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Abstract

Automatically understanding human actions using
motion trajectories derived from video sequences is a very
challenging problem. Since an action takes place in 3-D,
and is projected on 2-D image, depending on the
viewpoint of the camera, the projected 2-D trajectory may
vary. Therefore, the same action may have very different
trajectories, and trajectories of different actions may look
the same. This may create a problem in interpretation of
trajectories at the higher level. However, if the
representation of actions only captures characteristics,
which are view-invariant, then the higher level
interpretation can proceed without any ambiguity. In most
of the current work on action recognition, the issue of
view invariance has been ignored. Therefore, proposed
methods do not succeed in more general situations.

In this paper, we first present a view-invariant
representation of action consisting of dynamic instants
and intervals, which is computed using spatiotemporal
curvature of a trajectory. Then this representation is used
by our system to learn human actions without any
training. The system automatically segments video into
individual actions, and computes view invariant
representation for each action. The system is able to
incrementally learn different actions starting with no
model. It is able to discover different instances of the same
action performed by different people, and in different
viewpoints.

Keywords: Video Understanding, Action Recognition,
View-invariant Representation, Spatiotemporal curvature,
Events, Activities

1. Introduction

Recognition of human actions from video sequences is
very popular in computer vision. This work has
applications in video surveillance and monitoring, human-
computer interfaces, model-based compression, and
augmented reality.

Actions can be classified into three categories: events,
temporal textures, and activities [1]. Motion events do not

exhibit temporal or spatial repetition. Events can be low-
level descriptions like a sudden change of direction, a stop,
or a pause, which can provide important clues to the type
of object and its motion. Or they can be high level
descriptions like “opening a door”, “starting a car”,
“throwing a ball”, or more abstractly “pick up”, “put
down”, “push”, “pull”, “drop”, “throw”, etc. Motion verbs
can also be associated with motion events. For example,
motion verbs can be used to characterize trajectories of
moving vehicles [2], or normal or abnormal behavior of the
heart's left ventricular motion [3]. The temporal textures
exhibit only statistical regularity. Examples include ripples
on water, the wind in leaves of trees, or a cloth waving in
the wind. Activities consist of motion patterns that are
temporally periodic and possess compact spatial structure.
Examples include walking, running, jumping, etc.

In this study, we focus our attention on human actions
performed by a hand. These actions include: opening and
closing overhead cabinets, picking up and putting down a
book, picking up and putting down a phone, erasing a
whiteboard, etc. Since an action takes place in 3-D, and is
projected on 2-D image, depending on the viewpoint of the
camera, the projected 2-D trajectory may vary. This may
create a problem in interpretation of trajectories at the
higher level. In most of the current work on action
recognition, the issue of view invariance has been ignored.
Therefore, proposed methods do not succeed in general
situations.

In this paper, we first present a view-invariant
representation scheme based on spatiotemporal curvature
of a trajectory. A trajectory is represented by a sequence of
dynamic instants and intervals. This representation is then
used to automatically learn human actions. The system
starts with no model, and incrementally builds models by
watching people perform actions. Ultimately the system is
able to recognize new actions using the learned actions. We
present results on a video sequence depicting five different
people performing roughly 60 different actions. The
system is automatically able to segment the video into
different actions, and learn them.



2. Related work

Siskind and Morris [7] use HMMs to classify 6
gestures: pick up, put down, push, pull, drop, and throw.
This requires training, and features used are not view
invariant. Kojima et al [10] propose an approach to
generate a natural language descriptions of human behavior
from real video images. First, a head region of a human is
extracted from each frame. Then, using a model-based
method, 3-D pose and position of head are estimated. Next,
the trajectory of head is divided into segments, and the
most suitable verb is selected. Bobick and Davis [8]
describe a method to recognize aerobic exercises from
video sequences. They need training, and multiple views to
perform recognition. Stauffer and Grimson [9] use simple
classification based on aspect ratio of tracked objects. Seitz
and Dyer [11] proposed an affine view-invariant trajectory
matching method to analyze cyclic motion. Davis et al [14]
proposed a motion recognition method by fitting sinusoidal
model. The sinusoidal model contains amplitude,
frequency, phase, and translation parameters. His method
first estimates the translation, which is 1-D information,
then estimates the frequency of x and y to get 2-D
information, and then estimates phase, and so on. Based on
the sinusoidal model coefficients the motion can be
classified into different categories, each of them has
consistent underlying structural descriptions. Yacoob and
Black [15] proposed a method for modeling and
recognizing activities. In their paper, they claim that the
actions can be captured by motion parameters of body
parts, for example, horizontal translation of arm, vertical
translation of torso, and rotation of thigh. Each of these
parameters is a function of time. And these functions can
be represented by coefficients and bases using PCA
methods. Their main contribution is the new method for
computing PCA. They proposed to use robust regression
method, because the traditional PCA method is not robust.
Their view-invariant ability is limited to scaling, and
temporal warping. And their method is not view-invariant

