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Abstract. This paper presents a method to segment the hand over complex back-
grounds, such as the face. The similar colors and texture of the hahthesm
make the problem particularly challenging. Our method is based on thegbnc
of an image force field. In this representation each individual imagéitoceon-

sists of a vector value which is a nonlinear combination of the remaining pixels
in the image. We introduce and develop a novel physics based feattie dhée

to measure regional structure in the image thus avoiding the problem df loca
pixel based analysis, which break down under our conditions. Thenagmage
structure changes in the occluded region during occlusion. Elsewtearegional
structure remains relatively constant. We model the regional imagewstewat all
image locations over time using a Mixture of Gaussians (MoG) to detect the oc
cluded region in the image. We have tested the method on a number ohsegque
demonstrating the versatility of the proposed approach.

1 Introduction

The task of segmenting the hand over complex backgroundsasithe face is a chal-
lenging problem. The difficulty lies in the fact that the haamad head are similarly
colored/textured regions. A necessary step for many HCliggiwns such as gesture
recognition, pointing interfaces, hand pose recognito, event detection is a reliable
hand segmentation. Sign language recognition methodsakw to first segment the
hand over complex boundaries, such as the face. Some eilentolighing, eating,
and taking medication could be more easily recognized bynseging the hand from
the face. In short there are many applications that coul@fitefinrom having a robust
segmentation of the hand over complex backgrounds.

We propose two main contributions in segmenting the hand cemplex back-
grounds such as the face. First we develop a new feature bastu force field im-
age [10]. The force field image uses concepts from force fralastormations used in
physics. Basically, each image location is representedvggtor value which is a non-
linear combination of all other pixels in image. Their apgb focused on a possible
feature space for recognition of faces and uses single fafe feature we develop is
the distance traveled by test pixels placed in the force.f@ld novel feature is able to
model regional structural changes in the image over timeaLmethods (pixel based)
cannot resolve the occlusion because there is little chiarigeal color when similarly
colored objects occlude each other. Regional structureannhage does change when
the hand occludes the face, although local pixel colorsénaitcluding region remain
largely the same before and during the occlusion. By quangifthe regional structural
change in an image over time we can resolve this kind of oimrius



The second contribution is in presenting a method that is ttbimodel our newly
developed feature response over time and capture wherelsrdaeclusion is happen-
ing using a Mixture of Gaussians (MoG) modeling paradigm.alg® clarify several
concepts from [10] and give more details in using this imageesentation. An exten-
sion of the force field computation to video data is also given

Section 1.1 gives previous work. Section 2 provides detailthe image represen-
tation. Section 3 shows how formulating the problem using@vi@an aid the task of
segmenting the hand/face. Results are presented in Sd¢tm then we conclude.

1.1 PreviousWork

Much of the work in finding the hand in a complex backgrounggebn colored mark-
ers [7] on the hands or requires the hand to be the only skacobj view [5]. Contour
based approaches [1] [9] [11] and other edge based methd{ise]y on good edges
separating the hand and head, which are often not presentindsfficult occlusion.
Active contour approaches [1] [11] require the hand shamgh to be small. Our
method has no such constraint. In [9], hand shape is estihtater a complex back-
ground by using a shape transition network with the attebuwif contour, position, and
velocity. They use a simple template based approach andcskin segmentation to
find the hand during hand face occlusion. Their approachnsitiee to small changes
in lighting, different skin colors, and requires small ditnces in the 2D hand shapes.
Other color based approaches [3] [12] [14] would have diffies in segmenting the
hand over face. In [12] body parts are tracked using Bayddetworks but the condi-
tional probabilities are specified manually. Further, gtafor is used to find the body
parts. In [8] examples are given handling a few frames ofusioh using shape and
color in a Bayesian framework, but it is unclear if it can wgittind occlusion involving
hundreds of frames (as our approach does). In [18] handitrguig performed using
eigen dynamics analysis, but the hand tracking system usésiped hand models. It
is unclear how person-independent these models are.

In [2], a method is presented which uses multiscale feataréad the hand. Color
priors are used, requiring retraining for new people. Th&thd will not work when
the face is present because of the stronger blobs and ricgee dace. [19] performs
well on segmenting hands, but the method requires that the taver a large portion
of the image. Our image sequences frequently have only ptredand in the image.

An Elastic Graph Matching approach is given in [15], whiclesi€olor models
to find skin regions. It has problems when the illuminatioarmfes, as the skin color
model fails. Each training image requires manual labelihgtdeast 15 node points.
The approach has problems handling geometric distortibriseohand as does [16].
Our approach is not hand model based, so we do not have tliiatlon.

