32] in 1994: “... model-based vision must go beyond
pose estimation and into actual object recognition: for model databases containing thousands of
objects, we cannot afford to try every model, estimate its pose, then verify its presence in the im-
age using the estimated pose. We must also tackle the difficult problems of extracting the relevant
information from images (segmentation), automatically constructing the object models, indezing
in sub-linear time the model database and eventually integrating the corresponding modules into
working end-to-end recognition systems.”

The goal of Computer Vision research is to achieve complex tasks in unrestricted environments.

January 12, 1999 DRAFT



But since this was too hard researchers started off, with simple tasks in heavily constrained
environments. If a reasonable complex task had been achieved the constraints on the environment
were relaxed. This violated the initial assumptions, and the approaches were rendered ineffective.
Usually large chunks of the programs had to be reprogrammed. The methods developed for the
block world example, mentioned above, can not be used for natural objects or for human made
objects that do not have well defined corners; but even the assumption that corner locations can
be obtained robustly and automatically proved too difficult.

An analogous problem in robotics research prompted Rodney Brooks [5] to propose a sub-
sumption architecture for the construction of robots. Rather than starting off with complex
tasks in simple environments, he suggested to start off with simple tasks in environments of full
complexity.

This approach significantly motivated the work described in this report. We propose an end-to-
end object recognition approach that uses rich image descriptions as intermediate representations.
The image descriptors consist of color and texture measures describing different properties of
image regions. While each descriptor in isolation is weak, the combination of a number of them
achieves robust object recognition. This approach performs well under a wide range of lighting
and imaging conditions, object sizes and orientations, image compression and transformation
schemes as well as significant shape variations in the objects. Many non-rigid objects, like
sky/clouds, trees, grass, fire, water, rocks, mountains, etc. cannot make use of geometry or
shape based recognition schemes. We found this approach to be effective for the classification of
natural scenes into the categories trees, grass, sky/clouds, rock, and animal.

A synthetic approach to object and event recognition reduces the burden on the verification
process, by limiting the number of possible models (interpretations) for a given image or video
segment. It is an important pre-requisite for a high level knowledge based search that selects the

most relevant model given both bottom-up evidence and top-down confirmation.

D. Event Recognition

In many ways event recognition is to video data what object recognition is to image data. In
order to describe the content of image data, it is necessary to be able to detect and recognize
objects, while for video data it is necessary that we can detect and recognize actions and events,
such as chasing, e.g. [?], entering a room, e.g. [10], explosions, e.g. [22], etc.. Although the

human visual system can often infer events, like those mentioned above, even from still images, it
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is generally believed that event detection or recognition from video data is simpler. For example,
from a single image of a human made satellite in space we cannot conclude whether it is plunging
to earth, heading for Mars, or whether it is orbiting earth, while a video sequence of the satellite
can eliminate this uncertainty.

We will limit ourselves to describing events that consist of actions on objects over time (as

opposed to recognizing events from still images).

E. Previous Work

The amount of image and video information that can be accessed and consumed from peo-
ple’s living rooms has been ever increasing. This trend may be further accelerated due to the
convergence of both technology and functionalities supported by future television receivers and
personal computers. To obtain the information of interest tools are needed to help users to
extract relevant content and to effectively navigate through the large amount of available image
and video information.

Existing content-based image and video indexing and retrieval methods may be classified into
the following three categories: (1) syntactic structurization; (2) image or video categorization;
and (3) extraction of semantics.

For image retrieval, work in the first category has concentrated on color, texture, measures
of the entire images and shape descriptions of selected objects [36], [42]. Work in the second
category has focused on categorizing pictorial data into graphics, logos or images [3]. Work in the
third category aimed at classifying images based on their semantic content, e.g. indoor-outdoor
[41], landscape-cityscape [43].

For wvideo retrieval, work in the first category has concentrated on (a) shot boundary detection
and key frame extraction, e.g., [2], [49]; (b) shot clustering, e.g., [47]; (c) table of content creation,
e.g., [14]; (d) video summarization, e.g., [28]; and (e) video skimming [39]. These methods are in
general computationally simple and their performance is relatively robust. Their results, however,
may not necessarily be semantically meaningful or relevant since they do not attempt to model
and estimate the semantic content of the video. For consumer oriented applications, semantically
irrelevant results may distract the user and lead to frustrating search or browsing experience. The
work in the second category tries to classify video sequences into categories such as news, sports,
action movies, close-ups, crowd, etc. [24], [44]. These methods provide classification results

which may facilitate users to browse video sequences at a coarse level. Video content analysis
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at a finer level is probably needed, to more effectively help users find what they are looking
for. In fact, consumers often express their search items in terms of more exact semantic labels,
such as keywords describing objects, actions, and events. The work in the third category has
been mostly specific to particular domains. For example, methods have been proposed to detect
events in (a) football games [23]; (b) soccer games [48]; (c) basketball games [38]; (d) baseball
games [26]; and (e) sites under surveillance [10]. The advantages of these methods include that
the detected events are semantically meaningful and usually significant to users. The major
disadvantage, however, is that many of these methods are heavily dependent on specific artifacts
such as editing patterns in the broadcast programs, which makes them difficult to extend for
the detection of other events. A query-by-sketch method has also been proposed recently in [7]
to detect motion events. The advantage of this method is that it is domain-independent and
therefore may be useful for different applications. For consumer applications, however, sketching
needs cumbersome input devices, specifying a query sketch may take undue amounts of time and
learning the sketch conventions may discourage users from using such tools.

This report describes a computational framework and several algorithmic components towards
an extensible solution to semantic event detection. The automated event detection algorithm
enables users to effectively find semantically significant events in videos and help generate se-
mantically meaningful highlights for fast browsing. In contrast to most existing event detection
work, our goal is to develop an extensible computational approach for the detection of a range
of events in different domains. We will demonstrate the proposed approach for the recognition
of deciduous trees in still images and for the detection of hunt events in wildlife documentaries.
The detection of deciduous trees can be achieved in a two layer architecture, where the first
layer extracts texture and color measures and the second layer combines the measures to yield
image labels indicating the presence or absence of deciduous trees at each image region. For
the detection of hunts in video footage, we use a three-level algorithm. The first level extracts
color, texture, and motion features, and detects moving object blobs. The mid-level employs
a neural network to verify whether the moving blobs belong to objects of interest. This level
also generates shot descriptors that combine features from the first level and contain results of
mid-level, domain specific inferences made on the basis of shot features. The shot descriptors are
then used by a domain-specific inference process at the third level to detect the video segments

that contain events of interest. To test the effectiveness of our algorithm, we have applied it to
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detect animal hunt events in wildlife documentaries. In our implementation we do not attempt
to detect the stalking phase that precedes many hunts. Our purpose is to detect the swift or
rapid chase of a fleeing or running animal. Since hunts are among the most interesting events
in a wildlife program, the detected hunt segments can be composed into a program highlight
sequence. The proposed approach can be applied to different domains by adapting the mid
and high-level inference processes while directly utilizing the results from the low-level feature
extraction processes.

