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Abstract view, geometric and appearance based approaches have also been
proposed recently, e.g. [12], [4], [10], and [22]. A common as-
A camera mounted on an aerial vehicle provides an excellent sumption shared by these methods is that the camera remains sta-
means for monitoring large areas of a scene. Utilizing several tionary for the duration of sensing. By removing this assumption
such cameras on different aerial vehicles allows further flexibil- and allowing the sensors to move, a much wider area can be ob-
ity, in terms of increased visual scope and in the pursuit of mul- served. A limited type of camera motion has been examined in
tiple targets. In this paper, we address the problem of tracking previous work: motion of the camera about the camera center, i.e.
objects across multiple moving airborne cameras. Since the cam-pan-tilt-zoom (PTZ) motion. One such work is [16], where Mat-
eras are moving and often widely separated, direct appearance-suyama and Ukita presented an approach using active cameras,
based or proximity-based constraints cannot be used. Instead,using a fixed point PTZ camera for wide area imaging. In [11]
we exploit geometric constraints on the relationship between the Kang et al. proposed a method that involved multiple stationary
motion of each object across cameras, to test multiple correspon-and PTZ cameras. In this work, it was assumed that the scene was
dence hypotheses, without assuming any prior calibration infor- planar and that the homographlestweercameras were known. A
mation. There are three novel contributions in this paper. First, related approach was also proposed in [5], where Cadliia. pre-
we propose a statistically and geometrically meaningful means of sented an active multiple camera system that maintained a single
evaluating a hypothesized correspondence between two observamoving object centered in each view, using PTZ cameras. How-
tions in different cameras. Second, since multiple cameras exist,ever, thus far, there has been no work on tracking objects across
ensuring coherency in correspondence, i.e. transitive closure is multiple independently moving cameras, whasstersmove as
maintained between more than two cameras, is an essential re-well. This is particularly attractive since it allows far wider areas
quirement. To ensure such coherency we pose the problem of obto be monitored by fewer cameras.
ject tracking across cameras askadimensional matching and use
an approximation to find the Maximum Likelihood assignment of  In this work, the problem we address is to track objects across
correspondence. Third, we show that as a result of tracking ob- multiple independently moving cameras mounted of airborne ve-
jects across the cameras, a concurrent visualization of multiple hicles, without assuming any calibration of the cameras. To the
aerial video streams is possible. Results are shown on a numberauthors’ knowledge this is the first paper to tackle this prob-
of real and controlled scenarios with multiple objects observed by lem. When using sensors in such a decentralized but cooperative
multiple cameras, validating our qualitative models. fashion, knowledge of inter-camera relationships become of para-
mount importance in understanding what happens in the environ-
. ment. Without such information it is difficult to tell, for instance,
1 Introduction whether an object viewed in each of two cameras is the same ob-
ject or not. In the scenario under study in this paper, obtaining
The concept of a cooperative multi-camera system, informally a calibration information usually requires sophisticated equipment,
‘forest’ of sensors [15], has recently received increasing attention such as a global positioning system (GPS) or an inertial havigation
from the research community. The idea is of great practical rel- system (INS), perhaps with a geodetically aligned elevation map.
evance, since cameras typically have limited fields of view, but Thus approaches that do not require prior calibration information
are now available at low costs. Thus, instead of having a high- and are based only on video data are particularly attractive as an al-
resolution camera with a wide field of view that monitors a wide ternative. Furthermore, when cameras are moving independently,
area, far greater flexibility and scalability can be achieved by ob- the fields of view of different cameras can alternatively move in
serving a scene ‘through many eyes’, using a multitude of lower- and out of overlap and as a result the problem of correspondence
resolution COTS (commercial off-the-shelf) cameras. In recent becomes considerably more complicated than that of the station-
literature, several approaches with varying constraints have beerary camera case. It is useful to think of the problem in terms of
proposed, highlighting the wide applicability of the concept. For spatio-temporal overlapf fields of view (FoV), analogous to spa-
instance, the problem of tracking across multipiationarycam- tial overlap in the case of stationary cameras, i.e. for some duration
eras with overlapping fields of view has been addressed in a num-of time, the FoV of each camera overlaps (spatially) with the FoV
ber of papers, e.g. [2], [18], [6], [1], [15] and [13]. Extending of another camera while observing the moving objects. In terms
the problem to tracking in cameras with non-overlapping fields of of spatio-temporal overlap, we identify four possible cases of the