In [6] an approach is given that segments the hand from a aaipEckground.
They localize the hand using motion information and maprggon to a fovea vector.
The method does not extend to other people. There is sigmifateange in hand size
which our method can cope with. Most model based approaakssipted above fail in
the case where the hand is only partially visible in the imaigfor gestures not in the
database.



Because of the similar colors of the hand and face, segniem&lyorithms such as
[4] will generally either under or over segment the handfacclusion. In principle, one
can do tracking but then the question becomes how to iédhe tracking. Further,
tracking methods generally fail when tracking across sirhilcolored regions.

Background subtraction [13] will not work in segmenting thend over the face
because even a slight movement of the head will trigger & lahginge of foreground
pixels. Further, supposing the head was relatively fixee,uihderlying problem with
the RGB (and other color spaces) input domain is in the sritylaf the head and
hands. These methods cannot distinguish between the he&dad colors. Most back-
ground subtraction methodologies operate on RGB or soner otiior space (i.e. the
input space is color information). When similarly coloredesits, occlude each other
the individual pixel values in the region of occlusion giitdé information considered
individually because the objects are similarly coloredisTgresents difficulties for in-
dividual pixel based methods.

2 Potential and Force I mages

We can define the smoothed potential at a given positiprwith respect to position
r;, inimagel as
I(r;) +I'(ri)

Ei(r;) =
(r;) 2 |r; — 1]

wherer; is the image location in question air;) is the image intensity at position
r;. I’ represents the image intensity at the previous time indB@attause we are dealing
with video data, we introduce temporal smoothing into threddield representation to
account for spurious noise.

Equation 2 gives the potential energy for a particular imlagation. This compu-
tation is then performed for every location in the image sTdives the potential energy
image. The total potential energy at locatignis given by:

E@)= Y Er)=3 I(ry) + I'(ri) 2

ritr; ey 2 |r; — rj‘

1)

2.1 ForceFields

To find the force exerted by all pixels at a particular imagmtmnr; simply compute

F(rj) = Z Ei(rj)ﬂ _ Z I(r;)+I'(r;) r;i—r; .

. r.2 .3
rir; i — ;] T 2 ri — ]

We can see that the force is a vector as it has magnitude agctidiv. These vector
fields will be very important in the image representatione Timits of pixel intensity,
direction, and force are arbitrary as is the origin of therdowte systemF (r;) is the
normalized vector at;. Examples of the potential and force fields are shown in leigur
1. Since the force fields are two dimensional the magnitudedarection are shown
separately. The direction was quantized (for display psepmnly) into 10 regions.



Fig. 1. Potential and Force Vector Fields for various input frames. Input @sage shown on the
top left. Potential image is next. Next is magnitude of the force field and thedadains the
direction (quantized) of the force field.

2.2 Finding Potential Wells

Once the potential and force field images have been comphbe&edell points(local
extrema) are computed. This is done in an iterative fashioiit. test pixels are placed
uniformly (resulting in a rectangular grid of test pixelsjdughout the image. They can
be placed at every pixel, every other pixel etc. They arequdn the field and serve
to capture the flow of the field. Suppose there argest pixelsty, ..., t,,. Since the
position of each test pixel will change as it traverses theddield, we denote the initial
location oft; ast; . To find anyt; ; apply the recursive equations:

tio = (i, ¥i)
tij = tij—1+F(tij-1) (4)
WhereF(z) is the normalized vector at, which is computed aB'(x) = % Given

a unit test pixel starting point, o, it goes through the force field until it stabilizes at
a well point, denoted ag . Unit test pixels eventually reach stable points. In our
examplesV=500. Convergence was always reached well befér&00, but we could
test for convergence to allow more than 500 iterations. Tmeputation could be ended
earlier if convergence is reached. Iterations needed favergence depends on image
size and the number of wells. Larger images or ones with fevedis will need more
iterations, but 500 iterations was sufficient for the 10Qff'smage we tested. Not all
t; end up at the same wells. The path that a test pixel takesleddcalchannel. It is
easy to see that once two test pixels reach a common poigtptith travel the same
path from them on. Before deriving the distance traveletufeave would like to give
some intuition as to what information in the image the foretdfis capturing and why
it is useful in our problem domain. Equation 3 shows that tied field captures global
structure, technically. However since the effect on thelfieproportional toy; the net
effect is that the force field captures regional image stmect

The potential image is a scalar at each pixel and it is a measfuthe brightness
of that region. The force field is a vector at each pixel lamatit measures properties
related to regional edge strength. It is not an edge detdmtoit is related. The force
field measures regional edge like structure in the image.pbbential wells are those
points in the force field where the net force is zero. Inteijmthese are the points that
seek to position themselves in between the regional edgetsies of the image. A well



equalizes the force (regional structure) around itselé Bgure 2 for an example of a

synthetic image demonstrating these ideas.
)

@) (b) (© (d) (e

Fig. 2. This is a synthetic image used to give some intuition of the force field repiasm. (a) is
the original image. (b) is the original image with the initial configuration of p@stls overlaid on
it. (c)-(d) show the movement of the test pixels through the force fieéat 8D and 200 iterations.
(e) shows the magnitude of the force field.

