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Abstract—This paper presents a system for analyzing human
driver visual attention. The system relies on estimation of global
motion and color statistics to robustly track a person’s head and
facial features. The system is fully automatic, it can initialize au-
tomatically, and reinitialize when necessary. The system classifies
rotation in all viewing directions, detects eye/mouth occlusion, de-
tects eye blinking and eye closure, and recovers the three dimen-
sional gaze of the eyes. In addition, the system is able to track both
through occlusion due to eye blinking, and eye closure, large mouth
movement, and also through occlusion due to rotation. Even when
the face is fully occluded due to rotation, the system does not break
down. Further the system is able to track through yawning, which
is a large local mouth motion. Finally, results are presented, and
future work on how this system can be used for more advanced
driver visual attention monitoring is discussed.

Index Terms—Automatic vision surveillance, driver activity
tracking, driver visual attention monitoring, in-car camera
systems.

I. INTRODUCTION

A CCORDING to the U.S. National Highway Traffic Safety
Administration, approximately 4700 fatalities occurred in

motor vehicles in the year 2000 in the U.S. alone due to driver
inattention, driver fatigue, and lack of sleep [1]. Of these about
3900 were from inattention and about 1700 were from drowsi-
ness, fatigue, illness, or blackout. Automatically detecting the
visual attention level of drivers early enough to warn them about
their lack of adequate visual attention due to fatigue or other
factors may save U.S. tax payers and businesses a significant
amount of money and personal suffering. Therefore, it is impor-
tant to explore the use of innovative technologies for solving the
driver visual attention monitoring problem. A system for classi-
fying head movements and eye movements would be useful in
warning drivers when they fell asleep. It could be used to both
gather statistics about a driver’s gaze and monitor driver visual
attention.

This paper describes a framework for analyzing video se-
quences of a driver and determining the visual attention of the
driver. The system does not try to determine if the driver is day-
dreaming and thus, not paying adequate attention to the road,
which is an example of cognitive underloading. In this case the
driver is looking straight ahead and appears to be fully alert.
Other methods will need to be developed to detect these kinds
of situations. The proposed system deals with the strictly mea-
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surable quantifiable cues like eye blink rate and head rotation
rate. The system collects data with a single camera placed on
the car dashboard. The system focuses on rotation of the head
and eye blinking, two important cues for determining driver vi-
sual attention, to make determinations of the driver’s visual at-
tention level. Head tracking consists of tracking the lip corners,
eye centers, and sides of the face. Automatic initialization of all
features is achieved using color predicates [2] and the connected
components algorithm. Occlusion of the eyes and mouth often
occurs when the head rotates or the eyes close, and the system
tracks through such occlusion and can automatically reinitialize
when it mis-tracks. Also, the system performs blink detection,
eye closure detection, and determines three-dimensional (3-D)
direction of gaze. 3-D gaze information can be used for hands
free control of devices like the radio or cd player.

The proposed system initializes automatically, tracks, and de-
termines visual attention parameters like orientation of face. A
moving vehicle presents new challenges like variable lighting
and changing backgrounds. The system was tested in both sta-
tionary and moving vehicles with negligible differences in the
accuracy of the system. With moving vehicles the system did not
encounter any difficulty with the changing background. Further
the system has performed well under a wide variety of daytime
illumination levels, from strong daylight, to heavy cloud cover,
to a half of the driver’s face in sunlight and the other in shadow.

The results also show that the system can track through local
lip motion like yawning. The work in [3] presented a robust
tracking method of the face, and in particular, the lips, but this
paper shows that the work in [3] can be extended to track during
yawning or opening of the mouth.

The organization of the paper is as follows. Sections II–Sec-
tion VI discuss previous work and then describe the tracking
system in detail. In Section VII, occlusion work is presented.
This entails occlusion of the eyes due to the rotation of the face
and 3-D gaze reconstruction work is also presented. In Sec-
tion VIII, the details of the automated driver visual attention
classification system are given and in Section IX the paper gives
quantitative results. Finally, Section X discusses future aspects
of driver visual attention monitoring and concludes.

A. Input Data

The video sequences were acquired using a video camera
placed on the car dashboard. The system runs on an UltraSparc
using 320 240 size images with 30 fps video, but it can be
easily implemented on a PC laptop. Eight drivers were tested
under different daylight conditions ranging from broad daylight
to parking garages. Some of the sequences were taken with a lot
of cloud cover so that the lighting was lower than other daytime
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conditions. Some of the sequences have partially illuminated
faces (half of the face in sunlight and half in shade). The system
is not yet tested on night driving conditions. In parking garages
and other low illumination levels the system works. The system
has strategies for dealing with nighttime driving, but this work
has not yet been fully tested. Some video sequences were
recorded in moving vehicles and others in stationary vehicles.
All sequences were recorded in real vehicles. Overall, the
method has been tested on about 7100 frames of video data,
about four minutes, with eight different drivers. Nineteen
sequences were collected. The drivers were selected from the
graduate and undergraduate students working in our university
computer science research labs. No particular screening was
done. Various drivers were selected with many different skin
tones and facial shapes and sizes. Drivers were not picked with
regard given to whether the system would track well or not.