in general cases. If the view point of camera is changed by
rotating camera, their method will have problems.

3. Hand trajectories

In this section, we discuss how to compute motion
trajectories from video sequences. In our method, hand is
located in each frame, and centroids of the hand in each
frame are connected to obtain a trajectory.

3.1. Capturing and smoothing trajectories
We apply skin detection [6] to locate a region

corresponding to the hand in an image sequence. Skin
detection uses pixel color value. Based on the color
predicate, the system labels the incoming pixel as skin or
non-skin. This process is very fast, since only lookup table
operations are involved. After skin detection, a connected
component algorithm is applied, and fastest moving skin
region is identified as hand. Next, the centroid of this skin
region is computed for each frame, and trajectory of the
hand is created by joining the centroids.

A trajectory is a spatiotemporal curve defined as:
(x[1],y[1],t[1]), (x[2],y[2],t[2]),…, (x[n],y[n],t[n]). This
trajectory contains some noise due to errors in skin
detection, lighting conditions, projection distortions,
occlusion, etc. Although there are a lot of filters available
in literature to reduce noise, such as low pass and mean
filter, they are not suitable for this application, because
these filters intend to smooth out all the peaks, which may
represent meaningful changes in action. We use anisotropic
diffusion to smooth the x(t) and y(t) coordinates of the
trajectory. Anisotropic diffusion was proposed in the
context of scale space [4]. This method iteratively
smoothes the data with a Gaussian kernel, but adaptively
changes the variance of Gaussian based on the gradient of
a signal at a current point. Figure 2 shows a trajectory (a)
and the one after anisotropic diffusion of x and y
coordinates (b). Notice that now the trajectory is much
smoother and changes of action status are kept.

3.2. Computing spatiotemporal curvature
We use spatiotemporal curvature to compute view

invariant representation of an action. The spatiotemporal

(a) (b) (c)
Figure 2:“Opening overhead cabinet” trajectory
(a) smoothed version of the trajectory (b)
dynamic instants (marked by “*”) and intervals (c)(a) (b)

Figure 1. Several trajectories of “opening
overhead cabinet” (a), and “closing overhead
cabinet” (b) actions.



curvature of a trajectory is computed by a method
described by Besl and Jain [5]. In this case, a 1D version of
the quadratic surface fitting procedure is used. The
spatiotemporal curvature, k is given as follows:
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Since the time interval is constant, i.e. t=1, 2, 3,…, so t'=1,
and t"=0.

Spatiotemporal curvature captures both the speed and
direction changes in one quantity. When the time
information is ignored in the spatiotemporal curvature, we
simply get spatial curvature, commonly used in 2-D shape
analysis. In this case, time interval is 0, therefore t' = t" = 0,
and the equation (1) reduces to the spatial curvature. The
spatiotemporal curvature of the “opening overhead
cabinet” trajectory is shown in Figure 3.

4. Representation

Representation is very important and sometimes
difficult aspect of an intelligent system. The representation
is an abstraction of sensory data, which should reflect a
real world situation, be view-invariant and compact, and be
reliable for later processing. We propose a new
representation scheme based on spatiotemporal curvature
of a trajectory. A trajectory is represented by a sequence of
dynamic instants and intervals. A dynamic instant is an
instantaneous entity, which occurs for only one frame, and
represents an important change in motion characteristic:
speed, direction, acceleration, and curvature. An instant is
detected by identifying maxima (a zerocrossing in a first

derivative) in the spatiotemporal curvature. An interval
represents the time-period between any two dynamic
instants, during which the motion characteristics remain
pretty much constant. In our representation, instants and
intervals have physical meanings. Therefore, it is possible
to explain an action as a sequence of meaningful instants
and intervals.