problem, served trajectory is modeled as a node and the graph is partitioned
1. Each object is simultaneously visible by all cameras, all the  into IV partitions, one for each of th& cameras. A hypothesized
time: In this instance, there is continuous spatial and temporal correspondence; between two observed objects (nodes), is rep-
overlap between the fields of view. This rarely occurs in practice, resented as an edge between the two nodes. In Figure 1(a), Object
especially over extended sequences, since aerial vehicles usually} is visible in all cameras, and the correspondence across the cam-
move continuously. eras is represented lzy?3. Object 2 is visible only in Camera 1
2. Each object is simultaneously visible by some cameras, all and Camera 3 and therefore an edge exists only between Camera
the time: This is the instance of limited spatial overlap, where 1 and 3. Object 3 is visible only in the field of view of Camera 2,
all objects are within the ‘collective’ field of view of all the cam-  therefore there is a unconnected node in partition corresponding to
eras all the time (but not necessarily witldachcamera’s field of Camera 2.
view). This situation occurs most often when each UAV is in pur- The rest of the paper is organized as follows: In Section 2,
suit of a separate target. we present a means to estimate the likelihood of a correspondence
3. Each object is simultaneously visible by some cameras for  hypothesis. In Section 3, the Maximum Likelihood assignment
a limited duration of time: This is the general case (within the is computed for multiple cameras in a graph-theoretic framework.
context of this work), where all objects are visible in some subset Results in several controlled and real scenarios are shown in Sec-
of cameras simultaneously. This is the case most often encoun4ion 4, with conclusions and a summary in Section 5.
tered in extended runs.
4. Each object is visible by some cameras, but not necessaril . .
simultaneously: In this casetemporaloverlap does not neces}-l 2 The LIkElIhOOd Of a Correspon'
sarily occur between any two cameras, while objects are visible dence Hypothesis
in their field of view. Without making some strong assumptions
about object or camera motion it is difficult to address this case. |, this section, we describe how the likelihood that two trajecto-
This case is the spatio-temporal analog of the problem of track- rjes observed by two different cameras, originated from the same
ing across stationary cameras with non-overlapping fields of view. \yqrid object is estimated - the use of this, in turn, for multiple ob-
This is the only case we do not address. jects assignment across multiple cameras is described in Section
In this work, we require at least limited spatio-temporal over- 4. |t should be mentioned at the outset that lower level processing,
lap between the fields of view of the cameras (Case 3) to discerngych as object detection and trackinighin each sequence is out-
the relationship of observations in the (uncalibrated) moving cam- sjge the scope of this work. Instead, we assume that tracks have
eras, i.e. the proposed approach addresses Cases 1, 2 and 3. Fgfready been obtained and frame-to-frame estimation of homogra-
moving cameras, particularly airborne ones where large swathsphy is available for each camér@©ur focus is to investigate meth-
of areas may be traversed in a short period of time, coherent vi-ods on how to best use this data for correspondeccesscam-
sualization is indispensable for applications like surveillance and gras. Thus, at a certain instant of time, we haterajectories for
reconnaissance. In fact, the underlying concept of co-operativethe;-th camera corresponding to the objects visible in that camera.
sensing is to give global context to ‘locally’ obtained information  sjince the frame-to-frame homography is available, the position of
at eaCh camera. ThUS, we ShOW that as a I’esult Of traCking Object%ach point in tra_jector?{‘gL is transformed to a reference Coordi_
across multiple moving cameras with spatio-temporal overlap of nate (e.g. the first frame) of the sequence. The measured image po-
FoV;, the collectlve‘fleld.of view of all the alrborng cameras can sitions of objectsX;” = {x.,, X} ii1,- .. X} are described in
be smultanepusly wsuah;ed usm@angurrentmosalc. terms of the true image position&y" = {X} ;, Xy ;11, ... X1},
The notation we use in the paper is as follows: therefdre  with independent normally distributed measurement ngise, 0
cameras, observing a scene wihobjects. An objeck present and variance?, that is
in the field of view of camera is denoted a®);;. The imaged