II. PREVIOUS WORK

Much terminology has been introduced in the driver vigilance
and attention monitoring fields. In particular [4] lays a termi-
nology groundwork, and there are others who use similar termi-
nology. In our paper similar terminology is used. Visual atten-
tion refers to whether the driver is visually looking forward and
alertness/drowsiness refers to whether the driver is fatigued and
possibly fighting against sleeping bouts, microsleep, or other
similar conditions.

Work on driver alertness [5]–[10], has yielded many systems.
However, it is becoming clear that more than alertness needs
to be monitored [11]. With new technologies becoming more a
part of every day life, drivers need to be careful to make sure
they are paying adequate visual attention to the road. Therefore
methods must be developed which monitor both drowsiness and
visual attention. In the case of a decrease in visual attention, the
driver may be fully awake, yet still not paying adequate visual
attention to the road. Relying solely on determining if the eyes
were open would not be enough in the event the driver was not
drowsy, but was instead simply looking off center for a while. In
this case the eyes would be open, yet the driver could possibly
have a low visual attention level. More than eye closure metrics
must be used in this case. Detecting rotation can play an im-
portant part in detecting a decrease in visual attention. Various
classes of systems have emerged to determine driver drowsiness
and attention levels. Some systems [12], [13] rely on external
car behavior like the distance to roadway lines. Others [14] are
trying to use infrared beam sensors above the eyes which detect
when the eyelids interrupt the beam, and the system will mea-
sure the time that the beam is blocked, thus providing eye clo-
sure information. Another class that has emerged is the one in
which data is acquired from visual sensors [11], [15], [16]. An
important aspect of these systems is that unlike infrared beams
and the necessary hardware the user must wear, these are simple
to install and are non invasive.

To monitor driver visual attention or alertness a head tracking
method must be developed. Several researchers have worked on
head tracking [17], [18], and the various methods each have
their pros and cons. Among more recent methods to track fa-
cial features Huang and Marianu [19] present a method to de-

tect the face and eyes of a person’s head. They first use multi-
scale filters like an elongated second derivative Gaussian filter to
get the pre-attentive features of objects. Then these features are
supplied to three different models to further analyze the image.
The first is a structural model that partitions the features into fa-
cial candidates. After they obtain a geometric structure that fits
their constraints they use affine transformations to fit the real
world face. Next, their system uses a texture model that mea-
sures color similarity of a candidate with the face model, which
includes variation between facial regions, symmetry of the face,
and color similarity between regions of the face. The texture
comparison relies on the cheek regions. Finally they use a fea-
ture model to obtain the location of the eyes. Their method uses
eigen-eyes and image feature analysis. Then they zoom in on
the eye region and perform more detailed analysis. Their anal-
ysis includes Hough transforms to find circles and reciprocal
operations using contour correlation.

Shih, Wu, and Liu [20] propose a system using 3-D vision
techniques to estimate and track the 3-D line of sight of a person
using multiple cameras. Their approach uses multiple cameras
and multiple point light sources to estimate the line of sight
without using user-dependent parameters, thus avoiding cum-
bersome calibration processes. The method uses a simplified
eye model, and it first uses the Purkinje images of an infrared
light source to determine eye location. When light hits a medium
part is reflected and part is refracted. The first Purkinje image
is the light reflected by the exterior cornea [20]. Then they use
linear constraints to determine the line of sight, based on their
estimation of the cornea center.

Terrillon et al. [21] use Support Vector Machines (SVMs) to
solve the pattern recognition problem. SVMs are relatively old,
but applications involving real pattern recognition problems are
recent. First, they do skin color-based segmentation based on
a single Gaussian chrominance model and a Gaussian mixture
density model. Feature extraction is performed using orthogonal
Fourier-Mellin moments. Then they show how, for all chromi-
nance spaces, the SVMs applied to the Mellin moments perform
better than a three-layer perceptron neural network.

In [22], a lip color based approach is used to find the lip
colors. They also use dynamic thresholds and a voting system to
robustly find the lips. Then the 3-D mouth height is computed,
which allows the system to determine if the mouth is open or
not. The method is stereo based, and relies on images being well
lit in a controlled environment. In [23] the above feature point
extraction method is evaluated for accuracy. This differs from
the approach proposed in our paper because they rely on a well
lit image, which makes lip identification much easier than with
our unconstrained daytime driving illumination conditions.

In [24] a method is presented which tracks the head and es-
timates pose. It relies on 2-D template searching, and then 3-D
stereo matching. A 3-D model is then fit and minimized using
virtual springs, which is simpler than the least squares fit ap-
proach. Manual initialization is required to build the facial fea-
ture model, which can be a cumbersome burden.

In [25] the method presented is a stereo based system that
matches specific features from left and right images to deter-
mine the 3-D position of each feature. A least squares optimiza-
tion is done to determine the exact pose of the head. Eye pro-
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cessing locates the iris and then combines eye-gaze vectors for
each eye with the head pose to determine eye-gaze direction.
The system relies on manual initialization of feature points. The
system appears to be robust but the manual initialization is a lim-
itation, and it makes trivial the whole problem of tracking and
pose estimation. Their system requires roughly five minutes of
manual initialization and calibration, evidence that manual ini-
tialization methods create many burdens and limitations. Our
method requires no manual initialization, which is an attractive
feature of any system.

