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Abstract. This paper presents a method to segment the hand over complex back-
grounds, such as the face. The similar colors and texture of the hand and face
make the problem particularly challenging. Our method is based on the concept
of an image force field. In this representation each individual image location con-
sists of a vector value which is a nonlinear combination of the remaining pixels
in the image. We introduce and develop a novel physics based feature that is able
to measure regional structure in the image thus avoiding the problem of local
pixel based analysis, which break down under our conditions. The regional image
structure changes in the occluded region during occlusion. Elsewhere the regional
structure remains relatively constant. We model the regional image structure at all
image locations over time using a Mixture of Gaussians (MoG) to detect the oc-
cluded region in the image. We have tested the method on a number of sequences
demonstrating the versatility of the proposed approach.

1 Introduction

The task of segmenting the hand over complex backgrounds such as the face is a chal-
lenging problem. The difficulty lies in the fact that the handand head are similarly
colored/textured regions. A necessary step for many HCI applications such as gesture
recognition, pointing interfaces, hand pose recognition,and event detection is a reliable
hand segmentation. Sign language recognition methods alsoneed to first segment the
hand over complex boundaries, such as the face. Some events like coughing, eating,
and taking medication could be more easily recognized by segmenting the hand from
the face. In short there are many applications that could benefit from having a robust
segmentation of the hand over complex backgrounds.

We propose two main contributions in segmenting the hand over complex back-
grounds such as the face. First we develop a new feature basedon the force field im-
age [10]. The force field image uses concepts from force field transformations used in
physics. Basically, each image location is represented by avector value which is a non-
linear combination of all other pixels in image. Their approach focused on a possible
feature space for recognition of faces and uses single frames. The feature we develop is
the distance traveled by test pixels placed in the force field. Our novel feature is able to
model regional structural changes in the image over time. Local methods (pixel based)
cannot resolve the occlusion because there is little changein local color when similarly
colored objects occlude each other. Regional structure in the image does change when
the hand occludes the face, although local pixel colors in the occluding region remain
largely the same before and during the occlusion. By quantifying the regional structural
change in an image over time we can resolve this kind of occlusion.



The second contribution is in presenting a method that is able to model our newly
developed feature response over time and capture where and when occlusion is happen-
ing using a Mixture of Gaussians (MoG) modeling paradigm. Wealso clarify several
concepts from [10] and give more details in using this image representation. An exten-
sion of the force field computation to video data is also given.

Section 1.1 gives previous work. Section 2 provides detailson the image represen-
tation. Section 3 shows how formulating the problem using MoG can aid the task of
segmenting the hand/face. Results are presented in Section4, and then we conclude.

1.1 Previous Work

Much of the work in finding the hand in a complex background relies on colored mark-
ers [7] on the hands or requires the hand to be the only skin object in view [5]. Contour
based approaches [1] [9] [11] and other edge based methods [14] rely on good edges
separating the hand and head, which are often not present in such difficult occlusion.
Active contour approaches [1] [11] require the hand shape change to be small. Our
method has no such constraint. In [9], hand shape is estimated over a complex back-
ground by using a shape transition network with the attributes of contour, position, and
velocity. They use a simple template based approach and skincolor segmentation to
find the hand during hand face occlusion. Their approach is sensitive to small changes
in lighting, different skin colors, and requires small differences in the 2D hand shapes.
Other color based approaches [3] [12] [14] would have difficulties in segmenting the
hand over face. In [12] body parts are tracked using BayesianNetworks but the condi-
tional probabilities are specified manually. Further, skincolor is used to find the body
parts. In [8] examples are given handling a few frames of occlusion using shape and
color in a Bayesian framework, but it is unclear if it can withstand occlusion involving
hundreds of frames (as our approach does). In [18] hand tracking is performed using
eigen dynamics analysis, but the hand tracking system uses pretrained hand models. It
is unclear how person-independent these models are.

In [2], a method is presented which uses multiscale featuresto find the hand. Color
priors are used, requiring retraining for new people. This method will not work when
the face is present because of the stronger blobs and ridges on the face. [19] performs
well on segmenting hands, but the method requires that the hand cover a large portion
of the image. Our image sequences frequently have only part of the hand in the image.

An Elastic Graph Matching approach is given in [15], which uses color models
to find skin regions. It has problems when the illumination changes, as the skin color
model fails. Each training image requires manual labeling of at least 15 node points.
The approach has problems handling geometric distortions of the hand as does [16].
Our approach is not hand model based, so we do not have this limitation.

In [6] an approach is given that segments the hand from a complex background.
They localize the hand using motion information and map thisregion to a fovea vector.
The method does not extend to other people. There is significant change in hand size
which our method can cope with. Most model based approaches presented above fail in
the case where the hand is only partially visible in the imageor for gestures not in the
database.



