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Abstract. In this paper, we present an automatic method for estimating the tra-
jectories of Escherichia coli bacteria from in vivo phase-contrast microscopy
videos. To address the low-contrast boundaries in cellular images, an adaptive
kernel-based technique is applied to detect cells in sequence of frames. Then a
novel matching gain measure is introduced to cope with the challenges such as
dramatic changes of cells’ appearance and serious overlapping and occlusion. For
multiple cell tracking, an optimal matching strategy is proposed to improve the
handling of cell collision and broken trajectories. The results of successful track-
ing of Escherichia coli from various phase-contrast sequences are reported and
compared with manually-determined trajectories, as well as those obtained from
existing tracking methods. The stability of the algorithm with different parameter
values is also analyzed and discussed.

1 Introduction

The study of cell movement in response to chemical and environmental agents has been
an important research area in the bio-medical and environmental science community for
quite some time [1,2]. Biologists typically need manual or interactive computer-assisted
tracking of cell motion to study chemotactic responses. Manual tracking becomes im-
practical for data sets where thousands of cells are involved. Automated tracking and
analysis of the cells’ motility thus becomes critical for time-resolved analysis of the
underlying biological mechanisms.

The objective of this study is to track from microscopy videos the gram-negative or-
ganism Escherichia coli bacteria (E. coli), which can generally cause several intestinal
and extra-intestinal infections such as urinary tract infections, meningitis, and peritoni-
tis. Escherichia coli chemotaxis has been the system of choice for elucidation of the
design principles of transmembrane and intracellular signal transduction. Automated
tracking and motion analysis would significantly enhance the investigators’ ability to
study E. coli, improve data processing efficiency and remove operator bias.

Tracking typically consists of identifying unique objects in a complex environment
where the background remains fairly constant and the target maintains a similar ap-
pearance. While numerous methods have been proposed for general object tracking [3],
cellular videos pose many challenges to those existing techniques due to severe image
noise and clutter, shape deformation, and high processing demand.
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Fig. 1. (Left) A typical view of E. coli bacteria under a phase-contrast microscopy. The cell soma
generally appears as a dark area surrounded with a white halo (A) when it is in the focal plane.
Once it moves sufficiently out of focus, the contrast will be inverted and the same cell may appear
as a white bulb (B). (Right) An sequence of E. coli bacteria.

Among the efforts devoted to cellular imaging, there is one class of methods that per-
form tracking using edge information [4,5]. Unfortunately, the close proximity of cells
and occlusion in the in vivo microscopy videos make edge-based cell tracking difficult.
A large number of adaptations are required for these methods to be successfully applied.
Rather than segmenting the object precisely, some methods consider tracking as a prob-
lem of centroid relocation [1] to simplify the tracking task and avoid the requirement of
boundary detection.

In order to track living E. coli from phase-contrast microscopy videos, we follow
the idea of centroid tracking. Although there is no cell division in our case, serious
collision and large overlapping pose more challenges to precise border detection. As
shown in Fig. 1, the E. coli cells typically have a large range of motion patterns and
the cell soma generally appears as a dark area surrounded with a white halo, but the
contrast can be inverted and the cell appears white when it has moved sufficiently out
of focus. Those facts make tracking based on the constancy in shape and intensity dif-
ficult. Padfield et. al [6] recently proposed to generate a dynamic model to describe the
appearance change of nuclei over time for live cell tracking.

Another challenging issue in this specific tracking task is incomplete trajectories.
Since individual E. coli bacteria can swim freely in 3D space, they may stray from the
narrow focal plane and hence become temporarily lost, causing fragmentation of their
trajectories. That is why we consider multi-cell tracking as a global optimal assignment
problem.

2 Method

The proposed method starts with an object detection step which identifies the moving
objects against the relative constant background. Then a global matching strategy is ap-
plied to estimate the cells’ trajectories based on image appearance and motion patterns.

2.1 Cell Detection in Fuzzy Scene

In order to classify foreground and background, we apply our previous method [7]
which is able to handle multiple objects with fuzzy edges. The method is based on
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(a) (b) (c) (d) (e)

Fig. 2. An example of coli detection. (a) A patch from the original frame. (b) The homogeneity
map computed using GVF measurement. (c) and (d) show the detected objects (without morphol-
ogy operations). (e) The final entropy map.

the observation that the pixels with high class uncertainty accumulate mostly around
object boundaries. We model the image as a mixture of Gaussians, and the optimal
pixel classification is obtained by minimizing the loss function L � Lentropy � �Llikelihood,
where � is a scale factor. Llikelihood �

�
x��i

log P(x) represents the likelihood and Lentropy

is the entropy term defined as:

Lentropy �

�
x��i

(1 �G(x))U(x)� (1 � U(x))G(x)� (1)

where G is the normalized gradient vector flow (GVF) [8] serving as a measure of
spatial information, and U is the normalized entropy describing the class uncertainty
according to Shannon’s theory. By minimizing the cost function, we can simultaneously
optimize the parameters of the global model and the distribution of entropy for the
detection process.