The method presented in our paper has no manual initializa-
tion after the offline building of the color predicate and hence has
no limitations presented by manual initialization. Further while
stereo helps, it adds additional calibration and hardware con-
straints which a single camera system, such as the one presented
in this paper, does not have. Our paper does not try to supplant
stereo vision systems as they have some advantages, but the aim
here is to advance the state of the art of single camera systems.

In [6], a method is presented to determine driver drowsiness in
which each eye’s degree of openness is measured. The method
first detects the eyeball using preprocessing to isolate the eyes
and other dark regions. Then a labeling operation is done to
find the eyes. Subsequent tracking is performed and the rela-
tive size of the eyes are recorded and learned by the system.
Then the system detects eye closures based on the degree of eye
openness. The system will reinitialize if the eyes are not being
tracked properly. In their work, visual attention is not moni-
tored. They only monitor drowsiness. Further it is not clear how
foreshortening of the eyes is taken into account, which will af-
fect the degree of eye openness calculations. Partial occlusion
of the facial features during rotation will affect the labeling op-
eration, so the system seems to work for images in which the
driver is looking relatively straight ahead. Highly accurate and
robust identification is necessary to adequately cope with real
world driving conditions.

In [5], a system is proposed using multiple cameras, one with
a view of the whole face, and one with a view of the eyes only.
Their idea is to move the eye camera on the fly to get the best
image of the eyes, since their technique uses eye information
like blink frequency. They use LEDs to minimize problems
with lighting conditions. Their face detection algorithms are
simple because they assume a simple background and limited
face movement. Because of the LED illumination the method
can easily find the eyes and from there the system finds the
rest of the facial features. The next step uses ellipses to model
the head and searches for the head in the next frame. They
investigate model based approaches for facial pose estimation
and discuss using the distance between the pupil and brightest
part of the eye to determine facial orientation. To get a more
accurate estimation they propose to analytically estimate the
local gaze direction based on pupil location. LED illumination
means additionally complicated hardware, and this is accept-
able for some situations like night time driving, but in daytime
driving conditions other possibilities exist which do not need
to rely on LED illumination. Also, it is reported in [11] that
LED illumination methods have many problems in daytime
driving largely because of ambient sunlight, which makes these
methods much less usable in daytime conditions.

In [26]–[28], a multiple camera method is presented that uses
infrared LED illumination to find the eyes. A simple subtrac-
tion process is done, to find the bright spots in the image. Then,
a segregation routine clusters the bright pixel regions together
to determine if the cluster is an eye or noise. Then, eye extrac-
tion is performed using size constraints. PERCLOS, a validated
drowsiness metric, is computed by taking the measurement of
the eye with the largest degree of openness. This system cur-
rently works under low light conditions. Many of the PERCLOS
based systems using infrared illumination work under low light
conditions only, as noted in [11].

A more detailed analysis of the strengths and weaknesses of
the PERCLOS measurement can be found in [11], [15], and
[29]. The method presented in our paper tries to address other
driver metrics that PERCLOS does not measure, such as de-
creased visual attention from looking away from straight ahead
for some length of time. The attempt in our paper is to address
decreased vigilance in the following way: no claim is made to
supplant the PERCLOS measurements as a valid physiological
metric, but rather to show that the data collected can be used to
measure driver drowsiness in a way similar to [6] but without the
eyeball size estimation. As well, the methods presented to de-
tect eye closure are sound and contribute to the general problem
of detecting eye closures in moving vehicles. Our paper also
shows and provides a detailed framework for acquiring metrics
and measuring the driver’s visual attention level. This was done
because more accidents were reportedly caused by inattention
than decreased vigilance [1].

III. OVERALL ALGORITHM

An overview of the algorithm is given below. In the following
sections, each step is discussed in detail:

1) automatically initialize lips and eyes
using color predicates and connected
components;

2) track lip corners using dark line be-
tween lips and color predicate even
through large mouth movement like
yawning;

3) track eyes using affine motion and
color predicates;

4) construct a bounding box of the head;
5) determine rotation using distances be-

tween eye and lip feature points and
sides of the face;

6) determine eye blinking and eye closing
using the number and intensity of
pixels in the eye region;

7) reconstruct 3-D gaze;
8) determine driver visual attention level

using all acquired information.

IV. I NITIALIZING LIP AND EYE FEATURE POINTS

Initialization employs color predicates [2]. For the lips, a spe-
cialized lip color predicate is used that identifies lip color in im-
ages. The system looks for the largest lip colored region using
the connected component algorithm. Fig. 1 shows these lip color



208 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 4, NO. 4, DECEMBER 2003

Fig. 1. Lip color predicate training. The first image is the original image, the second shows the manually selected skin color regions, and the third shows
automatically detected lip regions.

Fig. 2. Skin color predicate training. The first image is the input image, the second shows the manually selected skin regions, and the third shows automatically
detected skin regions.