Because of the similar colors of the hand and face, segmentation algorithms such as
[4] will generally either under or over segment the hand/face occlusion. In principle, one
can do tracking but then the question becomes how to initialize the tracking. Further,
tracking methods generally fail when tracking across similarly colored regions.

Background subtraction [13] will not work in segmenting thehand over the face
because even a slight movement of the head will trigger a large change of foreground
pixels. Further, supposing the head was relatively fixed, the underlying problem with
the RGB (and other color spaces) input domain is in the similarity of the head and
hands. These methods cannot distinguish between the head and hand colors. Most back-
ground subtraction methodologies operate on RGB or some other color space (i.e. the
input space is color information). When similarly colored objects, occlude each other
the individual pixel values in the region of occlusion give little information considered
individually because the objects are similarly colored. This presents difficulties for in-
dividual pixel based methods.

2 Potential and Force Images

We can define the smoothed potential at a given position,rj , with respect to position
ri, in imageI as

Ei(rj) =
I(ri) + I ′(ri)

2 · |ri − rj |
(1)

whererj is the image location in question andI(ri) is the image intensity at position
ri. I ′ represents the image intensity at the previous time instant. Because we are dealing
with video data, we introduce temporal smoothing into the force field representation to
account for spurious noise.

Equation 2 gives the potential energy for a particular imagelocation. This compu-
tation is then performed for every location in the image. This gives the potential energy
image. The total potential energy at locationrj is given by:

E(rj) =
∑

ri 6=rj

Ei(rj) =
∑

ri 6=rj

I(ri) + I ′(ri)

2 · |ri − rj |
(2)

2.1 Force Fields

To find the force exerted by all pixels at a particular image locationrj simply compute

F (rj) =
∑

ri 6=rj

Ei(rj)
ri − rj

|ri − rj |2
=

∑

ri 6=rj

I(ri) + I ′(ri)

2

ri − rj

|ri − rj |3
(3)

We can see that the force is a vector as it has magnitude and direction. These vector
fields will be very important in the image representation. The units of pixel intensity,
direction, and force are arbitrary as is the origin of the coordinate system.F (rj) is the
normalized vector atrj . Examples of the potential and force fields are shown in Figure
1. Since the force fields are two dimensional the magnitude and direction are shown
separately. The direction was quantized (for display purposes only) into 10 regions.



Fig. 1. Potential and Force Vector Fields for various input frames. Input images are shown on the
top left. Potential image is next. Next is magnitude of the force field and the last contains the
direction (quantized) of the force field.

2.2 Finding Potential Wells

Once the potential and force field images have been computed the well points(local
extrema) are computed. This is done in an iterative fashion.Unit test pixels are placed
uniformly (resulting in a rectangular grid of test pixels) throughout the image. They can
be placed at every pixel, every other pixel etc. They are placed in the field and serve
to capture the flow of the field. Suppose there arem test pixelst1, . . . , tm. Since the
position of each test pixel will change as it traverses the force field, we denote the initial
location ofti asti,0. To find anyti,j apply the recursive equations:

ti,0 = (xi, yi)

ti,j = ti,j−1 + F (ti,j−1) (4)

WhereF (x) is the normalized vector atx, which is computed asF (x) = F (x)
|F (x)| . Given

a unit test pixel starting point,ti,0, it goes through the force field until it stabilizes at
a well point, denoted asti,N . Unit test pixels eventually reach stable points. In our
examplesN=500. Convergence was always reached well beforeN=500, but we could
test for convergence to allow more than 500 iterations. The computation could be ended
earlier if convergence is reached. Iterations needed for convergence depends on image
size and the number of wells. Larger images or ones with fewerwells will need more
iterations, but 500 iterations was sufficient for the 1000’sof image we tested. Not all
ti end up at the same wells. The path that a test pixel takes is called a channel. It is
easy to see that once two test pixels reach a common point, they both travel the same
path from them on. Before deriving the distance traveled feature we would like to give
some intuition as to what information in the image the force field is capturing and why
it is useful in our problem domain. Equation 3 shows that the force field captures global
structure, technically. However since the effect on the field is proportional to1

d2 the net
effect is that the force field captures regional image structure.

The potential image is a scalar at each pixel and it is a measure of the brightness
of that region. The force field is a vector at each pixel location. It measures properties
related to regional edge strength. It is not an edge detector, but it is related. The force
field measures regional edge like structure in the image. Thepotential wells are those
points in the force field where the net force is zero. Intuitively these are the points that
seek to position themselves in between the regional edge structures of the image. A well



equalizes the force (regional structure) around itself. See Figure 2 for an example of a
synthetic image demonstrating these ideas.

(a) (b) (c) (d) (e)

Fig. 2. This is a synthetic image used to give some intuition of the force field representation. (a) is
the original image. (b) is the original image with the initial configuration of testpixels overlaid on
it. (c)-(d) show the movement of the test pixels through the force field after 50 and 200 iterations.
(e) shows the magnitude of the force field.