location of O} at timet is x}, = (z},,yr., A\is)' € P2, the Xk = ki + 6 €~ N(0,0). @
homogenous coordinates of the paiirt sequence. The trajec- The principal assumption upon which the similarity between
tory of Oy is the set of pointsYy’ = {x} ;, xk i1, Xk, } two trajectories is evaluated is that due to the altitude of the aerial
where At is the duration from frame to framej (for the re- camera, the scene can be well approximated by a plane in 3-space
mainder of the paper, we will drop this notation of time unless and as a result a homography exists between any two frames of
explicitly required). For two cameras, a corresponderfcg' is any sequence ([7]). This assumption of planarity dictates that a ho-
an ordered pai(Oy, O;™) that represents the hypothesis ttigt mographyH;""/" must exist between any two trajectories that cor-

andO;™ are images of the same object. For more than two cam- respond, i.e. for any correspondence hypothes{g. This con-
eras, a correspondencg’, ;¥ is a hypothesis defined by the  straint can be exploited to compute the likelihood that 2D trajecto-
tuple (0", 0},0%,...07). Note thatOf does not necessarily  ries observed by two different cameras originate from the same 3D
correspond ta@)?, the numbering of objects in each sequence is trajectory in the world - in other words, to estimqi&z;ﬂxg).

in the order of detection. Thus, the problem is to find the set By assuming conditional independence between each correspon-
of correspondence€’ such thate;”;’ 7 € C if and only if dencec, and the probability of a candidate solutiGhgiven the

o7, 07,0z, ...07 are images of the same object in the world. trajectories is,

The terminology of graph theory allows us to more clearly rep-

resent these different relationships (Figure 1(a)). We abstract the p(CHAY) = p(eil %) @
problem of tracking objects across cameras as follows. Each ob- e

2Several methods have been proposed to achieve this for airborne cam-
1The abstraction of each object is as a point corresponding to the objecteras, and for representative literature on this problem the reader is directed
centroid. to [9], [19] and [3].




We are interested in the maximum likelihood solution, both the homography and the object trajectories, [7]. Since the er-
rors at each point are assumed independent, the conditional prob-
C* = arg rélgé(p(c‘{X}), 3 ability of the correspondence given the trajectories in the pair of
sequences can be estimated,

whereC is the space of solutions. We now describe how to com-
pute the likelihood that two trajectories observed in two cameras  p(X7, x| ¢’ H, XF) =

orignated from the same real world object. Using these pair-wise i
estimates, we describe how to the maximization of Equation 3 in

Section 3.

1 —d(XP,x1 52
271-0-2 e ( k 1 )/ (2 ) (6)

Thus, to estimate the data likelihood, we compute the optimal
estimates of the homography and exact trajectories (that minimize
Equation 5) and use them to evaluate Equation 7. However, when
21 Correspondence Estimators attempting to obtain globally optimal assignment of multiple ob-

jects the lengths of trajectories may vary considerably from object
Two cost functions that can be used to evaluate a correspondenc#o object, since the effective length of trajectories depends on the
hypothesis are the algebraic distance and the geometric distanceduration of temporal overlap between the FoVs of the two cam-
To compute the algebraic distandg, (X}, X;™) associated with ~ eras. Therefore, to obtain a normalized estimate with respect to
a correspondenoeﬁ;[”, the Direct Linear Transform (DLT) algo-  the duration of overlap between each trajectory,
rithm can be used [7], minimizing the norffAh||, where

1
Y 1 = 1/At
k, —dr(XP,X1) /(202
p( Cl,Lf'leleq) = Qe ( k t )¢ ) ) (7)
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LITkL ‘op T 1,17k, whereAt is the duration of overlap between the two trajectories.
—Y1Xe1 Ty X, 0 Finally, taking the log we have,
A= :
: .
0" ] _)‘?n’ﬁ,n T yi X0 TT log p( ;7 1%, 1) o AL log d, (X7, X7). (8)
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3 Maximum Likelihood Assignment
andh is the inter-camera homography in row major form. The

similarity between two trajectories can be measured by observing Of GlObaI Correspondence
the condition number oA, i.e. the ratio of the largest singular
value to the smallest singular value Af Thus, the algebraic dis-

tance between two trajectories can be computed using,

In the previous section, we developed a model to evaluate the
probability of correspondence between two trajectories. Gen-
erally, however, when several objects are observed simultane-

oA ously by multiple cameras we require an optingidbal assign-
darg (X, X1) = =&, (4) ment of object correspondences. We show that within the pro-
k 1 UQA

posed formulation, this global optimality can be described in
terms of a Maximum Likelihood estimate. As mentioned ear-
lier, the problem of establishing correspondence between trajec-
tories can be posed within a graph theoretic framework. Con-
sider first, the straightforward case of several objects observed
by two moving cameras. This can be modeled by constructing
a complete bi-partite grapf = (U, V, E) in which the vertices