Fig. 3. Results from automatic eye and lip initialization.

predicates. The other training images are similar. For the eye ini-
tialization, a similar idea with a different color predicate is used
as follows. First, the skin color predicate is built, which seg-
ments the skin from nonskin regions. Since eyes are not skin,
they always show up as holes. Hence, connected components of
nonskin pixels are possible eye holes. The system finds the two
holes that are above the previously found lip region, and that
satisfy the following size criteria for eyes. Since the dashboard
camera is at a fixed distance from the face, the relative size of
eyes is estimated to be between 2% and 1% of the area of the
image. For all images tested (several thousand), these criteria
were reliable. For our experiments each driver had one lip and
one skin color predicate. Drivers appearing in multiple data sets
did not have separate predicates for each sequence.

Fig. 2 shows an input image, manually selected skin region,
and the output of the color predicate program on the input image.
Fig. 3 shows results of automatic eye and lip initialization from
various data sets.

V. FEATURE TRACKING

A. Hierarchical Lip Tracking

The lip tracking system is designed as a multistrategy lip
tracker. The first strategy is the most accurate but most unstable
and is used if it gives a correct estimate for the lip corners. The
second strategy is not as accurate but more stable and is used if

Fig. 4. Example of dark line between lips.

the first strategy gives a bad estimate. The third strategy is coarse
but very stable and is used if the other strategies fail. In par-
allel, a fourth strategy, the affine transformation of small win-
dows around the lip corners is computed and the old lip corner
is warped to get the new lip corner using [30]. This step pro-
duces a more stable value for the lip corners and is used, but is
periodically updated by the first three strategies’ estimate.

For the first strategy, the dark line between the lips is auto-
matically found as follows (shown in Fig. 4 as a white line): The
center of the lips will be , where is the pre-
vious left lip corner and is the previous right lip corner. For
each column extending beyond both mouth corners, consider a
vertical line (of height 15 pixels) and find the darkest pixel on
this vertical line, by using . The darkest pixel
will generally be a pixel in the gap between the lips. To deter-
mine where the lip corners are the system obtains

where is distance of a pixel from the closest
corner of the mouth, and is the intensity at . This
will give a pixel that is close to the previous lip corner, and that
is not too bright. The function maximum is the lip corner.
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Fig. 5. Feature point tracker.

If this estimate is too far from the previous lip corner, the
second strategy for lip tracking, described next, is run. Abrupt
lighting changes or large head motion will cause the intensity
approach to fail. For the second strategy, each darkest pixel is
checked to see if there is lip color above and below it. The
search starts with the pixel closest to the previous lip corner and
goes outward. Once there are no lip colored pixels above and
below each point, this is considered the lip corner. If the second
strategy fails then the third strategy is to reinitialize the system,
as described above in Section IV, running the connected com-
ponent algorithm in the region around where the lips were last.

B. Hierarchical Eye Tracking

Eye tracking is done in a multistrategy way, similar to the mul-
tistrategy lip tracker. First the system uses intensity information
of the eye region to find eye pupils. If necessary the system em-
ploys skin color information to see where the eyes are. In par-
allel the thirdstrategyusesanaffinemotionestimate tomapsmall
windows around the eyes in the current frame to the next frame.

The affine transformation computation in [30] is less likely
to break down during heavy occlusion. The affine tracker is not
as accurate as the eye black hole tracker, because of the interpo-
lation step involved in affine tracking during warping, which is
why it’s not used exclusively.

For the first strategy, the system searches around the eye
center in the previous frame and locates the center of mass
of the eye region pixels. Then a small window is searched
around the center of mass to look for the darkest pixel, which
corresponds to the pupil. If this estimate produces a new eye
center close to the previous eye center then this measurement
is used. If this strategy fails, the second strategy is used, which
searches a window around the eyes and analyzes the likelihood
of each nonskin connected region being an eye. The search
space is limited to windows of about five percent of the image
size around the eyes. The slant of the line between the lip
corners is found. The eye centers selected are the centroids that
form a line having the closest slant to that of the lip corners.
From the experiments run thus far, this method by itself can
get lost after occlusion. For simplicity, these two strategies
together are referred to as the eye-black-hole tracker.

The third strategy, the affine tracker [30], runs independently
of the first two strategies. The system computes the affine
transformation between the windowed subimages around both
eyes and then, since it knows the eye center in the previous
frame, it warps the subimage of the current frame to find
the new eye center. Since the eye-black-hole tracker finds
the darkest area, during eye occlusion instead of finding eye
regions, it will get lost. When there is rotation or occlusion
or when the eye-black-hole tracker produces an estimate that

Fig. 6. Feature tracker with eye blinking.

is too far away from the previous frame, the affine tracker is
used solely. In all other cases take an average of the locations
provided by the two trackers to be the eye center.

Figs. 5 and 6 show some results of the eye and mouth tracker.
The mistracks are infrequent, and the system always recovers.
Mistracks happen no more than 2.5 percent of the time. When a
mistrack occurs usually the system recovers within the next 2–3
frames. The system handles and is able to recover from heavy
occlusion automatically.

Whenever the distance between the eyes gets to more than
(where is horizontal image size), the eyes are reini-

tialized as this means the system encountered problems. This
criteria was adopted because both the location of the camera in
the car and the approximate size of the head are known. The
eyes are reinitialized when the lips reappear after complete oc-
clusion, which is determined to be when the number of lip pixels
in the lip region drops below some threshold and then reappears.