The force field captures regional structure and we can model this regional structure
over time to detect structural changes in the image. Though the hand and head have
similar color and texture, by analyzing regional image structure we are able to capture
structural changes that are introduced when the hand entersthe scene. We can see that
other methods monitoring pixel wise information are not enough because of the similar
texture of the hand and head. When the hand enters, the local structure would not change
(i.e. the pixel values remain largely the same), but there isuseful regional structure
variation (we will show examples of this change in subsequent sections). We now detail
how we model this changing force field over time.

3 Developing New Image Feature

The structure of these field lines for a particular image sequence are relatively constant
until the hand (or anything else) enters the image. Once the hand enters a clear distur-
bance in the channels occurs in the region of occlusion. Thishypothesis has been borne
out in experiments on thousands of video frames. It is consistent with the fact that the
force field is a measure of regional image structure. Figure 3shows an example of this
phenomenon. It can be seen that most of the channels are stable before and during the
occlusion. We could show more examples, but due to space limitations, we will not. We
next demonstrate how to measure and quantify this changing force field.

If test pixels are placed uniformly in each image we can measure the variation a cer-
tain test pixel exhibits in the distance it travels to a potential well. Since these distances
remain relatively constant when there is no disturbance in the image (i.e. no hand/face
occlusion), the distance that each test pixel travels can bemodeled as a random variable
with Gaussian distribution. When the hand enters, the wells and the distances that the
test pixels travel will vary significantly. These will be theforeground channels, and they
are somewhat analogous to foreground pixels in background subtraction.



Fig. 3. Channels before and during occlusion. Notice that a disturbance in the channels can be
seen in the lower left corner of the image, whereas the rest of the channels in the image are
relatively stable.

The reason this occurs is that when another object is introduced, it has its own set of
channels and wells. When the two objects merge, the channels and wells of both objects
interact with one another. Although the hand and face are similar in color, the potential
and force structure present in the image changes when another object enters the scene.
Using the MoG modeling technique we are able to measure and localize this change,
which allows us to find the boundary between the face and the hand. The distance from
a test pixel start location to its final well position can be measured by computing

d = |tj,0 − tj,N | (5)

This is the new distance traveled in a force field feature. Other distance measures such
as the arc length could be used. In any case, the distances thetest pixels travel are
relatively constant until the hand enters the facial region. We model the face before
occlusion in terms of the distance traveled at each test pixel start location using a MoG.

Let us assume that in the first video frame for a particular test pixel tj : |tj,0−tj,N | =
X0. In the next video frame for the same test pixel location we can compute|tj,0 −
tj,N | = X1. Given the distance traveled history of a particular test pixel at location
tj : X0,X1, . . . ,Xτ , we want to model this density as a mixture ofK Gaussians. The
current distance traveled bytj , Xτ , at timeτ , has probability

P (Xτ ) =

K∑

i=1

wi,τ

1√
2πσi,τ

e

−(Xτ −µi,τ )

2σ2
i,τ (6)

of belonging to the current model.wi,τ is the weight of theith Gaussian, andµi,τ and
σi,τ are the mean and variance of the distribution all at timeτ . If none of the Gaussian
distributions match for this particular locationtj , the least likely distribution is replaced
by the new distance. The distribution’s mean is the distancetraveled bytj , |tj,0 − tj,N |,
with the weight of this distribution set low. At each time instant the weights of theK
distributions are updated as

wi,τ = (1 − α)wi,τ−1 + α(Mi,τ ) (7)

with α set to a constant (learning rate) andMi,τ being an indicator function which is
1 for the distribution that matched and 0 otherwise. The distribution i that matched the
current distance observation has its mean and variance updated as

µi,τ = (1 − ρ)µi,τ−1 + ρXτ (8)

σi,τ = (1 − ρ)σ2
i,τ−1 + ρ(Xτ − µi,τ )2 (9)



In our caseρ is set to a constant. For notational convenience we denotetju
as the mean

of the distribution that matched for test pixeltj . Using this approach we are able to
model the distances traveled by each test pixel in a coherentmanner. The next task is to
use these models to segment the hand from the face.

3.1 Extracting the Hand

There are two steps needed to extract the hand. We must first identify whether or not
the frame has a hand in it. A good measure is when the maximallychanging test pixel’s
distance from its distribution is much larger than its change in the previous frame. This
indicates a large change in the image. Concretely, we say thehand has entered when

tlµ − Xτ > 3 · (tlµ−1
− Xτ−1), (10)

wherel = argmax
l

tlµ − Xτ , l = x (11)

tlµ is the mean of the distribution fortl, andXτ is the current distance traveled obser-
vation (computed as|tl,0 − tl,N | for tl. tlµ−1

andXτ−1 are the mean of the distribution
and observation fortl at the previous input frame.

