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Abstract

Learning dominant motion patterns or activities
from a video is an important surveillance problem, es-
pecially in crowded environments like markets, subways
etc., where tracking of individual objects is hard if not
impossible. In this paper, we propose an algorithm that
uses instantaneous motion field of the video instead of
long-term motion tracks for learning the motion pat-
terns. The motion field is a collection of independent
flow vectors detected in each frame of the video where
each flow is vector is associated with a spatial location.
A motion patternis then defined as a group of flow vec-
tors that are part of the same physical process or motion
pattern. Algorithmically, this is accomplished by first
detecting the representative modes (sinks) of the mo-
tion patterns, followed by construction ofsuper tracks,
which are the collective representation of the discovered
motion patterns. We also use the super tracks for event-
based video matching. The efficacy of the approach is
demonstrated on challenging real-world sequences.

1. Introduction

The traditional approach for activity analysis in a
video sequence consists of following steps: i) detec-
tion of all the moving objects that are present in the
scene; ii) tracking of the detected object; and, iii) anal-
ysis of the tracks for event/activity detection. This stan-
dard processing pipeline works well in a low density
scene where reliable trajectories of moving objects can
be obtained which eventually facilitates the detection
of typical motion patterns as well. However, in real-
world situation the assumption of low density does not
always hold. For instance, videos depicting events such
as marathons, political rallies, city center etc., usually
contain hundreds of objects. Over the years, little atten-
tion has been paid to analyze videos of these situations
especially in terms of learning the activity models and
motion patterns hidden in these crowded scenes.

To deal with videos of these challenging settings, we
propose a new method to learn the typical motion pat-

terns using only theglobalmotion flow field, instead of
long-term trajectories of moving objects. Here, the mo-
tion flow field is a set of independent flow vectors repre-
senting the instantaneous motion present in a frame of a
video. Such instantaneous motion information is read-
ily available in any situation as it is not effected by the
density of objects. The motion flow field is obtained by
first using the existing optical flow methods to compute
the optical flow vectors in each frame, and then com-
bining the optical flow vectors from all frames of the
video into a singleglobalmotion field. This global mo-
tion field does not contain any temporal information as
the flow vectors from all the frames are merged into a
single field without maintaining the information about
the video frames they came from. Next, from the global
motion flow field, we extract the representative modes,
which are called the sinks, for each motion pattern. The
process of detecting the sinks is referred to as thesink
seeking process. After extracting the sinks and sink
paths, they are grouped into several clusters, each cor-
responding to a motion pattern present in the video. To
collectively represent the motion pattern, a singlesuper
track is generated from the sink paths.

Related Work: Learning of motion paths or patterns
by clustering trajectories of moving objects has been at-
tempted before in the literature. For instance, Grimson
et al. [12] used the trajectories of moving objects to
learn the motion patterns which are then used for ab-
normal event detection. Johnsonet al. [5] used neu-
ral networks to model motion paths from trajectories.
While in [3], trajectories were iteratively merged into a
path. Similarly, Wanget al. [9] used a trajectory simi-
larity measure to cluster trajectories where each clusters
was representing a specific dominant activity. Porikliet
al. [1] represented the trajectories in the HMM parame-
ter space for activity analysis. Vaswaniet al. [10] mod-
eled the motion of all the moving objects performing the
same activity by analyzing the temporal deformation of
the “shape” which was constructed by joining the lo-
cations of the objects in each frame. These above men-
tioned methods are based on long-term tracks of moving
objects and therefore are only applicable to low density
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Figure 1. Elevator video: (a) flow vectors (yellow arrows) detected at the corresponding frames
#1, #101; (b) detected super tracks; (c) the motion flow field; (d) a sink seeking process; (e)
sink clustering.

scenes. In contrast, we are proposing a new method to
detect motion patterns in challenging crowded scenes
where long-term tracks of moving objects are not avail-
able or not reliable. In trajectory analysis, sinks are de-
fined as the endpoints of paths and can be learned from
the start and end points of the trajectories [2, 4]. How-
ever, fragmented trajectories resulting from occlusions
or tracking failures will result in false sinks. To detect
sinks in this case, Stauffer [6] defined a transition likeli-
hood matrix and iteratively optimized the matrix for the
estimation of sources/sinks. Wanget al. [9] estimated
the sinks using the local density velocity map in a tra-
jectory clustering. In this paper, the sinks are defined as
the end points of the sink paths. They are the modes of
motion patterns and define the number of distinct mo-
tion patterns.

2. Global Motion Flow Field Generation

Given an input video, for each frame we use the ex-
isting methods to compute sparse optical flow (instanta-
neous velocities) using the interest points ([8]) or dense

optical flow for all pixel ([11]) in each frame. Con-
sider a pointi in the given frame. Its flow vector,Zi,
includes the location,Xi = (xi, yi), and the velocity,
Vi = (vxi , vyi), i.e., Zi = (Xi, Vi). Note that, these
flow vectors do not necessarily belong to foreground
objects and no time order or object labels are associated
with them. In case, trajectories are available but not
reliable, e.g., broken trajectories, then the flow vectors
can be obtained directly from these fragmented pieces
of trajectories.