In the following section, we describe the proposed computational framework and its algorithmic
components. In Section 3, we present experimental results obtained as we applied the proposed
algorithm to detection of animal hunt events in a number of commercially available wildlife video
tapes. Implementation details are also furnished in Section 3. Finally in Section 4, we summarize

our work and discuss some future directions.

II. METHODOLOGY

We focus on the classification and detection of non-rigid, amorphous or articulate natural
objects, such as animals, trees, grass, sky, clouds, etc., as well as the motion of objects in
such scenes. Our approach therefore has object classification and motion detection components.
The object classification component makes use of feature extraction methods based on multi-
resolution Gabor filters, the Gray-Level Co-occurrence Matrix (GLCM), the fractal dimension,
and color. The feature representations of the objects are then classified by a back-propagation
neural network. This concludes the task for object recognition in still images. For event detection
in video data the classification labels are combined with shot boundary information and frame
motion estimates to detect semantic events such as predators hunting prey.

The problem of detecting semantic events in video, e.g., hunts in wildlife video, can be seen as
having three levels as shown in Figure 1. At the lowest level we determine the boundaries between
shots, estimate the global motion, and express each frame in a color and texture space. We also
compensate for the estimated global motion between each pair of frames. The earlier frame of
each pair is transformed by the motion estimate and a difference image is produced to highlight
areas of high residual error.We assume that this residual error is mostly due to independent
object motion, and therefore the highlighted areas correspond to independently moving objects
which are also referred as motion blobs (see Section III Figure 12).

At the intermediate level the detected motion blobs are then verified with the class labels
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assigned to that region by a neural network. The network uses the color and texture repre-
sentation of the input obtained by the lower level, and performs a crude classification of image
regions into sky, grass, tree, rock, and animal regions. If (1) the motion between two consecutive
frames is large, (2) a blob exists that has a high motion residual (motion other than that of
the background), and whose motion and position in consecutive frames varies smoothly, and (3)
is labeled as animal region by the network, then we assert that we are tracking a fast moving
animal. The intermediate level generates and integrates such frame information and produces a
summary for an entire shot. If throughout the shot there was support for a fast moving animal
and the location/motion of the animal was found to be stable enough then the shot summary
will indicate that a fast moving animal was tracked throughout the shot.

At the highest level a domain specific analysis of these shot summaries is used to infer the

presence of a hunt in the underlying video sequence.

_ Detected Events |
A

Event Inference

Shot Summarization

T

[
Motion Blob Verification
A
i i
Texture/Color Analysis Motion Estimation Shot Detection

= 2 . A

' Video Sequences

Fig. 1. The flowchart of our method. For object recognition in still images the method ends after the

second level by providing object labels for each image region

A. Global Motion Estimation and Motion Blob Detection

We assume that the global motion can be estimated with a three parameter system allowing

only for zoom, horizontal and vertical translation.

u(z,y) = ag + asx

v(z,y) = a1 + agy
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The robust recovery of the three parameters has to deal with the following problems,

o corresponding points in adjacent frames are often far apart (50-60 pixel displacements are not
uncommon, peak displacements exceed 100 pixels),

« interlacing between frames drastically changes the appearance of small objects and textures in
adjacent frames,

o the object and hence the global motion we are trying to estimate is often very large and motion
blur eliminates texture in the direction of that motion (of course the motion in this direction is
also the motion we are most interested in),

« often animals need to be tracked under strongly varying lighting conditions and occlusion, as
when a hunt leads through trees or bushes.

Given the large possible displacements between corresponding patches of adjacent frames an ex-
haustive search of possible match locations creates unreasonable processing requirements. There-
fore we use a pyramid of reduced resolution representations of each frame. At each level of the
5-level pyramid we consider matches from a 5 x 5 neighborhood around the location of the patch
in the source frame, enabling a maximum matching distance of 62 pixels. The levels of the pyra-
mid are obtained by subsampling the lower level image rather than computing a more accurate
Gaussian pyramid. We expect the use of a Gaussian pyramid to produce better results at a slight
computational cost.

At the lowest level of the pyramid, i.e. the full resolution representation of the frame, the
patches used for matching are of size 64 x 64. Patches from uniform areas often result in erroneous
displacement estimates. To avoid matching such patches we discard patches with insufficient

“texture”. We use a 2D variance measure to determine the “amount of texture”.

n m

vary = Z(Z(p(xay) _p(ay))2 - Qm)2
y=0 z=0

vary = Z(Z(p(xay) —p(z,.)” —q)°
z=0 y=0

where p is an m x n image patch, p(z,.) and p(.,y) are the means of the z** column and y** row
of p, and g, and g, are the means of ((p(z,y) — p(z,.))? and (p(z,y) — p(.,y))? for all z and y
within p, respectively.

We compute motion estimates at each of the four corners of a frame, as shown in Figure 11(a).
Bad motion estimates are often due to matching errors made high up in the pyramid that are

subsequently not recovered by the lower levels. Since the motion of the tracked animals often
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does not vary drastically between consecutive frames (i.e. their acceleration is small) we also
use the previous best motion estimate to predict the location of the four patches in the next
frame. A limited search in a 5 x 5 neighborhood around the predicted location, improves the
motion estimates in many cases. Therefore we obtain up to eight motion estimates, one pyramid
based estimate for each of the four patch locations, and one for each of the four estimates based
on a limited search around the predicted match locations. Since some patches may not pass
the “texture” test we may have fewer than eight motion estimates. The highest normalized
dot product between a source patch P1 and matched patch P2 determines the “correct” global
motion estimate between the current and next frame. The normalized dot product is equal to

the cosine of the angle () between the two patches (vectors) P1, and P2:

> PL(i,5) 34 P2(i, 4)

With respect to our particular task of detecting hunts in wildlife documentaries we would like to

COS(OJ)pLPQ =

point out that

« almost all wildlife videos are taken with a tele lens at a great distance to the objects of interest.
For our motion analysis, we therefore assume an orthographic model, in which the camera pan
and tilt appear as plain translations, thus supporting our assumption of uniform background
motion,

o motion estimates based on the feature space representation of the frames are very similar to
those obtained on the original color frames, and

« although the described motion estimation scheme is sufficient for our purpose a Kalman filter
based approach might yield more consistent results [4], [16].

o Alternative camera motion estimation schemes like Video Tomography methods [1] achieve
similar results. Since they consider projections of entire frames they can get confused by moving
objects.