Dynamic instants and intervals for “opening overhead
cabinet” action are shown in Figure 2.c.

A dynamic instant is characterized by a frame number,
the image location, and the sign. The frame number tells us
precisely in which frame, the dynamic instant occurs; the
image location provides the location of the hand in the
image when the dynamic event occurs; and the sign
represents the change of motion direction at the instant.
The intervals are described by an average spatiotemporal
curvature. Examples of dynamic instants include: touching,
twisting, loosening; and the examples of intervals include
approaching, lifting, pushing, and receding. Consider an
opening overhead cabinet action (Figure 2.c). This action
can be described as: hand approaches the cabinet
(“approaching” interval), hand makes a contact with the
cabinet (“touching” instant), hand lifts the cabinet door
(“lifting” interval), hand twists (“twisting” instant) the
wrist, hand pushes (“pushing” interval) the cabinet door in,
hand breaks the contact (“loosening” instant) with the
door, and finally hand recedes (“receding” interval) from
the cabinet.

4.1. View invariance
If the representation of action only captures

characteristics, which are view-invariant, then the higher
level interpretation can proceed without any ambiguity.
Instants, which are the maxima in spatiotemporal curvature
of a trajectory, are view-invariant. A dynamic instant in 3D
is always projected as a dynamic instant in 2D, except in
limited cases of accidental alignment. By accidental
alignment, we mean a view direction which is parallel to
the plane where the action is being performed. In that case,
the centroids of hand in all frames are projected at the
same location in the image plane, resulting in a 2-D
trajectory, which is essentially a single point. In Figure 1.a,
we show trajectories of opening overhead cabinet action
from several viewpoints. Even though these trajectories
look quite different, three dynamic instants are detected by
the proposed method.

In our work we assume the camera is an affine camera,
which means that the depth of 3-D trajectory of action is
small compared to the viewing distance [12]. This
assumption is valid for most actions in surveillance
systems.

Assume that the location of a hand in 3-D space at

321 ,, ttt is given by (P1, P2, P3). In this case, we have

two vectors
21PP and

32 PP (see Figure 4a). The projection

of these three points in image plane is shown in Figure 4b.
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Figure 3. Spatiotemporal curvature, and detected
maxima (dynamic instants) in “opening overhead
cabinet” trajectory.



It is clear that there is a dynamic instant at 2t . Assume that

the angle between the two vectors is α. The sign of this
angle can be determined by computing the sign of the cross
product of projection of two vectors in the image plane.
We will use the sign of this angle as the sign of the instant.
We claim that the sign of instant is view-invariant when the
camera viewpoint remains in the upper hemisphere of the
viewing sphere. This is explained in the following:

We want to show that the angle is view invariant under
affine camera model. The camera translation will not affect
the angle α, therefore we will only consider the situation
when the camera rotates. Let us assume for simplicity that
camera axis passes through P2 and the distance from the
camera to P2 is D, and

21PP is always vertical. It is obvious

that camera rotation around the Z axis does not change α.
Therefore, the situations that need to be considered are
camera rotations around the X-axis (tilt) and the Y-axis
(pan).

During the camera panning (Figure 4b), the only part
which changes is the projection of P3 (X3,Y3,Z3). Its image
coordinate are (u3,v3). Note that P0 is the projection of P3

on the line P1P2 and its image coordinates are (u0,v0). Due
to camera panning with angle θ, X coordinates of any point
are changed to X’ as follows:

θθ sincos ZXX −=′ (3)
Now the image coordinates under affine camera are given
by:
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to P2 is D. The distance, d, between projection of points P3

and P0 in the image plane is given by:
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In the above equation if θ ∈ (-90°,+90°), then d > 0, so

that α is positive. This means that the sign of α is view
invariant when the camera is panning within the semicircle.

For the situation when the camera tilts around the X-
axis, the similar argument also holds. Therefore, when the
camera tilts within the semicircle (φ ∈ (-90˚,+90˚)) the sign
of φ remains the same. Moreover, the pan and tilt can be
combined together to make the camera rotate around an
arbitrary axis in the X-Y plane.

The above discussion is for the situations when all the
instants are located in one plane, which is restricted.
However, we can extend the proof for more general
situations as follows.