The goal is to find the setH which is all the hand pixels. Initially setH ← tl,x,∀x Ä

1 ≤ x ≤ N . This only gives oneti and corresponding channel. To get the full hand,
any test pixel which ended up at the same well is also assumed to be part of the hand.
Further, any test pixel whose well is withinβ pixels is assumed to be part of the hand.
Concretely, set

H ← H + ta,x,∀a, x Ä |tl,N − ta,N | ≤ β, 1 ≤ x ≤ N (12)

These test pixels and corresponding channels taken together segment the hand re-
gion. Once the hand enters the head region, the distances test pixels travel will vary
greatly. This variation should not be learned, so the modelsare not updated after the
hand enters the head region. Figure 4 shows three frames of the found channel lines.
The final segmentation is achieved by finding the convex hull of this point setH and
drawing the hull. Other methods could be used to improve the resulting contour. The
full algorithm is given in Table 1. Detailed results are presented in Section 4.

For every frame
1. Compute force at every pixel using Equation 3
2. Place test pixelsti uniformly and∀ti compute Equations 4 and 5
3. ∀tiUse Equations 6 - 9 to update online MoG models
4. Check for hand using Equations 10 and 11
5. If hand present, segment using Equation 12, find convex hull and display result

Table 1. Overall Algorithm



Fig. 4. Channels superimposed on hand region. These channels varied mostfrom the previous
model. A convex hull algorithm could be used to fill in this hand region.

4 Results

Our method was tested on 14 sequences involving hand/face occlusion for a total of
1800 frames. Not all of these frames contained hand over faceocclusion. Of course the
non-occlusion frames were needed in order to build the online distance models. Out of
the 1800 frames, roughly one half contained hand over face occlusion. The method was
successful under a variety of lighting conditions. We assume that the hand is initially
not present (which allows us to build the model). In order to allow translational invari-
ance and to have faster processing,we find the head region using [17] and only process
these regions. We model every5th pixel in both directions for faster computation. More
samples would increase segmentation rates and the contour accuracy. Figures 5 and 6
show results of the hand segmentation on different input sequences. We should note
that in Figure 5 the head starts out frontal and then rotates to a half-profile position.
Our method is able to cope with this type of rotation, after which the model starts to
break down. Again to obtain the results we run a convex hull algorithm on the setH,
described in Section 3.1, and show the hull. The algorithm was always able to deter-
mine when the hand entered the image using the steps in Section 3.1. Figure 7 shows
a comparison between our proposed method, background subtraction [13], and mean
shift segmentation [4] respectively. Our method and [13] give pixel wise segmentation,
so comparison was straightforward and unambiguous. We feltit would be interesting to
compare against general methods because our approach does not use hand color/shape
to improve its decision, meaning it could possibly be applied in other contexts. Neither
of these two other methods were successful in segmenting thehand from the face.

To quantify how well the algorithm performed we manually generated ground truth
segmentations for two sequences. Comparisons of our methodto ground truth and back-
ground subtraction [13] are shown in Table 2. Comparison wasmade pixel wise. For
our method each pixel in the convex hull was counted as hand and each pixel outside
was counted as non-hand. The true positive percentages for every frame were added and
divided by the total number of frames. A similar method was used for the true negative
rate. Our method outperformed [13] in all cases. While [13] segmented part of the hand,
it found much of the head region as hand, indicated by the low true negative rate.

5 Conclusion and Future Directions

We have developed a method that is successfully able to segment the hand from the
face. From a high level the method succeeds because we developed an image feature



Seq # # Frames Our Method TP %Method in [13] TP %Our Method TN %Method in [13] TN %
1 44 80.04 72.00 97.11 74.12
9 150 79.53 73.15 96.58 72.19
Table 2. True positive (TP) and true negative (TN) segmentation % for the specified sequences.

Fig. 5. Hand Segmentation. This was a difficult sequence due to the large face rotation.

Fig. 6. Hand segmentation results for three sequences. Row 1 shows channellines superimposed.
Row 2 shows the convex hull. The sequence in Row 3 involves occlusion for over 300 frames.

Fig. 7. Segmentation results for our method (row 1), [13] (row 2) and [4] (row 3).



which is based on regional information. During occlusion ofhead and hand, local pixel
regions remain similar, but the regional image structure changes during the occlusion.
Our method detects this change and is able to recover the occluding region. Our main
contributions are in development of a novel feature: the distance traveled of a test pixel
in the image force field. And in modeling the distance traveled using a MoG, which
allowed us to capture occlusion information that is difficult to extract. We want to ex-
plore more the force field representation, and determine itslimits in resolving occlusion.
Better methods of segmentation using the MoG model could be explored. It would be
useful to test how well the method resolves occlusion with other types of objects.
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