The motion estimates are then used to compensate for the global motion between consecutive
frames. Finally, we use the grayvalue difference between the current image and the motion
compensated next frame to estimate the location of the animal in the frame. Areas with low
residual error are assumed to have motion values similar to those of the background and are
ignored. The independent motion of animals on the other hand usually causes high residual
errors between the current frame and the following motion compensated frame. Therefore we can

make use of a robust estimation technique to obtain an estimate of the animal location within
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the frame. This estimation technique iteratively refines the mean z and y values dependent
on the residual error within a fixed size neighborhood around the mean values for the entire
difference image. The robust estimation method was first developed in [37] for real-time human
face tracking. Here we briefly describe how the method is applied to the application discussed
in this paper. Based on the frame difference result, the algorithm constructs two 1D histograms
by projecting the frame difference map along its  and y direction, respectively. The histograms,
therefore, represent the spatial distributions of the motion pixels along the corresponding axes.
Figure 2(a) illustrates an ideal frame difference map where there is only one textured elliptical
moving object in the input sequence, and the corresponding projection histograms.

— h(y)

—

h(x) y T h(x) mean(k+1)

mean(K)|

L\-_—J—l trimmed i@rv;(kﬂ)
trimmed interval (k)
(a) (b)

Fig. 2. (a) Two 1D histograms constructed by projecting the frame difference map along the x and y

y

direction, respectively. (b) Robust mean estimation for locating the center position of a dominant

moving object.

The instantaneous center position and size of a object in the image can be estimated based
on statistical measurements derived from the two 1D projection histograms. For example, a
simple method estimates the center position and size of a dominant moving object in an input
sequence using the sample means and standard deviations of the distributions. More specifically,
let h,(i),i = 0,1,..., and hy(i),i = 0,1,..., denote the elements in the projection histograms
along the z and y direction, respectively. Then the object center position (z.,y.) and object

width and height (w, h) may be estimated as:

p Siwhal) | Siuihy w:alzi(m—uz)%x(z’)r . ﬁlzxyi—uy)%y(i)r
The) T () Sohel) ) NG

where o and (3 are constant scaling factors.
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However, the object center position and size derived from the sample means and standard
deviations may be biased in the cases where other moving objects appear in the scene. It is
therefore necessary to develop a more robust procedure to address this problem. We propose
the use of robust statistical estimation routines to achieve robust measurements for object center
position and size [46]. More specifically, the center position of a dominant moving object in
an input sequence is estimated based on the robust (trimmed) means of the two 1D projection
histograms in the z and y directions. Figure 2(b) illustrates the process of the estimation of the
motion center.

Step 1 Compute sample mean y and standard deviation o based on all the samples of the dis-
tribution.

Step 2 Let u(0) = p and 6 = max(a o, b sampleSpaceWidth) where a and b are scaling factors,
e.g., a = 1.0 and b = 0.2, and sampleSpaceWidth is the image-width and image-height in the z
and y direction, respectively.

Step 3 Compute trimmed mean u;(k + 1) based on the samples within the interval [u:(k) —
9, i (k) + 4].

Step 4 Repeat Step 3 until |p¢(k + 1) — pi(k)| < € where € is the tolerance, e.g., e = 1.0. Denote
the converged mean as p*.

Step 5 Let center-position = y*.

In addition to the robust estimation of object center position, we propose the following routine
for robust estimation of object size. The method first re-projects the frame difference result in a
neighborhood of the located center. It then derives the object size based on the robust (trimmed)
standard deviation. Given the robust mean p* and § obtained from the above center locating
routine, the routine for estimation the size in either z or y direction is as follows.

Step 1 Construct a clipped projection histogram H® by projecting the color filtering map
within the range [u’;pp — A, pgpy + Al in the opposite direction, where Kopp 18 the robust mean in
the opposite direction and A determines the number of samples used in the calculation.

Step 2 Based on H%P compute the trimmed standard deviation &; based on the samples within
the interval [p* — §, u* + 4].

Step 8 IF HUP(u* + d8,) > g HYP(u*) OR HYP(u* — dsy) > g HYP (),

where e.g., d = 1.0 and g = 0.4, THEN increase §; until the condition is no longer true.

Step 4 Let size = ¢ §; where ¢ is a scaling factor, e.g., ¢ = 2.0.
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B. Texture, Color and Motion Analysis: Low-Level Descriptors

To obtain rich, and hence robust and expressive descriptions of the objects in the video frames
we describe each pixel in terms of color and texture measures. The color measures are the
normalized red, green, and blue intensities of the pixel, and its grayvalue, while the texture
measures are derived from the Gray Level Co-occurrence Matrix (GLCM), Fractal Dimension
estimation methods, and a Gabor filter bank. The feature space representations of each pixel
are classified into the categories sky/clouds, grass, trees, animal, rock using a back-propagation
neural network. The use of these features in conjunction with the back-propagation classifier
have previously been shown to enable the detection of deciduous trees in unconstrained images
[20].

The rich image descriptions are formed from 56 Gray-Level Co-occurrence Matrix, 4 fractal
dimension, 12 Gabor, and 4 color based measures. No one of the types of measure (e.g. color or
Gabor measures) has the power of the combined set of measures. The neural network described
in Section II-C is well suited to combine this set of measures and robustly classify image regions
into various animal and non-animal classes. Note that we are only computing features from still
frames and that motion is included explicitly at a higher level. In an alternative approach [40]
uses temporal textures for classification, by combining spatial and temporal changes in image

sequences.

B.1 Fourier Transform Measures

Some measures commonly used with Fourier Based Methods are i) wedge sampling, ii) annular-
ring sampling, and iii) parallel-slit sampling.

Many textures differ significantly in the domains of the annular-ring and parallel-slit measures,
however for our purpose of discriminating tree and non-tree areas angular wedge sampling is
most expressive. Fourier Transforms (FTs) of images and image patches containing human-
made structures often have line or wedge shaped areas of high spectral power that pass through
the center as shown in the image/FT pair in Figures 3 (a) and (b). Summing the power in
fixed angular intervals for all directions in the FT of the image lets us separate common from
uncommon orientations in the image.

The shaded wedge in Figure 2 shows such an angular interval. A circular mask has been

imposed so that the power in the diagonal directions is not unfairly biased. Once the power
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(c) (d) 0.1376

Fig. 3. An image containing human-made and tree areas (a) and its Fourier Transform (b). An image of
leaves of a tree (c) and its Fourier Transform (d). The numbers associated with (b) and (d) are the

structure measure (described in Section II-B.1) for images (a) and (c).

in each angular interval has been determined, we obtain the minimum and maximum angular

Mazx—min

mastmin to determine the amount of structure in the patch.

power and use the normalized ratio

Fig. 4. The sum of the power of the Fourier Transform inside the shaded vertical angular interval is a

measure of the “structure” present in an image patch.

Larger values for this wedge measure indicate greater “regularity” in some direction in the
image patch, smaller values indicate less “regularity”, in terms of parallel lines, bars and edges.
Since we are comparing the ratio between the maximum and minimum value, this measure is
rotation invariant.