This feature tracker is very robust; it tracks successfully
through occlusion and blinking. Further, it is not affected by a
moving background, and it has been verified to track contin-
uously on sequences of over 1000 frames. The system is not
foolproof. Given a low-lighting picture, like those taken at night,
the method of head tracking may break down. However, the
system has been tested on 19 sequences ranging from 30–1100
frames including yawning sequences and stationary and moving
vehicle sequences and the system appears to be very robust and
stable. A total of eight drivers were tested for a total of about
four minutes of video data. Some of the input sequences had
instances where part of the face was illuminated and part of the
face was in shadow, and the system successfully tracked through
such instances. It is able to track through so many varied condi-
tions because of the multistrategy trackers which work well in
varying conditions. The first stage trackers work well in constant
illumination. When illumination changes occur these methods
will still usually give a reliable estimate as all the pixels in the
region will decreaseor increase uniformly. For thosesituations in
which this does not happen and a bad estimate is given, the affine
tracker will usually be able to successfully cope with partial
illumination changes as it computes global motion of a region



210 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 4, NO. 4, DECEMBER 2003

Fig. 7. Face contour and face trace.

Fig. 8. Distances that the program monitors to classify rotation.

Fig. 9. A few frames from the sequence corresponding to the data graphed in
Fig. 10. The looking right motion is gradual.

making it less susceptible to small changes in part of the region.
Drivers with lots of facial hair were not tested in the current
system. With the reliance on skin color, facial hair could distort
some of the measurements. This would be a good direction for
future research. However, with the system’s multi level approach
it was able to cope with some facial hair. Some of the results
can be seen at http://www.cs.ucf.edu/~rps43158/Project/Head-
Tracker/Tracking.

VI. BOUNDING BOX OF FACE

To find the box around the face the system starts at a fixed
distance from the center of the face and looks inward until a
high number of skin pixels are observed, which will indicate
that a side of the face has been reached. These measurements
will yield the sides, top and bottom of the face.

(a)

(b)

(c)

Fig. 10. Graphs showing the distance from (a) the side of the face to the left eye,
(b) its derivative, and (c) the sign of derivative as a function of frame number.

The center of the head region is computed using the average of
the eye centers and lip corners as only a rough estimate is needed
here. Then for each side of the face, the search starts at a constant
distance from the center of the face and goes inward finding the
first five consecutive pixels that are all skin, where the outermost
pixel is recorded as theside of the face for this sideand row. Using
fivepixelsprotects fromselecting thefirstspuriousskinpixel.For
each row in the image the process is repeated recording the
locations for each side of the face. Thesevalues are averaged to
get a smooth line for each side of the face. This approach gives an
acceptable face contour. Fig. 7 shows the contour of the face that
the system finds along with the bounding box of the face.
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Fig. 11. Feature tracker with rotation messages.

VII. OCCLUSION, ROTATION, AND BLINKING

Often the driver blinks or rotates the head, and so, occlusion
of the eyes or lips occurs. The tracker is able to track through
most occlusion, but does not recognize that occlusion (from ro-
tation or blinking) has occurred. The occlusion model presented
deals with rotation and blinking, two important factors for mon-
itoring driver visual attention.

Because of foreshortening, when rotation occurs, the distance
between the feature points and sides of the face will increase or
decrease. In each frame, compute the distance from the sides and
top of the face to the eye centers, and also compute the distance
from the side of the face to the mouth corners. In consecutive
frames the system finds the difference in the distance for a par-
ticular , the derivative, and the system looks at the sign of
this difference. When more than half of the last 10 frames have
the same sign of the derivative for a particular feature point then
this feature point is assumed to be involved in head rotation.

Fig. 8 shows the distances that are tracked on the actual
image. Each distance that is tracked is labeled in the figure
by D1, D2,…,D8. Fig. 9 shows a sequence where the driver
gradually rotates his head toward the right. Fig. 10 shows
graphs of the distance, derivative, and sign of the derivative
of D4 as a function of the time (frame numbers). All three
measures are displayed to progressively show how the rotation
data is extracted. Since the signs of the derivatives of all
frames except one outlier are positive, the rightward rotation is
detected for this feature. In the experimentation on thousands of
frames, the sign of the derivative was found to provide the most
stable information. Next, the system analyzes these rotations of
individual features to determine rotation of the face.

A voting system is constructed where each feature point de-
termines the direction of rotation. When at least half of the fea-

ture points detect rotation in one direction, then the system de-
clares rotation in this particular direction is happening. Each
feature point can be involved in rotation along combinations of
directions, but some cases are mutually exclusive (e.g., simul-
taneous left and right rotation). The system was experimentally
verified to successfully detect rotation along multiple axis (e.g.,
up and left). In translation parallel to the 2-D image plane, there
is no foreshortening, and thus none of the distances in Fig. 8 de-
crease, which allows us to differentiate rotation from translation
of the head. Fig. 11 shows the output of the feature tracker in-
cluding rotation analysis messages, automatically displayed by
the system.