U = {u(A7),u(X) ... u(XP)} represent the trajectories in Se-
quencep, andV = {v(X]),v(X])...v(X})} represent the tra-

whereo? is then-th largest singular value oh. The advantage

of the algebraic cost function is that it provides a non-iterative

solution and can evaluate the similarity between two trajectories
without the need to explicitly estimate the inter camera homog-
raphy. However, the cost function does not have any geometrical
interpretation and it does not allow us to incorporate the measure-
ment error model explicitly. Instead, as will be seen presently, this

algebre}[lt_: aﬁ)proe:jchtls{_ ut_sef:fl as a ;tat;lel flnltlalllze:_tlon fora morejectories in Sequenag andE represents the set of edges between
geome rically and statistically meaningiu ((j)r.m; arl]on._ ) any pair of trajectories front/ and V. The bi-partite graph is
Since megsuremgnt errors are expecte. n Ot, trajectprlgs, W‘%:omplete because any two trajectories may match hypothetically.
use thee-projectiondistance as a cost function. This re-projection The weight of each edge is the probability of correspondence of
distance is an alternative cost function that explicitly minimizes Trajectory X and TrajectoryX”, as defined in Equation 7. By
the transfer error between the trajectories. This approach evalu- finding the r%aximum matching (ﬁ, we find a unique set of.cor-
ates the probability of a correspondence hypothesis by eStimatingrespondencéJ’, according to the m‘aximum likelihood estimate,
a homographyHﬁ;flp and two new trajectoried”? and;?, related >
¥ inimi ic di k,
exactlyby H,* that minimize the geometric distance, C' = arg max logp(cl; XP). 9)
> ~ > ~ e Pec
dr (X7, X)) = d(xi,ﬁ Xi,z) + d(th, X?,t)v (5)

. . where( is the solution space. Several algorithms exist for the

efficient maximum matching of a bi-partite graph, for instance [14]
whered(+) is a distance metric, like the Euclidean distance. In par- or [8] which areO(n®) andO(n??) respectively.
ticular, it is an attractive choice since it can be shown that the re-  This formulation generalizes tmultiple moving cameras by
projection error is related to the Maximum Likelihood estimate of considering completé:-partite graphs instead of the bi-partite
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Figure 1:Graphical representation. (a) Graphical Notation. Each partition corresponds to one camera input and each node correspond
to an observed object in that sequence. An edge is a correspondence between objects seen in two cameras. (b) An impossible matchi
Transitive closure in matching is an issue for matching in three of more cameras. The dotted line shows the desirable edge whereas tt
solid line shows a possible solution from pairwise matching. (c) A possible solution in three cameras. (d) The digraph associated with
correspondence in (C).

Objective
Given object trajectories from all cameras fidt > 4, estimate globally optimal correspondence of object across cameras.

Algorithm
While p(C| {X5 &% ... X} {X &7 ... X)) > ~o do,

1. Number cameras arbitrarily
2. For all pairwise ¢, computep(c,”/"| X}, &™)
e Normalization of X7': Compute a similarity transfornT,;;, transforming the mean of the points to the origin and making|the
average distance of the points from the origin equal® This should be done separately for each trajectory.
e Initialization : Use the DLT algorithm to compute an initial estimateﬁ)zj,f” for each correspondence hypothesis. Denormal-
ize the computed homograpti;™ = Tp~"H Ty

e Minimize Re-projection Error : Minimize the re-projection error of Equation 5 using the Levenberg-Marquardt non-linear
minimization algorithm. For large number of points sparse minimization methods are recommended (see [20]).

3. Construct Split Graph G*: Find the maximum matching of the split of the acyclic directed graph described in Section 3.

4. Evaluate confidence in solution Using the estimated maximum matching, compute the confidence in solution according to Equation
12.