Performing the above procedure on fixed-size image patches, we obtain local measures of the

regularity of these patches. We obtained very similar results for patch sizes spanning three orders
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of magnitude 16 x 16, 32 x 32, and 64 x 64 pixels.

B.2 Gabor Filter Measures

The image (in the spatial domain) is described by its 2-D intensity function. The Fourier
Transform of an image represents the same image in terms of the coefficients of sine and cosine
basis functions at a range of frequencies and orientations. Similarly, the image can be expressed
in terms of coefficients of other basis functions. Gabor [19] used a combined representation of

space and frequency to express signals in terms of “Gabor” functions:
Fy, u( Z ai(x) gi(6,v) (1)

where 6 represents the orientation and v the frequency of the complex Gabor function:

w2+y2

gi(e,V) _ eiu(zcos(ﬂ)—f—ysin(ﬁ))e— ) (2)

Gabor filters have gained popularity in multi-resolution image analysis [17], [19], despite the fact
that they do not form an orthogonal basis set. Gabor filter based wavelets have recently been
shown [29] to be fast and useful for the retrieval of image data.

We convolve each image with Gabor filters tuned to four different orientations at 3 different
scales. The average and range of the four measures at each scale are computed. To make the
measurements somewhat scale invariant, we obtain the following four texture measures:

o The average of the orientation responses at all scales.
o The average of the scales’ orientation response range.
o The range of the scales’ averaged orientation responses.

o The range of the scales’ orientation response range.

B.3 Steerable Filter Measures

Since many human-made structures exhibit a large amount of regularity in the form of parallel
lines and bars, patches with few dominant orientations are less likely to represent trees. On the
other hand, the irregular leaf and branch structure of trees often exhibits a greater variety of
weak orientations.

Binning orientations appropriately, we can use the number and strength of different orientations
in an image patch to distinguish between patches belonging to human-made scenes (which usually

have fewer but stronger distinct orientations) and natural scenes.
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Steerable bar and step edge detecting filters are used to obtain the dominant orientation for
each image patch. The result of this routine is an orientation image indicating the orientation
of the predominant step or bar edge at each location.

Perona [35] demonstrated a general constructive method to construct basis and interpolating
functions and showed that all functions that are polar-separable with sinusoidal § components

are steerable. Examples of such functions are shown in Figure 5.

Fig. 5. Examples of polar separable functions with sinusoidal # component corresponding to ag, - .., az.

We used this method to obtain a steerable function set for a quadrature pair (Gy,, Hy,), where
Gy is the second derivative along the y-axis of an elongated Gaussian kernel G(z,y,04,0y) =
e ((#/92)*+(u/9)*) shown in Figure 6 (a) and Hy, is the Hilbert transform of G, shown in Figure 6
(b).

For multiple occurrences of lines and step edges, good angular resolution (orientation selec-
tivity) was obtained when the ratio Z—: was at least 1. Perona [35] shows an efficient method
that places the second derivative of the Gaussian in the real part of the complex kernel and its
Hilbert transform in the imaginary part.

The n-term approximation of the function we want to steer can be written as:

FY = Y osa) 50 ®)

where the o; weight the product of the i filter basis function a; (the coefficients of the 2D Fourier
series) and the corresponding interpolating function b; (note that the b; are the frequency basis

functions of the Fourier Series).
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Fig. 6. Filters used to measure the energy in the image. The second derivative of an elongated Gaussian
(left) is used to detect lines in an image. Its Hilbert transform (right) is used to detect step edges in

an image.

The values for the oy, a; and b; are obtained by finding the Fourier series of the function h(#),

which is the integral of the product of the function with rotated versions of itself:
ho) = | Fo(a)F—o@da (1

where the integral ranges over all 2D space (IR?) and (.) represents the complex conjugate.
Note that Fy_o(z) = F(z).
Expanding h(f) as a Fourier series we can read off the filter’s (2D) basis functions a; and the

corresponding interpolating functions b;.

o; = [ h(y) (5)
bi(0) = e (6)
@) = o [ e )

The o; terms are used only for error analysis. For details see [35].

These filters are used to obtain the oriented energy of both step as well as bar edges. Although
we initially envisaged them to aid the recognition of deciduous trees in winter, when their leaves
are missing, the orientation analysis also turned out to be useful for the recognition of leaves and

trees in sumimer.

B.4 Graylevel Co-occurrence Matrix Measures

Let p(i,J,d,0) = % where P(.) is the graylevel co-occurrence matrix of pixels separated
by distance d in orientation # and where R(.) is a normalization constant that causes the entries
of P(.) to sum to one.

In texture classification, the following measures have been defined, see for example [9], [21]:
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The Angular Second Moment (E) (also called the Energy) assigns larger numbers to

textures whose co-occurrence matrix is sparse.

Ny Ny

=53 In, j,d,0)

j=1i=1
The Difference Angular Second Moment (DASM) assigns larger numbers to textures
. . Ny . .
containing only a few graylevel patches. This and other features use p,_,(n, d,8) = Z;,V:gl .2 pli,4,d,0)
li—jl=n
N!J

DASM(d,0) = > pz—y(n,d,0)?
n=0

The Contrast (Con) is the moment of inertia around the co-occurrence matrix’s main di-
agonal. It is a measure of the spread of the matrix values and indicates whether pixels vary

smoothly in their local neighborhood.

Ng—1 Ng Ny
Con(d,0) = z Zszg,de
n=0 j=1li=1

li—jl=n
The Inverse Difference Moment (IDM) measures the local homogeneity of a texture.
It weighs the contribution of the co-occurrence matrix entries inversely proportional to their
distance to the main diagonal.

—1Ng—1
IDM(d,0) ZZ : 2p(w,dH)

The Mean (M) is similar to the contrast measure above but weights the off-diagonal terms

linearly with the distance from the main diagonal, rather than quadratically as for the Contrast.

Nyg—1 | N, N,

M(d,0) = Z Zszy,dO

n=0 j=1li=1
li=j|=n

Similar to the Angular Second Moment the Entropy (H) is large for textures that give rise
to co-occurrence matrices whose sparse entries have strong support in the image. It is minimal

for matrices whose entries are all equally large.

Ny Ny

=33 pli,j.d,0)log (p(i, . .0))

j=1li=1

Other measures are, Sum Entropy (SH), which uses py14(n,d,0) = Z;.V:gl Zé\;gl p(3,7,d,0)
li+jl=n
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2xNg—1
SH(d7 0) = - Z p:c+y (na da 0) log (pw+y (n’ da 9))
n=0
Difference Entropy (DH)
Ng

DH(da 9) = Z pm—y(na d, 0) log (pw—y(na d, 0))
n=0

Difference Variance (DV) N
9
DV =— Z(n - DH)zpw_y(n, d,0)

n=2

The Correlation (Cor) measure is an indication of the linearity of a texture. The degree
to which rows and columns resemble each other strongly determines the value of this measure.
This and the next two measures use p; = 32,13, p(i,j,d,0) and py = 37,5 3% p(4, 5, d, 0).