For eye occlusion as long as the eye region contains eye white
pixels then it is assumed that this eye is open. Otherwise this eye
is assumed to be occluded. Each eye is checked independently.
In the first frame of each sequence the system finds the brightest
pixel in the eye region to determine what is considered eye-white
color. This allows the blink detection method to adapt to various
lighting conditions for different data sets. Some drivers wear eye
glasses. Currently there are methods available which are able to
remove eye glasses. Future work on our system could use these
methods to work with eye glasses. For the above eye occlusion
detection, each eye is independent of the other. This method
gives good results. Fig. 20 shows some of the results from blink
detection for both short blinks and long eye closures.

A. Reconstructing 3-D Gaze Direction

The problem of 3-D reconstruction is a difficult one. Many
current approaches use stereo to determine the 3-D geometry.
With uncalibrated cameras the problem becomes even more dif-
ficult. It may be expensive and impractical to have multiple
cameras in a single car looking at one person to derive 3-D
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(a)

(b)

Fig. 12. Pictorial representation of 3-D gaze reconstruction. (a) The picture of
head from above(top view) for the initial frame of sequence and (b) the picture
after rotation to the right (top view); note the shifted eye positions and back of
the head, represented by a box.

data. Therefore, this paper provides a solution to the 3-D gaze
tracking problem using a single camera. This is possible as only
the direction of the gaze is needed. It does not matter if the gaze
stops at the windshield or another car thus the need to know the
distance from the head to the camera is eliminated. Since head
size is relatively constant between people then this distance can
be fixed. The method used here is to have parallel eye gaze rays.
The locations of the eyes, the points directly behind the
eyes lying on the back of the head, and the back of the head are
all that is needed. Since the camera is facing the driver, when the
driver is looking forward his/her face is roughly parallel with the

plane and the axis is coming out of the face. The back
of the head can be approximated well by doing the following:
Consider the midpoint between the two eyes in the image. Ex-
tend a line perpendicular to the plane going through the
point between the two eyes. If the line in the direction is ex-
tended it will pass through the head and come out eventually.
The point where it comes out of the head is the point named
the back of the head. Since we are using parallel eye gaze rays,
the points directly behind the eyes on the back of the head are
needed. With the driver facing forward initially, the initial

(a) (b)

(c) (d)

(e) (f)

Fig. 13. Acquiring 3-D information. The cylinder represents the head, the lines
coming out of the cylinder represent the eye gaze, and the plane represents the
dashboard. (a), (b) The input images. (c), (d) The side view. (e), (f) The top
view (birds eye view). It is clear from the side view that there is up and down
movement of the head. Also, it is clear from the top view there is no left or right
rotation.

eye locations correspond to the location of the points di-
rectly behind the eyes on the back of the head. Since the dis-
tances between the back of head and the points behind the eyes
lying on the back of head are constant, these distances can be
subtracted/added with the current back of head point to acquire
the new positions of the points behind the eyes. These points are
needed to compute the parallel eye gaze direction. These sums
are added to the initial location of the back of the head to find the
new location of the points directly behind the eyes. This assump-
tion is valid because when rotation occurs the average position
of the two eyes moves in the opposite direction to the back of
the head. Since the location of the eyes, the back of the
head and thus the points behind each eye are known, lines can
be drawn in space showing the direction of the gaze. This
model will give a fairly accurate gaze estimate.

Fig. 12 shows in detail how to compute the 3-D gaze. No-
tice that the view is of the plane. Before rotation the head
is looking forward, and the system records the middle point be-
tween the two eyes in space. If a line is extended from each
eye center in the direction, to a point directly behind each
eye, each line will end at a point displaced from the point that
in this paper is referred to as the back of the head. These two
points and the initial back of head are the reference points for
the gaze calculation. In the right half of the figure rotation has
occurred to the right. Notice that the eyes have shifted and the
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(a) (b) (c)

(d) (e) (f)

Fig. 14. Acquiring 3-D information. (a)-(c): input images. (d)–(f): here the rotation is occurring left and right, there is no need to display a side view since there
is no rotation up or down.

middle point between the two eyes has moved with relation to
the middle point between the two eyes in the initial frame. The
head is symmetric so if the eyes rotate in one direction the back
of the head rotates the same amount in the other direction. Thus,
by taking the difference of the center point between the eyes in
all consecutive frames and adding this difference to the back of
the head in the opposite direction the system will acquire the
new back of the head. From here, since the distances from each
point behind the eyes to the center of the head were recorded, the
new locations of the points behind the eyes can be found. The
eye tracker already provides us the eye locations. The lo-
cation of the back of head is known. By projecting lines
infinitely from a point behind the eyes through the eyes in the
direction the gaze will be projected in 3-D space.

Figs. 13 and 14 show some results from acquiring 3-D gaze
information. It is thus possible to generate statistics of the
driver’s gaze, and it is possible to determine where the driver
is looking in 3-D space, using only a single camera. In the
experiments the resolution of the face was relatively low and
certain kinds of head/eye configurations would give inaccurate
measurements. When the head rotated and the eyes did not rotate
in their sockets, the above measurement worked fine. When the
head did not rotate and the eyes rotated in their sockets the above
measurement worked fine. When the head rotated and the eyes
rotated in their sockets the measurements could be distorted. For
instance if the head and eyes rotated in opposite directions the
results would be distorted, though this problem can be avoided
by having higher resolution images of the eyes to determine
more precisely their location relative to the head.