Figure 2: Algorithm for object tracking across moving cameras

aThis step is optional. Estimates provided by the DLT algorithm usually suffice.

graphs considered previously, shown in Figure 1. Each hyper-V,}, wheree = v(X7)v(X}") represents an edge agd> p. The

edge represents the hypothetical correspondeﬁit;’%’fjjl”” be- solution to the original correspondence problem is then equivalent
tween(O;", 07,0z, ... O7). However, it is known that thé- to finding the edges of maximum matching of the sglit of the
dimensional matching problem is NP-Hard for> 3. A possi- digraph D (for a proof see [21]). By forbidding the existence of

ble approximation that is often used is pairwise, bi-partite match- edges against the ordering of the camefass constructed as an

ing, however such an approximation is unacceptable in the currentacyclic digraph, and therefore this approach can be used to obtain
context since it is vital that transitive closure is maintained while correspondence can be obtained efficiently. Figure 1(c) shows a
tracking. The requirements of consistency in the tracking of ob- possible solution and it's corresponding digraph, Figure 1(d).

jects across cameras is illustrated in Figure 1(b). Instead, to ad-

dress the computational complexity involved while accounting for Finally, we need to ensure that ‘left-over’ objects are not as-
consistent tracking, we construct a weighted digrépk- (V, E) signed correspondence. For instance, consider the case when all
suchthaf V1, Va, ... V. } partitionsV, where each partition corre-  but one object in each of two cameras have been assigned corre-
sponds to a moving camera. Direction is obtained by assigning anspondence. Now, although the ‘left-over’ objects in each camera
arbitrary order to the cameras (for instance by enumerating them),correspond to the two different objects in the real world (each that

and directed edges exist between every node in partitioand did not appear irone of the camera FOVs), they would be as-
every node in partitio; wherei > j (due to the ordering). This  signed correspondence. In order to avoid this we introduce a new
can be expressed & = {v(X})v(X7)|v(X]) € Vp,v(X7) € partition in the graph corresponding tamall camera with a node

correpsonding to each object in each camera. The null camera is



assigned to be the last in the camera ordering so a directed ec
exists between every node in the rest of the graph and anode int |
null partition. The weight of each such edge discounts ‘left-over

correspondences if the data likelihood is too low, computed as -

log-kelinood

p,0| vp 1 > P pp,0
p(ck,o xy) = At log d (X, Xk,o) (10) ”

where

Xlo=X+v-0 (11)

ando is the standard deviation of the noise model of 1 and
an empirical constant (set to 2 for all experiments reported in this Figure 4: Variation of some global correspondence hy-
paper). In a meaningful way this ensures that correspondence hypotheses. (a) Variation for Controlled Experiment 1. (b)

potheses with low likelihoods are ignored. Variation for UAV Experiment 2. Due to colinear motion
of the object, ambiguity in correspondence exists initially
3.1 Evaluating the Matching which is quickly resolved as the object begin to show more

) . ~non-colinear behavior.
For the correspondence of objects to be meaningful, the object

must be observed in both cameras simultaneously for some short
duration. The minimum number of observations required to dis- the ability to handle this case is an important advantage of our ap-
cern correspondence for two objects is five observations, i.e. bothproach. Since a characteristic of the correct correspondence is that
objects are observed in the field of view for four (not necessarily all homographies between each pair of corresponded trajectories
consecutive) frames, since four correspondences are the minimunis equal, a final assignment of correspondence between two se-
required to estimate a homography. Of course, since the motion ofquences is made based on the probabilitalbbbjects matching
cameras is smooth, the duration of overlap is usually significantly simultaneously,
greater than four and this allows numerically stable computation
of correspondence. However, in real world scenarios, objects tend p(CI {7 A7 XD XX Xl (12)
to move in straight lines, displaying more variant (non-collinear)
motion only over larger durations of observation. This can often
cause degenerate estimates of the homographies during short dur
tions of observation. Thus, if matching is only performed between
objects, as described earlier, the approach becomes dependent
the degree of non-collinearity of the object motion. What needs to
be specified is a termination criteria: at what point in time can a
set of correspondene®’ (see Equation 9) be made confidently?
The base case in the online tracking assumes that some simul3.2 Concurrent Visualization
taneous observations have been observed)( To evaluate con-
fidence in the solution we have,

where(C is the set of correspondence of all objects between two
gameras that is found by the matching algorithm. Clearly, Equa-
tion 12 can be computed in the same way as Equation 7. Thus, if
gHCIHXR X ... X8} {X7X] ... X]}) > yo for each pair of
cameras, then we commit to the current solution. The final algo-
rithm is summarized in Figure 2.