Ng—1 Ng—1.. ,. .
Zz’:gl ZJ:gl Z_]p(Z,_],d, 9) — Mz ¥ fy

Cor(d,0) = o)
Ng NQ
Shade (S) S(d,0) =>"S"(i +j — pa — py)?pli, j,d, 0)
i g
Ng Ng

Prominence (P) P(d,0) = > (i +j — pa — i) pli; 4, d, 0)
]

Note that the directionality of a texture can be measured by comparing the values obtained
for a number of the above measures as 6 is changed. The above measures were computed at
0 = {0°,45°,90°, and 135°} using d = 1. For further discussion of these graylevel co-occurrence

matrix measures, see [9], [21], [45].

B.5 Fractal Dimension Measures

The underlying assumption for the use of the Fractal Dimension (FD) for texture classification
and segmentation is that images or parts of images are self-similar at some scale.
Various methods that estimate the FD of an image have been suggested:
o Fourier-transform based methods [34],
o box-counting methods [8], [27], and
o 2D generalizations of Mandelbrot’s methods [33].
The principle of self-similarity may be stated as: If a bounded set A (object) is composed of

N, non-overlapping copies of a set similar to A, but scaled down by a reduction factor r, then A
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is self-similar. From this definition, the Fractal Dimension D is given by

D log N,

logr

The FD can be approximated by estimating N, for various values of r and then determining

log Ny
I

the slope of the least-squares linear fit of Tog

. The differential box-counting method outlined
in Chaudhuri, et al [8] are used to achieve this task.

Three features are calculated based on
o the actual image patch I(i,7),

1(i,§) — Ly I(3,5) > L
o the high-graylevel transform of 1(z,5), I1(4,j) = (6:9) v 164) !
0 otherwise

o o 255 — Ly I(i,j) > 255 — Ly
o the low-graylevel transform of 1(i,7), I2(i,5) =
I(i,9) otherwise

where L1 = gpin + g"%, Lo = gmaz — g“%, and gmin, maz, and gapg are the minimum, maximum
and average grayvalues in the image patch, respectively.

The fourth feature is based on multi-fractals which are used for self-similar distributions ex-
hibiting non-isotropic and inhomogeneous scaling properties. Let & and [ be the minimum and
maximum graylevel in an image patch centered at position (i,j), let n.(i,7) =1 —k + 1, and let

N, = ]7:]—:, then the multi-fractal, Dy is defined by

log El,./\/'r2

logr

A number of different values for r are used and the linear regression of yields an

estimate of Ds.

B.6 Entropy Measures

Since leaves and branches appear as rough and “messy” areas at most scales at which trees can
be identified, we can use the entropy of image patches to separate them from uniform, smooth,
and smoothly varying object surfaces. If V4, is the maximum value in an image patch, the

entropy is defined as

Vmam

Entropy = — Z hilog(h;)
i=0

where h; = ¢ is the i*h histogram count n; divided by the total number of pixels in the image

patch (N). We measure the entropy in both the gray value image as well as the orientation

image described above, both measures are largely rotation invariant.
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For motion analysis we use the histograms of the intensity values of patches in two consecutive

frames as samples of their probability density functions and compute the Mutual Information,
H(X;Y) = H(X) - H(X|Y),

the Entropy Distance,
DH(XaY) = H(XaY) _H(X;Y)a

and the Kullback-Leibler Divergence,

Dis(PIQ) = 3 Pla) g ¢

between the distributions of the samples to determine whether a region corresponds is moving

or static.

B.7 Color Measures

While the intensities of the red, green and blue components of a color image are highly cor-
related, the hue, saturation, and value decomposition offers a more independent representation

that captures complementary information of the image.

Red )
Green+a/?

We also use opponent color measures that contrast the intensities of Red vs. Green (

Green
Blue+a

Red vs. Blue (#‘Z‘ia), and Green vs. Blue ( ), where we used a = 0.01 to bound the

ratios.

C. Region Classification and Motion Blob Verification

We use a back-propagation neural network to arbitrate between the different features describing
the image. Our back-propagation neural network [15] has a single hidden layer and uses the

sigmoidal activation function ®(act) = — 0.5, where act is the activation of the unit

1
Tte act
before the activation function is applied. A single hidden layer in a back-propagation neural
network has been shown to be sufficient to uniformly approximate any function (mapping) to
arbitrary precision [11]. Although this existential proof doesn’t state that the best network for
some task has a single hidden layer, we found one hidden layer adequate. The architecture of the
network is shown in Figure 7. The back-propagation algorithm propagates the (input) function
values layer by layer, left to right (input to output) and back-propagates the errors layer by layer,
right to left (output to input). As the errors are propagated back to the input units, part of each

unit’s error is being corrected.
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Fig. 7. The Neural Network architecture.

For the deciduous tree detection example we trained the network using only one label indicating
whether a pixel is part of a tree and a non-tree image region.

For the hunt detection example we trained the network using a total of 14 labels. 9 animal
labels (lion, cheetah, leopard, antelope, impala, zebra, gnu, elephant, and an all-other-animal
class) and 5 non-animal labels (rock, sky/clouds, grass, trees, and an all-other-non-animal class)
as well as a don’t care label that was used to tell the network to ignore border regions between
instances of the different groups, which arguably are bad training inputs.

After training, the tree detecting network produced the results shown in Figure 9 and 10.

For the hunt detection example we found that the proposed network performed well at classify-
ing grass, trees, rocks, sky, and animals as a whole group. However, it is difficult for the network
to classify lions, cheetahs, leopards, antelopes, impalas, gnus, hyenas, and even zebras, rhinos
and elephants each into different groups. This is probably due to the fact that those animals
differ mostly in their shape and size which we do not model. Hence, while the network was still
trained on the different animal labels, we artificially grouped those labels into a single “animal”
label when using the network for animal region verification. We also found that the network
did not perform well at solving the opposite problem of classifying, grass, trees, rocks, and sky
together as a single “non-animal” group. The differences between the appearance of instances of
these groups are severe. Asking the network to assign one label to them and a different label to

animals proves to be more difficult than the classification into the individual non-animal groups.
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The output of the animal detecting network is then used to verify the motion blob candidates
from section II-A. In our current implementation, a simple procedure is employed which im-
plements the following test. A region that has high residual motion after motion compensation
and that contains a significant amount of animal labels, as detected by the neural network, is

considered as a possible moving animal region.