VIII. D RIVER VISUAL ATTENTION

This section describes the method to determine the driver’s
visual attention level. This method shows merely that a system
could be constructed fairly quickly using simple assumptions
of head rotation. More of a rigorous analysis on the physiology

Fig. 15. Finite State Automata for driver closing eyes/blinking.

of visual attention is necessary before accurately determining
when a driver’s visual attention has decreased.

Many of the previous computer vision methods focused
solely on PERCLOS measurements, essentially eye closure
measurements. In the present work the system classifies visual
attention with eye closure metrics, but also shows that it can
be used to acquire other very important statistics. For instance
if the driver rotates his/her head, then this is a decrease in the
visual attention, but it may or may not result in a decrease in
an eye closure metric, depending on how much occlusion of
the eyes occurs. By explicitly detecting rotation, the method
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Fig. 16. Finite State Automata for driver looking up and down.

gives a framework for dealing with other kinds of decreases in
visual attention. Neither eye closure metrics alone nor a strict
drowsiness model could detect these other kinds of events.

Driver visual attention is modeled with three independent Fi-
nite State Automata(FSM). To get the global driver visual at-
tention level the system takes the union of all the machines; The
FSM’s are shown in Figs. 15 and 16. The third FSM is similar to
the second except it models left and right rotation. Some transi-
tions are not defined; for instance the low visual attention states
do not have a transition for no rotation. This would correspond
to the driver keeping his/her head in the rotated position. The
FSM ignores these frames, and the appropriate interpretation is
that the FSM would not change states. It would stay in the low
visual attention state, which is the expected output, because even
if the driver stops rotating his/her head, it will still be in a rotated
position, looking away from the road. States are represented by
circles, and descriptions of states and descriptions of transitions
are represented by boxes, which provide a short explanation of
the state.

The first FSM monitors eye closure metrics. If the eyes are
closed for more than 40 out of the last 60 frames then the system
warns that the driver has a low visual attention level. Specifically,
the number of frames where the driver has his/her eyes closed
are counted. If there are more than 40 frames where the driver’s
eyes are closed in the last 60 frames, the system reports decreased
driver visual attention. There have been many studies done on the
lengths of the times the eye must be closed in certain time inter-
vals in order to determine if the driver’s visual attention is de-
creasing. In particular [15] and [29] both reviewed some of the
eye closure technologies. In [29] standards were given for com-
paring new drowsiness technologies. Further research was done
in [11]. The ratio in this paper is not intended to supplant other
more established ratios. Rather the ability of the system to collect
these metrics shows that it could be easily modified to conform
with accepted norms of eye closure metric information. Now de-

pending on further studies into sleep physiology this ratio could
bemodified.Eyeblinking isshortenoughso that itwill nothinder
the system in determining that the driver has become inattentive.
This demonstrates that the system can monitor eye closure rates
and can be used to determine visual inattention resulting from
eye closure. In the tests on blinking data the system never made
the mistake of classifying blinking as low visual attention. The
blinking tests were done on about 1100 frames of video data, and
were tested in various conditions from a bright sunny day, to a
dimly lit parking garage. When the driver blinks his/her eyes, the
system knows that the driver’s eyes are closed, however, during
blinking the driver reopens his/her eyes quickly, before the FSM
reaches the low visual attention state.

Prolonged rotation of the head could reduce the driver’s effec-
tive visual attention as well. To determine if the driver is nodding
off to sleep or to determine if the driver is not paying adequate
attention to the road because of rotation, the duration that the
driver has been rotating his/her head is recorded. If rotation in a
single direction occurs for more than 10 out of the last 20 frames
then the method assumes that the driver is not paying adequate
attention to the road. It was determined that 10/20 frames of rota-
tion in a particular direction gave a fairly reliable basic criterion
of indicating whether the driver was paying adequate attention
to the road or not. The system records the number of frames ro-
tated in a rotation sequence. For the driver to increase his/her vi-
sual attention, he/she must rotate his/her head the same number
of frames in the opposite direction, which will put his/her head
looking straight ahead. Figs. 17–19 show the results of charac-
terizing driver visual attention based on the rotational data.

Again, this paper does not delve into the physiology of driver
visual attention, rather it merely demonstrates that with the pro-
posed system, it is possible to collect driver information data
and make inferences as to whether the driver is attentive or not.
One could more carefully define the system with a more exten-
sive finite state machine to get more accurate classifications.
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(a) (b) (c) (d)

Fig. 17. Driver visual attention output. (a) No messages, (b) rotating up too much, (c) rotating up too much, and (d) rotating up too much.

(a) (b) (c) (d)

Fig. 18. Driver visual attention output. (a) No messages, (b) rotating left too much, (c) rotating left too much, and (d) rotating up too much.

(a) (b) (c) (d)

Fig. 19. Driver visual attention output. (a) No messages, (b) rotating right too much, (c) no messages, and (d) rotating left and up too much.