The purpose of aerial surveillance is to obtain an understanding
of what occurs in an area of interest. While it is well known that
Proposition 1 All homographies mapping pairs of corresponding Vvideo mosaics can be used to compactly represent a single aer-
tracks in Sequencesandg are equal (up to a scale factor), and are, ial video sequence, they cannot compactly represent several such
in turn, the same homography that maps the reference coordinatesequencesimultaneously If, on the other hand, the homogra-
of Sequence to that of Sequence. phies between each of the mosaics (corresponding to each aerial
sequence) are known,@ncurrentmosaic can be created of all
Since all the objects lie on the same plane, the homographythe sequences simultaneously. Since each sequence is aligned to a
relating the image of the (global-motion compensated) trajectory single coordinate frame during the construction of individual mo-
of any objectH}'; in Sequence to the image of the trajectory  sajcs, Proposition 1 provides us with the means to register mosaics
of that object in Sequenagis the same as the homography? from multiple sequences onto one concurrent mosaic. To this end,
relating any other object’s trajectories in the two sequences (i.e.the known point-wise correspondences from object tracking can be
i # pandj # q). Since these trajectories lie on the scene plane, ysed to compute the ‘inter-sequence’ homography (e.g. the eigen-
these homography are equalkis“?, the homography that related  yector associated with the smallest eigenvalue of the matix
the images of Sequengeto the images of Sequenge Final alignment is then refined using direct (gradient based) regis-

tration.
Proposition 1 provides us with a termination criteria. By using

all the points simultaneously to evaluate the confidence in the so-

lution at each time instance, the spatial separation of different tra- 4 Results

jectories enforces a strong non-colinear constraint on correspon-

dence. In this way, even with relatively small durations of ob- In this section, we report the experimental performance of the pro-

servation the correct correspondence of objects can be discernedhosed method in two controlled scenarios, and two real scenarios.
Since the cameras are continuously moving, matching with small In each experiment, we demonstrate the efficacy of the approach to
durations of observation is one basic challenge of this work, and accurately track moving objects across multiple moving cameras.
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Figure 3:Corresponding frames from two sequences. Both rows show frames recorded from different cameras.

We have tested under a diverse set of situations: with multiple 4.2 UAV Sequences
cameras, multiple objects, cameras of different modalities and at . . .
P ) In these experiments, two unmanned aerial vehicles (UAVS)

different zooms. It is recommended that the results be viewed in . . . .
color. Additional results and videos associated with these results_mc"mte_d with cameras weyved real scenes with moving cars, typ-
have been included in the supplementary folder. ically with a smgller dura.tlon of Qverlgp than the controlled se-
quence. In the first experiment, six objects were recorded by one
EO and one IR cametaThe vehicles in the field of view moved
4.1 Controlled Sequences in a line, and one after another performed a u-turn and the dura-
. . tions of observation of each object varied in both cameras. Since
Two controlled experiments were carried out, where remote con- o motion information is used, the different modalities did not
troII_ed cars were o_bserved by moving camcorders. _In the first ex- pose a problem to the proposed approach. Figure 7 shows all six
periment, two moving cameras were used, along with two remote ie ctories color coded in their correspondence. Final correspon-

controlled ce_trs. The cars _wer_e opergted c_m a (planar) flqor with dence likelihoods are shown in Table 4.2. Despite the fact that the
the two moving cameras viewing their motion from the height of g4, yrajectory (color coded yellow in Figure 7) was viewed only

about 12 feet. Figure 5 shows the trajectories of the car on the regyefy in both sequences and underwent mainly colinear motion
istered coordinate frame of Sequence 1. With two views and two i, s quration, due to the global spatial constraint of Equation 12
objects there are five possible hypothesis, and the maximum matching, correct global correspondence was
1. {(01,03),(03,03)} obtained.
2. {(0},0%),(0},02)} In the next experiment, sequences with very short temporal
’ 221 A 2 overlap was used. Since the motion of aerial vehicles is far less

3. {(01,0%),(03), (02)} controlled than that of controlled sequences, the duration of time
4. {(0},0%),(0Y), (0%)} in which a certgln object is seen in both cameras is smaller. We