D. Shot Summarization and Intermediate-Level Descriptors

We use a simple color histogram based technique to decompose video sequences into shots.
To avoid missing important events in extended shots, we also force a shot summary every 200
frames. A third kind of shot boundary is inserted whenever the direction of the global motion
changes. Shot boundaries of this last kind ensure that the motion within shots is homogeneous.
Each shot is then summarized in terms of intermediate-level descriptors. The purpose of gener-
ating intermediate-level shot summaries is two-fold. First, the shot summaries provide a way to
encapsulate the low-level feature and motion analysis details so that the high-level event inference
module may be developed independent of those details, rendering it robust against implemen-
tational changes. Second, the shot summaries abstract the low-level analysis results so that
they can be read and interpreted more easily by humans. This simplifies the algorithm devel-
opment process and may also facilitate video indexing, retrieval and browsing in video database
applications.

In general, the intermediate-level descriptors may consist of (1) object, (2) spatial, and (3)
temporal descriptors. The object descriptors, e.g., “animal”, “tree”, “sky/cloud”, “grass”, “rock”,
etc. indicate the existence of objects in the video frames. The spatial descriptors represent the
location and size information about objects and the spatial relations between them in terms
of spatial prepositions such as “inside”, “next to”, “on top of”, etc. [12], [13]. The temporal
descriptors represent motion information about objects and the temporal relations between them
in terms of temporal prepositions such as “while”, “before”, “after”, etc. [12], [13].

For the hunt detection application, we currently employ a particular set of intermediate-level
descriptors which describe: (1) whether the shot summary is due to a forced or detected shot
boundary; (2) the frame number of the beginning of the shot; (3) the frame number of the end
of the shot; (4) the global motion; (5) the object motion; (6) the initial object location; (7) the
final object location; (8) the initial object size; (9) the final object size; (10) the smoothness
of the motion; (11) the precision throughout shot; and (12) the recall throughout shot. More
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precisely, the motion descriptors provide information about the x- and y- translation and zoom
components of motion. The location and size descriptors indicate the location and size of the
detected dominant motion blob at the beginning and the end of the shot. The precision is the
average ratio of the number of animal labels within the detected dominant motion blob versus the
size of the blob, while the recall is an average of the ratio of the animal labels within the detected
dominant motion blob versus the number of animal labels in the entire frame. In addition, we
also employ descriptors indicating (13) that tracking is engaged; (14) that object motion is fast;
(15) that an animal is present; (16) the beginning of a hunt; (17) number of consecutive hunt
shot candidates found; (16) the end of a hunt; and (19) whether a valid hunt is found. See

Section III-B.6 for an example and further explanation.

E. Event Inference

Hunt events are detected by an event inference module which utilizes domain-specific knowl-
edge and operates at the shot level based on the generated shot summaries. From observation
and experimentation with a number of wildlife documentaries, a set of rules have been deduced
for detecting hunts. The rules reflect the fact that a hunt usually consists of a number of shots
exhibiting smooth but fast animal motion which are followed by subsequent shots with slower
or no animal motion. In other words, the event inference module looks for a prescribed number
of shots in which (a) there is at least one animal of interest; (b) the animal is moving in a
consistently fast manner for an extended period; and (c) the animal stops or slows down drasti-
cally after the fast motion. Figure 8 shows and describes a state diagram of our hunt detection
inference model.

Automatic detection of the properties and sequences of actions in the state digram is non-
trivial and the low-level feature and motion analysis described earlier in this paper are necessary
to realize the inference. Since any event can be defined by the occurrence of objects involved and
the specification of their spatio-temporal relationship, the proposed mechanism, of combining
low-level visual analysis and high-level domain-specific rules, may be applicable to detect other
events in different domains. In Section I1I-B.7, we provide an example and further explanation

for using this inference model for hunt detection.
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Tracking Begl r}nl ng
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Animal Hunt

Not
Tracking
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Fig. 8. The state diagram of our hunt detection method. Initially the control is in the Non-Hunt state
on the left. When a fast moving animal is detected the control moves to the Beginning of Hunt state
at the top of the diagram. When three consecutive shots are found to track fast moving animals then
the Valid Hunt flag is set. The first shot afterwards that does not track a fast moving animal takes

the control to the End of Hunt state, before again returning to the Non-Hunt state.

III. RESULTS

This section describes the results for the object and event detection methods. The object
recognition performance is illustrated for deciduous trees in unconstraint images. The event

detection performance is illustrated for the detection of hunts in wildlife documentaries.

A. Object Recognition
A.1 The Performance of the Resulting Feature Set

Measures of every fifth pixel of 19 training images were obtained (well over half a million data
points; the 51-D data set is about 119 MB; the 13-D data set is about 30 MB) and combined
with labeled images to train the network. Subsampling speeds up the training process without
(noticeably) affecting its outcome, since neighboring pixel locations are highly correlated.

We would like to point out that some of the test images in Figure 9 and Figure 10 show trees in

fall with the leaves’ colors ranging from green, through yellow, orange and red to a magenta-ish
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Fig. 9. Test images and the corresponding classification result s.

January 12, 1999 DRAFT



26

Fig. 10. Test images and the corresponding classification results.
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red. Color is often a useful cue, but the network has also learned that leaves are not always green
and not everything green depicts leaves. The same is true for the other features.

The first image on the second row in Figure 9 shows the performance of the approach for an
image taken on a foggy day, with low contrast and low color saturation. The second image on
the fourth row in Figure 9 shows the approach’s robustness with respect to scale and color. This
fall image shows trees at distances ranging between 5 meters and over 500 meters whose colors
range from magenta to green. The output image shows that almost all tree regions were correctly

labeled.

B. Event Recognition

The proposed algorithm has been implemented in C++ and tested on Sun workstations. To
evaluate the effectiveness of the algorithm, we have digitized wildlife video footage from a number
of commercially available VHS tapes from different content providers. In the following sections we
show examples of the extracted texture and color features, the motion estimation and detection
results, the region classification results, the shot summaries, and the final hunt event detection

results.

B.1 Test Data

About 45 minutes of actual wildlife video footage have been digitized and stored as test data
for our hunt detection experiments. The frame rate of the video is 30 frames per second and the
digitized frame resolution is 360 x 243 pixels. A total of 10 minutes of footage 2 18000 frames

2 100 shots have been processed so far.

B.2 Global Motion Estimation

Figure 11(a) shows the size and locations of the four regions at which the global motion is
estimated. For each pair of frames motion estimates are computed using a 5 level pyramid scheme
at the shown patch locations. In addition the previous motion estimate is taken as the current
motion estimate and a tight local search around the four predicted patch locations yields another
four patch matches. The best match of any of these 8 patch comparisons becomes the motion

estimate for the current frame pair. Figure 11(b) shows the motion estimates during a hunt.
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Fig. 11. (a) The locations used to estimate the global motion, and (b) the motion estimates during a

hunt.

(a)

Motion Estimate

(d) () (f)

Fig. 12. Two consecutive frames from a hunt (a) and (b), the difference image (c), the estimated motion
between the two frames (d), the motion compensated difference image (e), and the box around the

area of largest residual error in the motion compensated difference image.