As already stated, more than alertness must be monitored. In-
formation such as if the driver’s head is pointing straight ahead
is useful. These characteristics can be referred to as visual atten-
tion characteristics. The system successfully measures visual at-
tention characteristics, and it shows that this information can be
used to monitor driver visual attention. Both visual attention and
drowsiness must be monitored and the proposed system is able
to do both. No attempt here is made to delve into the physiology
of visual attention but merely to show that attributes such as ro-
tation must be considered, and that the system gathers these sta-
tistics and is able to infer the visual attention level of the driver.
The system could be adapted to conform to norms of visual at-
tention parameters, such as, how far the head could rotate before
the driver is visually inattentive.

IX. QUANTITATIVE RESULTS

Throughout the paper various methods to compute feature
points, rotation, blinking, and driver visual attention have been
presented. In each section examples of how the method per-
forms in a variety of environments with different drivers have
been provided. Since the results have been shown one frame
at a time it can be hard to see how well the method works. In
this section all the results presented are collected together in
tabular form. Performance was measured by comparing system

TABLE I

TABLE II
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Fig. 20. Blink detection with feature tracker.

TABLE III

performance to the observed motions, eye closures, rotations,
gaze directions etc… that were in the recorded video sequences.
For instance, for ground truth on tracking, if the system marked
the feature points in the eyes and on the mouth corners, the
system was deemed to have a successful track for that partic-
ular frame. All other ground truths were developed in a similar
way by observing the input videos. The tracking results are pre-
sented in Table I. The results and ground truth comparison was
done for a subset of all our data. Other sequences performed
similarly. In Table II quantitative results of the method to recon-
struct the gaze are shown.

The results from the eye closure detection algorithm are pre-
sented in Table III. Whether the driver closed his/her eyes for
one frame or twenty frames, it counted as one eye closure. The
ratio of number of eye closures the program detected for the
whole sequence over the total number of eye closures counted
in ground truth is shown in column three. The other columns are
self explanatory.

Sequence 7 had erroneous results. There were many false pos-
itives detected. The system can adjust to varying lighting condi-
tions based on the initial frame of the sequence. This sequence,
was particularly dark, but in the first frame, the system’s auto-
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TABLE IV

matic initialization found a high intensity value in the eye re-
gion because of some reflection in the eye white region. In sub-
sequent frames there were lighting changes in the image and so
the eye whites appeared darker as the reflection was gone, which
caused the eyes to appear darker than usual. So eye closing was
frequently detected when there was none because the intensity
initialization threshold was a high intensity level, which did not
reoccur frequently in the eye region because the lighting of the
sequence, in general, was so low.

Table IV shows rotation detection results. The rotation detec-
tion bases itself on the previous 10 frames, so it took about five
frames for the method to start detecting the rotation. This effect
is factored into the results table, by counting only the rotation
frames that the program could have detected. Each row in the
table contains a direction. All the sequences which had rotation
in that direction are contained in the respective row. As can be
seen from looking at the table, the system gave false positives
a small percentage of the time. For the row which starts with
none, this indicated that there was no rotation, but the program
actually detected rotation. This situation happened in only one
sequence.

One comment is that sacrificing a little accuracy to gain ro-
bustness helped system performance. It was important to be con-
fident that the system always gave eye estimates near the eye
centers. The system needed to be able to recover from full oc-
clusion and other extreme changes in the system. Without this
kind of robust tracking a system would be of little value, since it
would not be able to cope with normal and natural head move-
ments. The system presented here is able to cope with these real
world scenarios. Because of this the feature points are not al-
ways exactly correct. However, rotation analysis methods that
can cope with slightly degraded data were developed because
it was important to have a system that could cope with real-
istic changes in the image. The best way to evaluate rotation
and blink detection is to observe the image sequences and get
ground truth, which was done here.

X. SUMMARY AND FUTURE DIRECTIONS

This paper presented a method to track the head, using color
predicates to find the lips, eyes, and sides of the face. It was
tested under varying daylight conditions with good success. The
system computes eye blinking, occlusion information, and rota-
tion information to determine the driver’s visual attention level.

Because of the inherent complexity in dealing with real
world data sets, combined with moving backgrounds, variable
lighting conditions, and heavy occlusion of eyes and lips, many
image analysis techniques were introduced, which require
selecting parameters for window sizes. One improvement
will be reducing the need of empirical settings using dynamic
window sizing depending on confidence of the tracking or
learning approaches.

The system is not perfect and one problem that was noticed is
that when the eyes close, sometimes the system concludes that
there is rotation because the remaining part of the eye is lower
so the eye feature points move lower and lower. This problem
could be addressed using knowledge that if the lip feature points
don’t move down then the eyes must be closing in contrast to the
case of the lips moving down, which would indicate rotation.

There are many future directions for driver visual attention
monitoring. For aircrafts and trains, the system could monitor
head motions in general and track vehicle operator visual atten-
tion. The system could easily be extended to monitor patients in
hospitals and in distance learning environments.

The presented method can recognize all gaze directions, and
a next step would be to classify checking left/right blind spots,
looking at rear view mirror, checking side mirrors, looking at the
radio/speedometer controls, and looking ahead. Other improve-
ments could be coping with hands occluding the face, drinking
coffee, conversation, or eye wear.
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