The optimization of those parameters can be achieved through the Quasi-Newton
algorithm [9]. To improve the efficiency, we applied the EM method [10] at the initial
stage to find the initial model parameters and the size of each object category. Figure 2
shows an example of the detection results. More details about this detection method can
be found in [7]. After pixels are classified into different groups, the Connected Compo-
nents Labeling technique [11] can be applied to generate connected regions (bulbs), and
regions with sizes comparable with pre-selected thresholds are regarded as candidates.

2.2 Matching Gain for Candidate Selection

After detecting the candidates, an intuitive way to track the target, as applied in the
Mean-Shift approach [12], is to compare the intensity similarity between the candidates
and the targeted cells. Usually the intensity histogram will be employed to describe the
intensity profile of each object.

In our context, where the appearance of the target changes very quickly (see Fig. 1
(Right) for an example), the single intensity similarity is not reliable enough to provide
a robust measurement for the tracking. In addition, there are numerous cells moving in
the field of view and interacting with each other so closely that it is difficult, even for
human, to identify the correct tracks for those cells from one frame to the next. This is
why we consider the global trajectory inference and promote the use of a graph based
approach for optimal position estimation.
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Multiple Cell Tracking: First, let’s consider the simple case of multiple cells observed
in two successive frames. Let cp

i (i � 1 � � � l) denote detected cells in the p-th frame and

cp�1
j ( j � 1 � � � k) represent those detected in the (p� 1)-th frame. The task is to find the

matching from �cp
i � to �cp�1

j �. This context can be modeled with a complete bi-partite

graph G � (U�V� E) where U � �cp
1 � c

p
2 ���c

p
l �, V � �cp�1

1 � cp�1
2 ���cp�1

k �, and E represents
the set of matching hypotheses between each pair of cells from frame p to p � 1. The
correspondence problem can then be posed to find a matching of graph G, which is
defined as a set of edges with no shared end-vertices. Assume there are pre-defined
functions � associated with each of these edges. A minimum matching in a weighted
graph is a matching with minimum weight among all matchings in the graph. Since any
two detected cells may hypothetically match, the resulting bi-partite graph is complete.
Given the weights defined by specific matching criteria, a unique matching �� between
the cells in two frames can be found as �� � arg min���

��(cp
i � c

q
j), where � is the

union of all the possible matching of G. There are several efficient algorithms (e.g.,
[13]) which can be used to find the minimum matching of a bipartite graph.

For multiple cells in multiple frames, it is a complete k-partite graph and this match-
ing problem is NP-hard [14]. Fortunately, as demonstrated in [15], if the graph is an
acyclic directed graph, a polynomial-time solution exists where the edges of the mini-
mum matching of the split graph� of an acyclic edge-weighted directed graph G corre-
spond to the edges of minimum path cover of G. To model the multiple frame matching
problem, we construct a weighted directed graph G � (�V1�V2� � � � �Vk�� E), where Vi

represents the set of detected cells in frame Fi. Each edge e � (cp
i cq

j) corresponds to
a match hypothesis of coli cp

i in frame Fi to coli cq
j in frame F j, and the weight we is

defined as the matching cost, like in 2-frame cases.
If coli cp

i has no correspondences in several consecutive frames and gets its forward

matching cp�Æ
j in frame Fp�Æ (due to occlusion or being out of focal plane), an edge e �

(cp
i cp�Æ

j ) can naturally handle broken trajectories and thus provide an overall coverage
of the possible solutions. Since all the edges in graph G are in the temporal direction,
it is guaranteed that G is acyclic. The only requirement for this graph is that the weight
function must satisfy the inequality �(cp

i � c
q
j) � �(cp

i � c
p�1
i�1 )�(cq�1

j�1 � c
q
j) in order to

penalize the choice of shorter trajectories when longer valid ones are present.

Matching Criteria: According to the discussion above, it is obvious that the weight
function is critical for the correct matching of different cells across the long sequence.
The weight of matching two cells cp

i and cq
j can be defined based on the cell appearances

as follows:

�h(cp
i � c

q
j) �

1
2

B�
b�1

[hp
i (b) � hq

j(b)]2

hp
i (b) � hq

j (b)
� (2)

where ht
i refers to the intensity histogram of the i-th cell in frame t and B indicates the

total gray levels.
An alternative way is to define the gain function based on some assumption of the

undergoing motion of the targeted cell, such as a constant direction or velocity. The
prediction of the cell in a new frame is then estimated accordingly. Then the matching
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weight can be defined using motion measurements. A simple function for this is the
nearest neighborhood criteria.