Assume that there are four instants (P1,P2,P3,P4),
P1,P2,P3 are in one plane with an angle α , and P2,P3,P4 are
in another plane with an angle β. Then the signs of α and β

are invariant when the camera rotates within the quarter of
sphere, which is defined by the two planes.

For the situations when more non-planar instants are
involved, we can conclude that the sign of an instant will
remain the same if the camera view is not in a plane
containing three or more co-planar instants.

The sign characteristic of an instant is very useful,
because the sequence of signs of instants helps us to
distinguish between different actions under different
viewpoints. For example, the opening cabinet action
(Figure 2c) has five instants, the signs for second, third and
fourth instants are (-,+,+). On the other hand, closing
cabinet action (Figure 1b) has five instants also, but the
signs of the middle three instants are (-,-,+), which are
different. In general, for a trajectory with n instants, the
number of permutations of signs is 2(n-2); here we are not
considering the signs of the first and the last instants.

From the previous discussion, we can conclude that the
number of instants and the signs of instants in an action are
view-invariant. However, these two characteristics of
instants are not sufficient to uniquely define any action;
since two different actions may have the same number of
instants with the same signs. Therefore, we propose to use
a view-invariant method to measure the similarity between
two actions that belong to the same category. The
trajectories of the same action should give us high match
score as compared to the trajectories of the different
actions. Also the camera viewpoint should not affect the
matching scores, that is the action can be performed in an
arbitrary field of view with any camera orientation and
position. The matching algorithm is discussed in detailed in
section 5.1.

5. Learning

Once representation has been defined, the next step is to
use this representation to learn human actions. As stated
earlier, our aim is to start with no model, and incrementally
build model of actions by continuously watching. This is
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the way, we believe, how children learn to recognize
different actions by repeatedly observing adults perform
actions.

We assume the camera is fixed during the performing of
actions, however, people can enter the field of view from
any side and do actions with any orientation. The system is
continuously analyzing video stream captured by the
camera. The system detects hand using skin detection,
determines hand trajectory, and computes a view invariant
representation of each action.

The continuous video stream can be easily segmented
into individual actions. One particular action begins as
soon as the hand enters the field of view, and ends when
the hand goes out of the field of view. When the system
detects the hand again, the second action begins, and so on.

For each action, the system builds a view-invariant
representation, and places it into a corresponding category
of actions, depending on the number of instants and the
permutation of signs. The system also compares each
action with all other actions in its category.

At the higher level of abstraction, the system also
determines sets of similar actions based on the match
scores. For example, different instances of “opening
overhead cabinet” action can be automatically determined
to be similar. For each such set only one prototype
representation is maintained, since all other instances
convey the same information. For each prototype we
associate a confidence, which is proportional to the
cardinality of the set represented by this prototype. When
more evidence is gathered, the confidence of some actions
is increased, while the confidence of others remain the
same. The prototypes with small confidence can ultimately
be eliminated.

5.1. Matching
Given two viewpoint invariant representations of some
actions, how can we determine if these are the same
actions? It is obvious that two actions with a different
number of instants or different sign permutations cannot be
the same. Therefore, we should only match representations
with equal number and the same sign permutation of
instants. We want to note that one action can be a sub-
action of the other. In this case, these actions won’t have an
equal number of instants; however, this match is
meaningful. At this point, we are not going to deal with it.

We use a view-invariant matching function that equates
a set of images if and only if they represent views of an
object in the same configuration as proposed by Seitz and
Dyer in [11].

Let us represent an action by a sequence of n instants,
where each action is represented by (x, y) image
coordinates of each instant: I=((u1,v1),(u2,v2),…,(un,vn)).
Assume a particular action is captured in k views,

represented by: .,...,,
21 kvvv III Our aim is to automatically

determine if these views represent the same action. Let us
form a matrix M as follows:
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If the views represent the same action, then we can express
M as:
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where S (shape) represents the 3-D coordinates of points
corresponding to the instants, and Πv is the projection
matrix of each viewpoint. Matrix M is the product of two
matrices, each having a rank at most 3. Therefore, the rank
of M is at most 3. This is due to the rank theorem by
Tomasi and Kanade [13]. As a consequence of this result if
the views represent the same action, and there are no
numerical errors, then all singular values of the matrix M
except the first three will be zero. However, these singular
values may not be exactly zero. Therefore, Seitz and Dyer
[11] use the sum of the squares of singular values of M,
except the first three singular values, to match the different
views. This distance is given as follows:
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where σ1..n are the singular values of M, k denotes the
number of views, and n denotes the number of singular
values. This distance gives the average amount necessary
to additively perturb the coordinates of each instant in
order to produce projections of a single action.