The force field captures regional structure and we can mbdetegional structure
over time to detect structural changes in the image. Thohghhand and head have
similar color and texture, by analyzing regional image ctite we are able to capture
structural changes that are introduced when the hand e¢htessene. We can see that
other methods monitoring pixel wise information are notwggtobecause of the similar
texture of the hand and head. When the hand enters, the logaise would not change
(i.e. the pixel values remain largely the same), but theneseful regional structure
variation (we will show examples of this change in subsegsections). We now detail
how we model this changing force field over time.

3 Developing New Image Feature

The structure of these field lines for a particular image saqa are relatively constant
until the hand (or anything else) enters the image. Oncedhd knters a clear distur-
bance in the channels occurs in the region of occlusion. Aypsthesis has been borne
out in experiments on thousands of video frames. It is ctergisvith the fact that the
force field is a measure of regional image structure. Figsled®vs an example of this
phenomenon. It can be seen that most of the channels are btfoke and during the
occlusion. We could show more examples, but due to spacetions, we will not. We
next demonstrate how to measure and quantify this changneg field.

If test pixels are placed uniformly in each image we can mesthe variation a cer-
tain test pixel exhibits in the distance it travels to a pt#nvell. Since these distances
remain relatively constant when there is no disturbanchenrmage (i.e. no hand/face
occlusion), the distance that each test pixel travels candmeled as a random variable
with Gaussian distribution. When the hand enters, the welisthe distances that the
test pixels travel will vary significantly. These will be tfeeground channels, and they
are somewhat analogous to foreground pixels in backgroulbiglestion.



Fig. 3. Channels before and during occlusion. Notice that a disturbance in 8mnels can be
seen in the lower left corner of the image, whereas the rest of the elsaimthe image are
relatively stable.

The reason this occurs is that when another object is intexdilt has its own set of
channels and wells. When the two objects merge, the chanmisells of both objects
interact with one another. Although the hand and face ar#asiim color, the potential
and force structure present in the image changes when aruiijeet enters the scene.
Using the MoG modeling technique we are able to measure aradiZe this change,
which allows us to find the boundary between the face and the.fhe distance from
a test pixel start location to its final well position can beasiered by computing

d=|tjo—tjn]| (5)

This is the new distance traveled in a force field featuree®tlistance measures such
as the arc length could be used. In any case, the distancdssthpixels travel are
relatively constant until the hand enters the facial regide model the face before
occlusion in terms of the distance traveled at each test giiag location using a MoG.
Let us assume that in the first video frame for a particulatiee! t;: [t; 0 —t; n| =
Xo. In the next video frame for the same test pixel location we camputet; o —
t; n| = Xi. Given the distance traveled history of a particular teselpat location
tj: Xo, X1,..., X, we want to model this density as a mixturefofGaussians. The
current distance traveled by, X, at timer, has probability

K 1 X
P(XT) = Zwi,ﬂ'ie i (6)
P V2ro; ;

of belonging to the current modely; - is the weight of the! Gaussian, ang, , and
0;,» are the mean and variance of the distribution all at timk none of the Gaussian
distributions match for this particular locatiog the least likely distribution is replaced
by the new distance. The distribution’s mean is the distameeled byt;, [t; 0 —t; v,
with the weight of this distribution set low. At each time tast the weights of thé
distributions are updated as

wir =1 —a)w; -1 +a(M;,) @)
with o set to a constant (learning rate) ahf] , being an indicator function which is
1 for the distribution that matched and 0 otherwise. Theiistion i that matched the
current distance observation has its mean and varianceatghda
piyr = (L= p)pir—1 + pXr )
ir = (L= p)oi .1+ p(Xr = pir)? ©)



In our casep is set to a constant. For notational convenience we denotes the mean
of the distribution that matched for test pixgl Using this approach we are able to
model the distances traveled by each test pixel in a coharanher. The next task is to
use these models to segment the hand from the face.

3.1 ExtractingtheHand

There are two steps needed to extract the hand. We must #rgifidwhether or not

the frame has a hand in it. A good measure is when the maxircladlgiging test pixel’s

distance from its distribution is much larger than its ctamgthe previous frame. This
indicates a large change in the image. Concretely, we sayathe has entered when

t, = X; >3- (t,_, — Xr-1), (10)
wherel = argmaxt;, — X;,l = x (12)
l

t;, is the mean of the distribution fay, and X, is the current distance traveled obser-
vation (computed a$; o — #; | for ¢;. ¢;,_, andX._; are the mean of the distribution
and observation faot; at the previous input frame.