L ) L ) show that despite the challenge of smaller overlap, object can be
5. {(02),(01),(01),(02)} successfully tracked across the moving cameras. The variation

According to the first two hypothesis there are at least 2 objects Of the ‘goodness’ of each hypothesis is shown in Figure 3.2(b).
present in the world, according to the third and the fourth hypoth- Since the motion of the objects were generally colinear in the be-
esis there are at least three objects in the world, and accordingdinning of the experiment, the probability of each correspondence
to the fifth hypothesis there are at least four objects in the world. fluctuates, but the correct correspondence, (Hypothesis: 1 2 3),
The variation of the first two hypotheses with respect to time is is clearly higher as the process reaches an equilibrium. Using this
shown in Figure 3.2(a). Clearly, the first hypothesis is the correct correspondence, the concurrent mosaic of the scene was generated,
one. Videos and online results are available in the supplementaryShown in Figure 8. Examples of frames from the two sequences
material. can be seen in Figure 3.

The second controlled experiment was carried out to test the

performance of the system for more than two cameras. Three mov- :
ing cameras at various zooms observed a scene with two remote5 Conclu3|on and Summary

controlled cars. Using successful object tracking results across . .
. . . In this paper, we propose a method to correspond objects across
the moving cameras, the inter-sequence homographies were esti-

. . uncalibrated cameras that are mounted on aerial vehicles. By
mated and all three mosaics were registered together to create the . .

- - - efining an appropriate error model for our measurements, a geo-

concurrent mosaic, as shown in Figure 6(a). Figure 6(b) shows . . . .
. ; .~ metrically and statistically meaningful approach is presented to
the correspondence of the three sequence trajectories. The final . S !
. L estimate the likelihood of a correspondence hypothesis. Next,
correspondence of objects can be seen in Figure 6(c). The supple-
mentary video contains the individual videos and some extended 3The relative positions of the cameras were fixed in this sequence but

images describing the correspondence graph. no additional constraints were used during experimentation.




— Track 1 - Sequence 1
— Track 1 - Sequence 2
= = Registered Track 1 - Sequence 1 = - Registered Track 2 - Sequence 1

— Track 2 - Sequence 1
— Track 2 - Sequence 2
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Figure 5:First Controlled Sequence - Two cameras and two objects. The trajectories of each object in Sequence 1 (red) and Sequence
(blue) are shown, along with the trajectory of Sequence 2 registered to Sequence 1 (dashed black) using the mosaic-mosaic homography
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Figure 6:Second Controlled Experiment - Three cameras and two objects. (a) Concurrent visualization of three sequences. Informatior
from all three zooms are simultaneously visible in this view.(b) Correspondence of points in trajectories viewed in each cameras. (c)
Correspondence graph of objects in the three views.
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Figure 7:First UAV Experiment - two cameras, six objects. Concurrent visualization of two sequences. The two mosaics were blended
using a quadratic color transfer function. Information about the objects and their motion is compactly summarized in the concurrent mosaic

after computing likelihoods for all pair-wise hypotheses we find are three important assumptions of the proposed approach. First,
the Maximum Likelihood assignment of correspondences. This we assume that the height of the aerial vehicle allows the scene
is done by posing the problem in graph-theoretic terms and usingto be modelled by a plane. It is noted here that for oblique-view
an approximation té&-dimensional matching. A major advantage aerial vehicles or for aerial vehicles monitoring terrain with sig-
of such an approach is that the matching is coherent, i.e. transi-nificant relief, this assumption may be acceptable. Second, we
tive closure is maintained in assignment. We define a termination assume that limited spatio-temporal overlap occurs between the
criteria based on the ‘goodness’ of the solution to avoid commit- fields of view of each pair of cameras. An interesting future di-
ting to degenerate configurations, and finally show that as a resultrection would be to investigate the case where such overlap does
the multiple video streams can be concurrently visualized. There not necessarily occur, i.e. Case 4 of the introduction. Third, we as-
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Figure 8: Second UAV experiment - Short temporal overlap. Despite a very short duration of overlap, correct correspondence was
estimated. (a) Mosaic of Sequence 1 (b) Mosaic of Sequence 2 (c) Concurrent visualization of two sequences. The two mosaics wer
blended using a quadratic color transfer function. Information about the objects and their motion is compactly summarized in the concurren
mosaic.
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