B.3 Motion Blob Detection

Figure 12 shows an example of the motion blob detection results. It is apparent that reliable
estimation and compensation of global motion makes the task of motion blob detection relatively
easier. When the accuracy of the global motion estimation results are poor, the performance
of the motion blob detection relies largely on the robustness of the motion blob detection and

tracking algorithm described in Section 2.1.

January 12, 1999 DRAFT



- N Es Bs Bs B B B N
N B Be BN B R B N
EHEENE == e
S S M. B S
=3 B N |

Fig. 13. The feature space representation of the first frame in Figure 12.

B.4 Feature Space Representation of the Video Frames

Figure 13 shows the feature space representation of a video frame. The features shown are
the results of the Gray-Level Co-occurrence Matrix based measures (first 56 feature images), the
Fractal Dimension based measures (next 4 feature images), the color based measures (next 4

feature images), and the Gabor based measures (last 12 feature images).

B.5 Region Classification

A neural network is trained on a number of training frames from wildlife video. The network is
then used to classify unseen wildlife video. Global motion estimates such as the ones in Figure 11
are used to detect moving objects as shown in Figure 12. The locations of these moving object
blobs are then verified using a neural network image region classifier that combines color and
texture information. Rows 1, 3, and 5 of Figure 14 show a number of frames from hunts together

with their classification results (rows 2, 4, and 6).
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Fig. 14. Color and texture based segmentation results.

B.6 Shot Summarization

The intermediate level process consists of two stages. In the first stage the global motion
estimates are analyzed and directional changes are detected in the x and y directions. When
the signs of the 50 frame global motion averages before and after the current frame differ and
their magnitudes are greater than 1 pixel per frame we insert an artificial shot boundary. In the

second stage each shot is then summarized as in the example shown below.

—————————— General Information ---——--——--—- ——--——- Hunt Information -------
Forced/real shot summary : 0 Tracking 1
First frame of shot 1 64 Fast 1
Last frame of shot 1 263 Animal 1
Global motion estimate (x,y) : (-4.48, 0.01) Beginning of hunt : 1
Within frame animal motion estimate (x,y) : (-0.17, 0.23) Number of hunt shot candidates : 1
Initial position (x,y) : (175,157) End of hunt : 0
Final position (x,y) : (147,176) Valid hunt : 0
Initial size (w,h) : (92, 67)

Final size (w,h) : (100, 67)
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Motion smoothness throughout shot (x,y) : (0.83, 0.75)
Precision throughout shot : (0.84)
Recall throughout shot : (0.16)

The summary consists of two parts, the first part, under General Information shows general
statistics extracted for this shot, while the second, under Hunt Information consists of inferences
based on those statistics for the hunt detection application.

The first row of the general Information part of the summary shows whether the shot boundary
corresponding to this shot summary was real, i.e. whether it was detected by the shot boundary
detector, or if it was forced because the maximum number of frames per shot was reached or the
global motion has changed. The next two rows show the first and last frame numbers of this
shot. The following measurements are shot statistics, i.e., the average global motion over the
entire shot on row four, and the average object motion within the shot on row five. The next four
rows measure the initial position and size, as well as the final position and size of the detected
dominant motion blob. The third last row shows the smoothness of global motion where values
near 1 indicate smooth motion and values near 0 indicate unstable motion estimation. The
detection of a reversal of the global motion direction, described above, was based on a long
term average of the motion estimates around the current frame, indicates a qualitative change
in the global motion. The smoothness measure described here, on the other hand, provides a
quantitative measure of the smoothness of the estimated motion. Finally the last two rows show
the average precision and recall for the entire shot. As defined in Section II-D, the precision
is the average ratio of the number of animal labels within the detected dominant motion blob
versus the size of the blob, while the recall is an average of the ratio of the animal labels within
the detected dominant motion blob versus the number of animal labels in the entire frame.

The hunt information part of the shot summary shows a number of predicates that were
inferred from the statistics in part one. The shot summary shown above summarizes the first
hunt shot following a forced shot boundary. The system is indicating that it is Tracking a
Fast moving Animal and hence, that this could be the Beginning of a hunt. The Tracking
predicate is true when the motion smoothness measure is greater than a prescribed value and
the motion blob detection algorithm detects a dominant motion blob. The Fast predicate is set
to true if the translational components of the estimated global motion are sufficiently large in

magnitude, and the Animal predicate is true if the precision, i.e. the number of animal labels
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within the tracked region, is sufficiently large. (The recall measure has not been used in our
current implementation.) The remaining predicates are determined and used by the inference

module as described below.

B.7 Event Inference and Final Detection Results

The event inference module infers the occurrence of a hunt based on the intermediate de-
scriptors as described in Section III-B.6. In doing so, it employs four predicates, Beginning of
hunt, Number of hunt shot candidates, End of hunt, and Valid hunt, which are currently
embedded in the shot summary. If the intermediate descriptors Tracking, Fast and Animal
are all true for a given shot, the inference module sets Beginning of hunt to be true, which
means the shot could potentially be the beginning of a hunt event. The inference module tracks
the intermediate descriptors Tracking, Fast and Animal for consecutive shots and increments
the value of the Number of hunt shot candidates if all those three descriptors hold true for
consecutive shots. In our current implementation, when the Number of hunt shot candidates
is equal or greater than 3, Valid hunt is set to be true. Finally the inference module sets End
of hunt to be true if one of the intermediate descriptors Tracking, Fast and Animal becomes
false, which implies either the animal is no longer visible or trackable, or the global motion is
slow enough indicating a sudden stop after fast chasing.

In our final results, hunt events are specified in terms of their starting and ending frame
numbers. In the 10 minutes (18000 frames) of wildlife video footage which we have processed,
there exist 7 hunt events. Table I shows the actual frames of the 7 hunts and all the frames of
the detected hunts when we applied the proposed algorithm to the 10 minute video footage. The
table also shows the retrieval performance of our method in terms of the two commonly used

evaluation criteria (1) precision and (2) recall.

IV. SUMMARY AND DISCUSSION

In this paper, we have presented a new computational framework and a number of enabling
algorithmic components for automatic event detection in video and applied it to the detection

of deciduous trees in still images and hunts in wildlife documentaries.
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TABLE 1
A COMPARISON OF THE ACTUAL AND DETECTED HUNTS IN TERMS OF THE FIRST AND LAST HUNT

FRAME, AND THE ASSOCIATED PRECISION AND RECALL.