The goal is to find the séd which is all the hand pixels. Initially sét « ¢; ., Vx >
1 < 2z < N. This only gives ong; and corresponding channel. To get the full hand,
any test pixel which ended up at the same well is also assuonieel part of the hand.
Further, any test pixel whose well is withihipixels is assumed to be part of the hand.
Concretely, set

H<_H+ta,wavaal‘9|tl,N_ta,N‘§ﬁ71SxSN (12)

These test pixels and corresponding channels taken togetgment the hand re-
gion. Once the hand enters the head region, the distandegixeks travel will vary
greatly. This variation should not be learned, so the modedsnot updated after the
hand enters the head region. Figure 4 shows three frameg débtind channel lines.
The final segmentation is achieved by finding the convex Huthis point setH and
drawing the hull. Other methods could be used to improve ¢lsalting contour. The
full algorithm is given in Table 1. Detailed results are gneted in Section 4.

For every frame

1. Compute force at every pixel using Equation 3

2. Place test pixels uniformly andv¢; compute Equations 4 and 5

3. Vt;Use Equations 6 - 9 to update online MoG models

4. Check for hand using Equations 10 and 11 )

5. If hand present, segment using Equation 12, find convex hull ispthst result

Table 1. Overall Algorithm
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Fig. 4. Channels superimposed on hand region. These channels variedromghe previous
model. A convex hull algorithm could be used to fill in this hand region.

4 Results

Our method was tested on 14 sequences involving hand/fastesgan for a total of
1800 frames. Not all of these frames contained hand overdedesion. Of course the
non-occlusion frames were needed in order to build the erdiatance models. Out of
the 1800 frames, roughly one half contained hand over fackision. The method was
successful under a variety of lighting conditions. We asstinat the hand is initially
not present (which allows us to build the model). In orderltovatranslational invari-
ance and to have faster processing,we find the head regiog [USi] and only process
these regions. We model everdf pixel in both directions for faster computation. More
samples would increase segmentation rates and the cortownaay. Figures 5 and 6
show results of the hand segmentation on different inputieseces. We should note
that in Figure 5 the head starts out frontal and then rotateshalf-profile position.
Our method is able to cope with this type of rotation, afteicktthe model starts to
break down. Again to obtain the results we run a convex hgtr@thm on the seH,
described in Section 3.1, and show the hull. The algorithma alvays able to deter-
mine when the hand entered the image using the steps in 8&cfioFigure 7 shows
a comparison between our proposed method, backgroundastibtr [13], and mean
shift segmentation [4] respectively. Our method and [18ggiixel wise segmentation,
S0 comparison was straightforward and unambiguous. We fettuld be interesting to
compare against general methods because our approachalasssrmand color/shape
to improve its decision, meaning it could possibly be ambireother contexts. Neither
of these two other methods were successful in segmentinggtie from the face.

To quantify how well the algorithm performed we manually gexted ground truth
segmentations for two sequences. Comparisons of our mtglgrdund truth and back-
ground subtraction [13] are shown in Table 2. Comparison wade pixel wise. For
our method each pixel in the convex hull was counted as hadaaoh pixel outside
was counted as non-hand. The true positive percentagegeiogrfeame were added and
divided by the total number of frames. A similar method wasdufer the true negative
rate. Our method outperformed [13] in all cases. While [18hsented part of the hand,
it found much of the head region as hand, indicated by the loe/iegative rate.

5 Conclusion and Future Directions

We have developed a method that is successfully able to seghee hand from the
face. From a high level the method succeeds because we pededm image feature



Seq# [# Frames |Our Method TP %Method in [13] TP %Our Method TN %Method in [13] TN %
1 44 80.04 72.00 97.11 74.12

9 150 79.53 73.15 96.58 72.19

Table 2. True positive (TP) and true negative (TN) segmentation % for the spécéquences.

Fig. 6. Hand segmentation results for three sequences. Row 1 shows cliaesisuperimposed.
Row 2 shows the convex hull. The sequence in Row 3 involves occlusiavén 300 frames.

Fig. 7. Segmentation results for our method (row 1), [13] (row 2) and [4}(8).



which is based on regional information. During occlusiomeéd and hand, local pixel
regions remain similar, but the regional image structui@nges during the occlusion.
Our method detects this change and is able to recover thadiagl region. Our main
contributions are in development of a novel feature: theadise traveled of a test pixel
in the image force field. And in modeling the distance tradalsing a MoG, which
allowed us to capture occlusion information that is diffidol extract. We want to ex-
plore more the force field representation, and determirigiits in resolving occlusion.
Better methods of segmentation using the MoG model couldkpred. It would be
useful to test how well the method resolves occlusion witleotypes of objects.
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