All the flow vectors computed from all the frames
of the given video then constitute the global motion
flow field representing the instantaneous motion field
of the video. This flow field may contain thousands
of flow vectors and it is computational expensive to
apply sink seeking process to such a large amount of
data. Moveover, these flow vectors always contain
redundant information and noise. Therefore, the flow
vectors belonging to the background can be considered
as noise as they contain little motion information. To
achieve this, we first apply a threshold on the velocity



magnitude to remove the flow vectors that have little
motion information. Next, we use Gaussian ART
(see [13]) to reduce the number of flow vectors from
thousands to hundreds. The reduced number of flow
vectors still maintain the geometric structure of the
flow field, and, therefore, do not effect the results of
detecting motion patterns. Fig. 1 shows example flow
vectors and corresponding motion flow field.

Sink Seeking: Suppose {Z1, Z2, · · · , Zn} is
the motion flow field whereZi = (Xi, Vi). The states
of the sink seeking process of each point,i, are defined
as, Z̃i,t = (X̃i,t, Ṽi,t), t = 1, 2, ..., and computed
using:

Z̃i,1 = Zi , X̃i,t+1 = X̃i,t + Ṽi,t, (1)

Ṽi,t =

∑
n∈Neighbor(X̃i,t)

VnWt,n∑
n∈Neighbor(X̃i,t)

Wt,n
. (2)

The above equations states that the new ‘position’ of
a point depends only on its location and velocity at the
last state. While the new ‘velocity’,̃Vi,t+1, depends not
only on the previous velocity but also on the observed
velocities of its neighbors. See Fig. 2(b) which shows
the motion trend of group of points in a local neighbor-
hood. In this paper, we employ the kernel based estima-
tion similar to the mean shift approach [14] to incorpo-
rate this neighborhood effect using following equation:

Wt,n = exp
(
−

∥∥∥∥
Ṽi,t−1 − Vn

ht−1

∥∥∥∥
2)

, (3)

whereht−1 is the bandwidth. Note that, in the mean
shift tracking [14], theappearanceof pixels in a small
neighborhood around the object is used to determine
the location of the object in the next frame. In our ap-
proach, we usethe location and the velocityof neigh-
boring points in the global flow field to determine the
next location. The pictorial description of the sink seek-
ing process is presented in Fig. 2(a).

3. Super Track Extraction

After the sinks are obtained the next task is to clus-
ter the sinks and determine their corresponding sink
paths. The clustering algorithm starts by initializing
the sink cluster set to an empty set. It takes each sink
and attempts to match it with all existing clusters. If
a match is found, the sink is assigned to the matched
cluster. Otherwise a new cluster is initialized with
the current sink as its center. Clusters with a small
number of sinks are often caused by the background
or noise, and, therefore, are discarded. Formally,
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Figure 2. Sink seeking process for a given
point. (a) sink seeking (red: the states of
the flow vector in the sink seeking pro-
cess, orange: the sink, rectangles: slid-
ing windows, yellow: the sink path); (b)
sliding window (solid circle: the flow vec-
tor under consideration; rectangle: slid-
ing window; hollow circles: neighboring
points; dotted circles: non-neighboring
points).

given a sinkZ∗i = (X∗
i , V ∗

i ) associated with a sink
pathPZ∗i , and a clusterCk, the sink-cluster distances
are given by: i)Dx(Z∗i , Ck) = maxZ∗j ∈Ck

‖X∗
i −

X∗
j ‖, ii) Dv(Z∗i , Ck) = minZ∗j ∈Ck

<V ∗i ,V ∗j >

‖V ∗i ‖‖V ∗j ‖ , iii)

Dp(Z∗i , Ck) = maxZ∗j ∈Ck
HausdorffDist(PZ∗i , PZ∗j ).

Here all metrics are based on comparison between
the given sinkZ∗i and the other sinkZ∗j in the cluster
Ck. The first metric measures whether the given sink
Z∗i is spatially close to the clusterCk or not. The sec-
ond metric measures the similarity of their directions,
and the third measures the Hausdorff distance between
their corresponding sink paths represented byPZ∗i and
PZ∗j respectively. These three metrics ensure that two
flow vectors involved in a similar motion pattern have
similar sinks and sink paths. Following the clustering
of sinks, for each cluster a super track is extracted as
the sink path with the maximum arc length to represent
the corresponding global motion pattern (see Fig. 1).



Figure 3. Generating super tracks for
crowd videos. Left Col: Extracted flow
vectors (yellow arrows). Center Col: The
motion flow field. Right Col: Detected su-
per tracks.