To match two actions Ii and Ij, we form matrix M as
follows:
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We then determine the singular values of M, and

compute the distance (equation 8) as 4, σ=jidist . The

distance gives the matching error of two action trajectories.
However, when we match two actions, there are two

possible shape matrices iS , and jS . In this case the rank

theorem may not be valid. We need to prove that if the
rank of M is 3, then Si=R·Sj. This means that the rank of
[Si,Sj] is 3, and Sj is a linear transform of Si, so that Si and
Sj represent the same actions.

In this case matrix M has the following form:
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Assume R is 3 by 3 matrix and Si R·Sj, so the rank of
matrix S is equal to or greater than 4. Moreover, as we
know the rank of M is 3. So under affine camera model the
only possibility is that the rank of P is 3. From the P

matrix, rank(P)=3 iff (al1,al2,al3) = k(al4, al5, al6),
where k is a scalar, and l is either i or j. Then this implies
(ul1, ul2, …, uln) = k(vl1, vl2, …, vln). This means that in
one of the two actions all the instants are located on a line.
This is a situation, which can be easily detected. So we
have the following theorem:

Theorem: With affine camera model, if the rank of M
is equal to or less than 3, and neither of actions has all
instants in a line, then the two actions Si and Sj match, and
Si=R·Sj, where R is a linear transformation.

In our approach, we compare each action with all other
actions with the same number of instants and the same
signs, and compute the match error dist(). For each action,
we need to select closely matched actions. All the matches,
which are above a certain threshold are eliminated first,
and only three best matches for each action are maintained.
Also if a particular action does not match closely to any
action of its category then it is declared as a unique action.
Its label may change as more evidence is gathered.

The best matches for individual actions are merged into
a compact list using the transitive property. That is, if
action 1 is similar to actions 14, 21, and 29; and action 4 is
similar to actions 43, 1, and 14; then actions 1, 4, 14, 21,
29, and 43 are all similar actions due to the transitive
property.

6. Experiments

We digitized several video clips recorded at 24 fps. The
location of camera was changed from time to time. Seven
people performed total of 60 different actions, the
complete list of actions is given Table 1. People were not
given any instructions, and entered and exited from
arbitrary directions, and the location of the camera was
changed from time to time. Therefore, the viewpoints of
these actions were very different. The system automatically
detected hand using skin detection, generated trajectories
of actions.

The actions were segmented by the system into 60
actions. Trajectories of these actions were used to generate

the view invariant representation proposed in this paper.
These representations were interpreted by the system to
learn these actions.

Each of these actions was matched using method
discussed in section 5.1. The results are shown in Table 2.
We are pleasantly surprised to see our simple matching
technique worked quite well. Only three matches were
completely wrong (actions 31, 36, and 58). Seven matches
(4, 8, 41, 43, 48, 59,and 60) were partially incorrect. In
action 8, 48, 58, 59, 60, the instants were collinear,
therefore they did not provide independent constraint for
the measurement. And action 31 and 36 are partially
matched with opening action, such as 4.

Note that these matches are based on only single
instance of an action. Therefore the performance of our
approach is remarkable.

The system was able to learn that actions 1, 4, 14, 16,
21, 29, 43, and 38 are the same. Note that even though
trajectories of these actions shown in Figure 6, are
different, but due to the strength of our representation, the
system was able to learn they represent the same action.
Similarly, the system was able to discover that action 3, 18,
6, 23, and 32, which represent “put down the object, and
then close the door”, are all the same using matching and
the transitive property. Therefore, the confidence for this
action is quite large.