Sequence Actual Detected Precision | Recall
Name Hunt Frames Hunt Frames
hunt1 305 - 1375 305 - 1375 100 % 100 %

hunt2 2472 - 2696 | 2472 - 2695 100 % 99.6%
hunt3 3178 - 3893 | 3178 - 3856 100 % 94.8%
hunt4 6363 - 7106 | 6363 - 7082 100 % 96.8%
hunt5 9694 - 10303 | 9694 - 10302 100 % 99.8%
hunt6 12763 - 14178 | 12463 - 13389 67.7% 44.2%
hunt7 16581 - 17293 | 16816 - 17298 99.0% 67.0%
Average 95.3% | 86.0%

A. Object Recognition

The use of a back-propagation network offers a simple solution to the laborious task of finding
a good combination of the features. We have shown that feature sets like the one presented
have sufficient expressive power to allow good generalization from only a few training images.
Since the back-propagation algorithm is well understood and analyzed we have shown that it
is possible to determine the usefulness of a specific feature if we had to reduce the amount of
features used to an subset. The neural network approach offers a synthetic solution to the sensor
fusion problem that is concerned with combinations of (possibly dependent) features for the
purpose of classification and/or recognition. An analytical approach on the other hand would be
difficult to conduct since the interactions even between modest numbers of dependent features

are complex.

B. Ewvent Detection

Our experimental results have verified the effectiveness of the proposed algorithm. The de-
veloped framework decomposes the task of extracting semantic events into three stages where
visual information is analyzed and abstracted. The first stage extracts low-level features and
is entirely domain-independent. The second stage analyzes the extracted low-level features and

generates intermediate-level descriptors some of which may be domain-specific. In this stage,
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shots are summarized in terms of both domain-independent and domain-specific descriptors. To
generate the shot summaries, regions of interest are detected, verified and tracked. The third and
final stage is domain-specific. Rules are deduced from specific domains and an inference model
is built based on the established rules. In other words, each lower stage encapsulates low-level
visual processing from the higher stages. Therefore the processes in the higher stages can be
stable and relatively independent of any potential detail changes in the lower level modules. In
order to detect different events, the expected changes are (a) the addition of descriptors in the
second stage and (b) the design of a new set of rules in the third stage. The proposed algorithm
also provides several reusable algorithmic components. In fact, the extracted low-level texture
and color features are domain independent and many objects involved in events carry certain
texture and color signatures. The neural network used for image region classification can be
easily re-configured or extended to handle other types of objects [20]. The robust statistical
estimation based object tracking method has already been used in different applications and its
robustness and simplicity are verified in experiments repeatedly [37].

It is important for us to point out that the proposed algorithm detects hunt events by detecting
spatial-temporal phenomena which are physically associated with a hunt event in the nature.
More precisely, the physical phenomenon which we attempt to capture is the combination of
the presence of animals in space and their movement patterns in time. This is in contrast to
many existing event detection methods which detect events by detecting artificial postproduction
editing patterns or other artifacts. The drawbacks of detecting specific editing patterns or other
artifacts are that those patterns are often content provider dependent and it is difficult, if not
impossible, to modify the detection methods and apply them to the detection of other events.
It is also important to point out that our algorithm solves a practical problem and the solution
is needed in the real world. In the wildlife video tapes which we obtained, the speech from the
audio track and the text from the close-caption are loosely correlated with the visual footage. Tt
is therefore unlikely that the hunt segments may be accurately located by analyzing the audio
track and close-caption. In other words, given the existing wildlife tapes, a visual-information-
based detection algorithm is needed to locate the hunt segments otherwise manual annotation is

required.
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V. FUTURE WORK

We propose to investigate the power and usefulness of temporal texture and color measures

for the combined purpose of motion analysis, object and event detection.

A. Goals and Investigations

The goals of this investigation are
o the demonstration of the usefulness of simultaneous spatio-temporal analysis of video data,
« the derivation of predicates that are useful for the description of video data (objects, actions,
events, etc.),
o methods and indicators that provide reliable confidence values for these predicates,
o the demonstration of the usefulness of the derived predicates in terms of an example represent-

ing an important class of problems.

B. Qualitative Motion Estimates

But, for many problems, it is possible to infer useful abstractions without full motion infor-
mation for each pixel. Qualitative motion estimates, such as, the onset or offset of a motion, the
occlusion/disocclusion of objects by other objects, the tracking of an object by the camera, the
egomotion of an object, the triggering or ending of motion of one object by another object, are
fundamental motion patterns that are likely to be useful for a range of higher level video analysis
tasks.

Figure 15 shows models for these fundamental motion patterns given small camera motion or
a stationary camera.

For a valid (dis)occlusion regions 1 and 3 (before and after the (dis)occlusion) must have
identical or very similar texture and color characteristics, while for region 2 the characteristics
may be different.

Note that the small camera motion condition is not a restriction, but merely a fact that we
need to verify or reject. Once we have established that the camera is moving, we can try to
determine whether it is tracking something. If on the other hand we found that the camera is
stationary, we can try to locate moving objects. But it is important to state the camera motion
condition for the definition of the above qualitative motion primitives.

Either way we must make the assumption that moving objects occupy small areas in static

scenes. If this is not true, we need to recognize the objects first and then use background
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Region 1 Region 1 Region 1 Region 1
at in in a
rest motion motion rest

(a) (b)

Region 1 Region 2 Region 3 Region 1 Region 2 Region 3
at in at in at in
rest motion rest motion rest motion

Region 1 at rest

Fig. 15. The transition diagrams for stationary cameras. (a) shows the motion onset model, (b) shows

Region 2 at rest
Region 1 approaces Region 2

Region 2 at rest
Region 1 approaces Region 2

Region 2 in motion

the motion offset model, (c¢) shows the temporal occlusion model, (d) shows the temporal disocclusion

model, (e) shows the trigger-motion model, and (f) shows the end-motion model.

knowledge to determine absolute motion.

B.1 Tracking and Motion Detection

In Section II-A we assumed that that the moving objets in a video occupy only small areas.
In this case we establish that we are tracking an object when regions that exhibit rest char-
acteristics are surrounded by regions that exhibit motion characteristics and we are detecting
object motion when regions that exhibit motion characteristics are surrounded by regions that
exhibit rest characteristics. Deformation characteristics may lend further support to the tracking

hypothesis of such regions.

B.2 Motion Primitives

Depending on the outcome of this initial analysis the definitions for onset, offset, occlusion,
and disocclusion are as follows:
o Onset of a Motion
In stationary mode: A region that changes from rest to motion characteristics.
In tracking mode: A region that changes from motion to rest characteristics.
» Offset of a Motion
In stationary mode: A region that changes from motion to rest characteristics.

In tracking mode: A region that changes from rest to motion characteristics.
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¢ Temporary Occlusion

In stationary mode: An offset followed by a rest period followed by an onset.

In tracking mode: An onset followed by a motion period followed by an offset.

¢ Temporary Disocclusion

In stationary mode: An onset followed by a motion period followed by an offset.

In tracking mode: An offset followed by a rest period followed by an onset.

o Triggering a Motion

In stationary mode: Moving region 1 approaches resting region 2 and causes an onset.
In tracking mode: Moving region 1 approaches resting region 2 and causes an offset.

¢ Ending a Motion

In stationary mode: Moving region 1 approaches moving region 2 and causes an offset.

In tracking mode: Moving region 1 approaches resting region 2 and causes an onset.
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