Super Track Matching: Each super track may
represent motions of several different objects (people,
cars etc), since they are generated using global flow
field of the whole video. Therefore, super tracks are
different form the traditional object tracks representing
the locations of a single object in different frames.
Super track can be used in video matching since they
can effectively reduce the problem of multi-object
multi-event video matching to the problem of matching
two sets of super tracks. Consider two videosX and
Y , and assumeX and Y respectively haven and m
super tracks{xi}i=1,2,...,n and {yj}j=1,2,...,m. We
first define the similarity between two super tracks
xi and yj as p(xi, yj) = (wi+wj) exp{−d(xi,yj)}∑

i,j (wi+wj)
,

where d(xi, yj) is the shape distance computed by
performing the dynamic time warping of the directional
vectors ofxi andyj (see [7] for details), andwi is the
reliability weight associated to each trackxi, which
is given by wi = ArcLength(xi)∑n

k=1 ArcLength(xk) . To find the

best matching between two groups:{xi}i=1,2,...,n

and {yj}j=1,2,...,m, we use maximum bipartite graph
matching to achieve where each super track is a node in
the bipartite graph. The weight of an edge between two
nodes is given by the above equation. Given a bipartite
graphG = (V,E), a matchingM is a subset ofE
such that for any two different memberse, e′ ∈ M ,
e ∩ e′ = ®. The maximum weight matching is the one
that maximizes the sum of the weights.

4. Experiments

Two classes of videos are considered for the experi-
ments which are i) Crowd, and ii) Aerial videos. These
videos contain groups of people and vehicles moving
mostly in an unconstrained setting in the presence of
shadows and severe occlusions.

Figure 4. Super tracks in aerial video. (a)
Top: Initial tracking results where 6 cars
generated 16 broken tracklets. Middle:
Trajectories superimposed on the video
mosaic. Bottom: Correctly generated sin-
gle super track. (b) Left: Flow vectors su-
perimposed on the mosaic. Right: Three
super tracks. (c) Top: Flow vectors. Bot-
tom: Five super tracks.

Crowd Videos: Fig. 1 shows a crowded scene
of a supermarket where crowds of people go up and
down through three escalators. Here, we used KLT
to extract initial flow vectors, and correctly generated
three super-tracks corresponding to the motion patterns
of three escalators. Fig. 3 shows results on two other
challenging sequence containing dense crowd. In
Fig. 3(top-row), the crowd of pilgrims is moving in
two opposite directions. The pilgrims are wearing
clothes of similar color and are occluded by each other,
which makes it very hard to detect and track individual
persons. By processing this video through our proposed
method, we generated two super tracks which correctly
correspond to the two motion patterns: pilgrims going
up and pilgrims going down. Fig. 3(bottom-row)
demonstrates the strength of our method on a sequence
of an outdoor scene containing crowd and shadows. In
this case several super tracks were extracted from the
motion flow field. Again they correctly correspond to
the running routes and the direction of motion.

Aerial Videos: The aerial videos were taken from
DARPA’s VIVID data set. Here, the main challenge is



to resolve the issue of broken trajectories resulting from
the limited field of view and occlusion of objects due to
terrain features. Initial tracklets were generated using
mean-shift tracker in motion compensated imagery.
The point flows are then extracted from these tracklets.
The first result is shown in Fig. 4(a) where super track
is extracted from the video showing a group of cars
making a U-turn. In this video, six vehicles move on
a highway in a convoy form, but only three or four of
them are captured by the camera at any time. Some cars
disappear for more than 100 frames and then reappear
which results in trajectories which are broken into
many tracklets. It is very difficult for a tracking based
approaches to detect the motion pattern from these
broken trajectories. In contrast, our method obtains
the flow vectors from these tracklets and does not use
the labels of objects, and, therefore, does not require
a complete trajectory. By applying our algorithm,
we are able to generate one super track representing
the motion patterns hidden in the 16 tracklets of this
sequence. Two more results are shown in Fig. 4(b) and
(c).

Super Track Matching: We also tested the pro-
posed method for super track based video matching us-
ing the VIVID data set consisting of 21 videos. Given a
query video, the super tracks were generated using the
proposed method. The super tracks of the query video
were then compared with the super-track of each video
in the database. Fig. 5 illustrates the video matching
results for the sequence shown at the top which is an
IR video. In this video, there was a group of cars mak-
ing “S-turns” (see first row in Fig. 5). Fig. 5 shows
the three videos with the greatest similarity to the query
video. Note that even though there are multiple groups
of objects in these three videos and only one group in
the query video, all of them contain the same motion
pattern i.e. the S-turn. Despite the imperfect tracking
and the variability in path shapes, our method success-
fully matched the videos with the query video.

5. Conclusions

We have proposed a new method based on instan-
taneous motion information, to detect typical motion
patterns for dense crowded scenes. This is achieved by
proposing a new construct called ‘super track’.
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