Several actions were identified as unique, because they
did not match well with other actions having the same
number of instants. Therefore, their confidence is quite
low. Since we assume that the system is continuously
watching in its field of view, if more instances of these
unique actions are performed, the system will be able to
increase the confidence.
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Table 1: List of actions.
1st open the cabinet
2nd pick up an object (umbrala ) from the cabinet.
3rd put down the object in cabinet, then close the door.
4th open the cabinet, with touching the door an extra time.
5th pick up an object (disks) with twisting hand around.
6th put back the object (disks) and then close the door.
7th open the cabinet door, wait, then close the door.
8th open the cabinet door, wait, then close the door.
9th pick up an object from top the of the cabinet.
10th put the object back to the top of cabinet.
11th pick up an object from the desk.
12th put the object back to the desk.
13th pick up an object, then make random motions.
14th open the cabinet.
15th pick up an object, put it in the cabinet, then close the door.
16th open the cabinet.
17th pick up an object (umbralla) from the cabinet.
18th put the object (umbralla) back to the cabinet.
19th pick up a bag from the desk.
20th make random motions.
21st open the cabinet.
22nd pick up an object ( a bag of disks).

23rd put donw an object ( a bag of disks) back to the cabinet, then close the
door.
24th pick up an object from the top of the cabinet.
25th put the object back to the cabinet top.
26th make random motions with two hands.
27th continue the action 26.
28th close the door, with some random motion.
29th open the cabinet.
30th pick up an object (remote controller) from the cabinet, put it down on
the desk, pick up another object (pencil) from the desk, put it in the cabinet,
then close the door.
31st open the cabinet door, with the door half pushed, pick up an object
(pencil) from the cabinet.
32nd pick up an object (remote controller) from the desk, put it in the
cabinet, then close the door.
33rd open the cabinet door, wait, then close the door.
34th open the cabinet door, make random motions, then close the door.
35th pick up some objects.
36th open the door, pick up an object, with the door half opened.
37th close the half opened door.
38th open the cabinet door.
39th pick up an object, move it within the cabinet, pick up another object,
move it, then close the door.
40th open the cabinet door, wait, then close the door.
41st pick up an object from the top of the cabinet.
42nd close the cabinet.
43rd open the cabinet.
44th put down a disk.
45th close the half closed door.
46th open the door, wait, then close the door.
47th open the cabinet door, pick up an object, then put it back, then close
the cabinet door.
48th open, then close the cabinet door.
49th pick up an object from the floor and put it on the desk.
50rd pick up an object from the floor and put it on the desk.
51rd pick up an object from the floor and put it on the desk.
52nd pick up an object from the desk and put it on the floor.
53rd pick up an object from the floor and put it on the desk.
54th, 55th, 56th, 57th erase the white board.
55th erase the white board.
56th erase the white board.
57th erase the white board.
58th pour water into a cup.
59th pour water into a cup.
60th pouring water into a cup.

Figure 5. Sequence showing Action 3, put down the object in cabinet, then close the door.



Figure 6. Trajectories of all 60 actions. The instants
are shown with red “*”.

Table 2. Interpretation results. The bold face font
in column indicates incorrect match.

Actions 3 Best matches Evaluation & comments

1 38 29 14 Correct

2 Pick up Correct

3 18 6 23 Correct

4 36 29 14 One wrong

5 Unique action

6 23 3 18 Correct

7 33 8 48 correct

8 33 7 60 One wrong

9 Pick up Correct

10 Put down Correct

11 Pick up Correct

12 Put down Correct

13 Unique action

14 16 1 29 Correct

15 Unique action

16 38 14 29 Correct

17 Pick up Incorrect, object hidden

18 3 23 6 Correct

19 Pick up Correct

20 Unique random motion

21 14 38 16 Correct

22 Pick up Correct

23 18 6 3 Correct

24 Pick up Correct

25 Put down Correct

26 Unique action

27 Unique action

28 correct

29 1 16 14 Correct

30 Correct

31 43 16 38 incorrect

32 Unique action

33 8 7 48 correct

34 Random motion, unique

35 Put down The action is confusing

36 38 14 43 incorrect

37 Unique

38 1 16 29 Correct

39 Correct

40 46 is missing

41 35 Unique action

42 Unique action

43 31 14 36 Two incorrect

44 Pick up Incorrect, object too small

45 Unique action

46 40 is missing

47 Unique action

48 59 33 7 One incorrect, collinear points.

49 51 53 50 Correct

50 51 53 50 Correct

51 50 53 49 Correct

52 Unique action

53 51 49 50 Correct

54 56 57 Correct

55 Incorrect One instant missing

56 54 57 Correct

57 56 54 Correct

58 48 33 Collinear points

59 48 60 Collinear points

60 59 8 48 Collinear points

Figure 7. Sequence showing Action 56,
erase the white board.