A matching function considering both direction and motion coherence has also been
used in [16] for tracking feature points. The function is defined as follows:

�(cp
i � c

q
j) � ��o � (1 � �)�v� (3)

where �o � ( 1
2 �

����
cp

i cq
�
����
cp

i cq
j

2��
����
cp

i cq
�����
����
cp

i cq
j ��

) is the orientation term, and �v �

2

�
��
����
cp

i cq
�����
����
cp

i cq
j ��

��
����
cp

i cq
�����
����
cp

i cq
j ��

represents the velocity term which prefers the match with less change in the magnitude
of velocity.

Although those motion-based measures enforce the coherence of motion, they re-
quire initialization of correspondence obtained manually or by other criteria. Also, the
motion coherence may not be sufficient in the presence of highly random motions as
in our application. In addition, they are not suited to handle cells entering the field of
view late.

Based on the observation that the significant changes of the coli’s appearance are
usually accompanied by the occurrence of contrast corruption, we define our matching
gain function as following:

�(cp
i � c

q
j) � (1 � �

p
i )�h(cp

i � c
q
j) � �

p
i (�d(cp

i � c
q
j) ��o(cp

i � c
q
j))� (4)

where �d(cp
i � c

q
j) � (1 � ��

����
cp

i cq
�
����
cp

i cq
j ��	

w2
I�h2

I

) refers to the distance between the predicted and

observed cells (wI and hI are the width and height of the frame, respectively). The term
�

p
i represents a scalar to balance the impact between the intensity and distance coher-

ence. It is defined based on the contrast measurement of the targeted cell as follows:

�
p
i �

�

2

(I
p
i � I�i )

2

(I
p
i � I�i )

� (5)

where � is a constant 0 � � � 1, I
p
i and I�i refers to the average image intensity of

region covered by cp
i and its local window �i, respectively.

The above matching gain function is a convex combination of the intensity measure-
ment (�h) and motion gains (�d and �o). They are adaptively combined based on
the contrast of the tracked cell so that the intensity term will dominate the matching
measurement when the target is clearly presented, while the motion clues will take over
when the cell becomes blurry.

3 Experimental Results

In this section, we assess the proposed approach by comparing it with both popular track-
ing methods and manual tracking. Cultures for behavioral experiments were harvested
at mid-exponential phase by centrifugation, washed three times, and re-suspended in a
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Table 1. The Detection Validation and Tracking Performance on Each Sequence

Seq. No. Res. (pixels) Frames Prec. (%) Rec. (%) MS MSCE MSAB NEW
1 616 � 459 450 97.4 97.6 37.5 23.7 29.6 14.9
2 720 � 480 458 98.5 96.6 27.8 21.7 43.6 10.6
3 584 � 416 450 98.9 95.8 21.8 19.9 28.3 12.1
4 444 � 362 160 86.5 88.4 20.1 18.7 31.0 6.6
5 620 � 469 680 97.5 96.4 26.5 24.2 25.3 8.5
6 720 � 480 498 98.1 96.7 28.2 27.5 29.1 11.0
7 720 � 480 702 99.3 97.9 18.9 18.0 17.8 3.8
8 532 � 382 460 99.3 98.0 19.9 19.4 18.8 3.2

Avg. 620 � 441 482.2 96.94 95.93 25.09 21.64 27.93 8.83

potassium phosphate-EDTA motility buffer containing 5 mM lactate, as respiratory sub-
strate, and 100 	M methionine to maintain vigorous swim-tumble bias. The sequences
were imaged by a CCD camera mounted on a Nikon Optiphot microscope using a phase
contrast objective (40x CF Fluor plan-apochromat, 0.85 numerical aperture) and zoom
lens [17]. Due to variations in shutter time, light exposure, filtering and cell culture,
the data sets vary among themselves in contrast, intensity and apparent proximity. Our
trial data consists of eight sequences (Table 1), totaling nearly 3800 frames that contain
numerous E. coli cells moving naturally in the three-dimensional space.

One advantage of our approach is that it does not require manual initialization. Start-
ing from the first frame, the regions of interest are detected in each frame as discussed
in Section 2.1. To evaluate the detection accuracy, as applied in [5], we compute the
precision as the ratio of the number of detected cells to the total number of detected
candidates, and the recall as the ratio of detected cells to the total number of cells ac-
tually in the frame. In order to obtain the ground-truth for validation, a tool has been
developed for operators to identify the cell centroid in each of the frames. The computed
precision and recall for each individual sequence are listed in Table 1.

After detection, the intensity profile for each candidate is computed and its contrast
measurement is estimated within a local window, which is double the size of the candi-
date. To establish the initial correspondence, the first two frames are used to construct
a bipartite graph, where the weights are computed using Eq. (4) with � � 1. The fol-
lowing frames are then processed sequentially using a constant � which is selected
empirically (� � 0�2 in our experiment).

To improve the efficiency of the algorithm, we compute the correspondence within
a spatial window. Given the initial correspondence, we extend the graph by computing
the weights for the successive frame. The minimum path cover of the graph is then
estimated, and this procedure is repeated until a specific number of frames have been
included. The size of the sliding window k affects the computation complexity and the
capability of the algorithm to handle occlusion and broken trajectory. In order to correct
the mismatches in previous procedure, a backtracking can be performed by applying the
same tracking method in the reverse time direction as applied in [18,19]. Figure 3 shows
the cell tracking results on two trial sequences.

We compared the tracking performance of the proposed algorithm with that achieved
by human operator. Also, several Mean Shift (MS) technique based algorithms are
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Fig. 3. Samples of estimated traces (red circles indicate start points)

Fig. 4. Visualization of cell trajectories (in Sequence A) obtained using different methods: (a)
Manual tracking, (b) Mean Shift, (c) MSCE, and (d) Our method. Each color curve shows a cell
trajectory.

tested, including the classical Mean Shift [12], MS based on Contrast Enhancement
(MSCE) [20], and MS using Adaptive Bandwidth (MSAB) [21]. For the proposed
method, we assume there are three kernels for cell detection and the scale parameter
� was chosen as 1
N (N: the number of pixels in each frame). We also set � � 0�2 and
k � 5 for the test. For the classical Mean Shift algorithm, the histogram was gener-
ated using 64 levels and the model of the tracked cell was updated every 3 frames with
a regression level of 0�3. Following the work in [20], we use the analysis resolution
Æ � 0�02, outlier threshold � � 0�01 and distortion limit � � 5 for the MSCE algo-
rithm. As used in [21], we set the logarithmic coordinate base b � 1 and the scale level
s � 2 in the MSAB method. The spatial-temporal plots in Fig. 4 demonstrate the three-
dimensional views of several cells’ traces obtained with different methods. As noted,
the Mean-Shift based techniques, compared to the manual results (Fig. 4(a)), generated
some incorrect jumps (line 5(black), 6(pink) and 7(cyan)) due to poor contrast of the
frames and the interference from cells with similar intensity. In contrast, the proposed
approach (Fig. 4(d)) solved those problems smoothly and provided a solid performance,
which is comparable to manual results.

In order to evaluate the tracking performance quantitatively, we apply the following
criteria to measure the accuracy of the tracking algorithms. For each automatic cell
trajectory, we computed the average distance (in pixels) in each frame between the
manually-marked locations and those computed by the algorithms. If the distance in one
frame is smaller than a preselected threshold (for example, the half of the cell’s size),
the tracking result in this frame is considered to be correct and the frame is counted as
a correct frame for the algorithm. Then the measure, called frame-based error [15], is
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Fig. 5. (Left) The frame-based errors using the single-cell tracking method and multi-cell tracker.
The horizontal axis represents the targeted cells. (Right) Tracking performance with respect to
the mixture constant �: position errors (in pixels) for different size of sliding window k.

computed for the validation which is defined as E f � 1� np
nt, where np is the number
of correct frames generated by the tracker and nt is the total number of frames the cell
appears in the sequence.

The tracking errors of different tracking methods are illustrated in Table 1. In all
the tested sequences, the proposed method has the best performance, with an aver-
age frame-based error of 8�83 
 4�10%. Figure 5(Left) shows the difference between
the tracking results using the single cell tracker and multi-cell tracker, which confirms
that the optimal matching strategy is able to improve the overall tracking accuracy. In
Fig. 5(Right) we demonstrate the average pixel-based tracking errors with different val-
ues of the mixture constant � and the size of temporal window. Notice that typically the
value of constant � will affect the tracking accuracy, and the better results are achieved
with low values. The plot also shows that the tracking errors can be generally reduced
by increasing the size of the sliding window. However, since a large window will in-
crease the computation complexity, there is a trade-off between the tracking accuracy
and computation time. For our case, the tracking system typically takes 3�3s/frame with
a Matlab implementation on a 2GHz PC.

4 Conclusion

This paper introduced a fully automated method for tracking Escherichia coli bacteria
in phase-contrast microscopy videos. The proposed detection method has been success-
fully applied to detect cells in the low contrast frame images. To handle the ambiguity in
cellular images, a global optimal matching strategy is also introduced to enable multi-
cell tracking. We have demonstrated the utility of the proposed algorithm for tracking E.
coli bacteria from classical phase-contrast microscopy videos. Coupled with additional
parameters for measurement of morphology, we anticipate that this algorithm will find
wide application in diagnosis of bacterial pathogens in clinics and in basic biomedical
research on bacterial chemotaxis.
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