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Abstract

A camera mounted on an aerial vehicle provides an excellent
means for monitoring large areas of a scene. Utilizing several
such cameras on different aerial vehicles allows further flexibil-
ity, in terms of increased visual scope and in the pursuit of mul-
tiple targets. In this paper, we address the problem of tracking
objects across multiple moving airborne cameras. Since the cam-
eras are moving and often widely separated, direct appearance-
based or proximity-based constraints cannot be used. Instead,
we exploit geometric constraints on the relationship between the
motion of each object across cameras, to test multiple correspon-
dence hypotheses, without assuming any prior calibration infor-
mation. There are three novel contributions in this paper. First,
we propose a statistically and geometrically meaningful means of
evaluating a hypothesized correspondence between two observa-
tions in different cameras. Second, since multiple cameras exist,
ensuring coherency in correspondence, i.e. transitive closure is
maintained between more than two cameras, is an essential re-
quirement. To ensure such coherency we pose the problem of ob-
ject tracking across cameras as ak-dimensional matching and use
an approximation to find the Maximum Likelihood assignment of
correspondence. Third, we show that as a result of tracking ob-
jects across the cameras, a concurrent visualization of multiple
aerial video streams is possible. Results are shown on a number
of real and controlled scenarios with multiple objects observed by
multiple cameras, validating our qualitative models.

1 Introduction

The concept of a cooperative multi-camera system, informally a
‘forest’ of sensors [15], has recently received increasing attention
from the research community. The idea is of great practical rel-
evance, since cameras typically have limited fields of view, but
are now available at low costs. Thus, instead of having a high-
resolution camera with a wide field of view that monitors a wide
area, far greater flexibility and scalability can be achieved by ob-
serving a scene ‘through many eyes’, using a multitude of lower-
resolution COTS (commercial off-the-shelf) cameras. In recent
literature, several approaches with varying constraints have been
proposed, highlighting the wide applicability of the concept. For
instance, the problem of tracking across multiplestationarycam-
eras with overlapping fields of view has been addressed in a num-
ber of papers, e.g. [2], [18], [6], [1], [15] and [13]. Extending
the problem to tracking in cameras with non-overlapping fields of

view, geometric and appearance based approaches have also been
proposed recently, e.g. [12], [4], [10], and [22]. A common as-
sumption shared by these methods is that the camera remains sta-
tionary for the duration of sensing. By removing this assumption
and allowing the sensors to move, a much wider area can be ob-
served. A limited type of camera motion has been examined in
previous work: motion of the camera about the camera center, i.e.
pan-tilt-zoom (PTZ) motion. One such work is [16], where Mat-
suyama and Ukita presented an approach using active cameras,
using a fixed point PTZ camera for wide area imaging. In [11]
Kang et al. proposed a method that involved multiple stationary
and PTZ cameras. In this work, it was assumed that the scene was
planar and that the homographiesbetweencameras were known. A
related approach was also proposed in [5], where Collinset al. pre-
sented an active multiple camera system that maintained a single
moving object centered in each view, using PTZ cameras. How-
ever, thus far, there has been no work on tracking objects across
multiple independently moving cameras, whosecentersmove as
well. This is particularly attractive since it allows far wider areas
to be monitored by fewer cameras.

In this work, the problem we address is to track objects across
multiple independently moving cameras mounted of airborne ve-
hicles, without assuming any calibration of the cameras. To the
authors’ knowledge this is the first paper to tackle this prob-
lem. When using sensors in such a decentralized but cooperative
fashion, knowledge of inter-camera relationships become of para-
mount importance in understanding what happens in the environ-
ment. Without such information it is difficult to tell, for instance,
whether an object viewed in each of two cameras is the same ob-
ject or not. In the scenario under study in this paper, obtaining
calibration information usually requires sophisticated equipment,
such as a global positioning system (GPS) or an inertial navigation
system (INS), perhaps with a geodetically aligned elevation map.
Thus approaches that do not require prior calibration information
and are based only on video data are particularly attractive as an al-
ternative. Furthermore, when cameras are moving independently,
the fields of view of different cameras can alternatively move in
and out of overlap and as a result the problem of correspondence
becomes considerably more complicated than that of the station-
ary camera case. It is useful to think of the problem in terms of
spatio-temporal overlapof fields of view (FoV), analogous to spa-
tial overlap in the case of stationary cameras, i.e. for some duration
of time, the FoV of each camera overlaps (spatially) with the FoV
of another camera while observing the moving objects. In terms
of spatio-temporal overlap, we identify four possible cases of the
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problem,
1. Each object is simultaneously visible by all cameras, all the
time: In this instance, there is continuous spatial and temporal
overlap between the fields of view. This rarely occurs in practice,
especially over extended sequences, since aerial vehicles usually
move continuously.
2. Each object is simultaneously visible by some cameras, all
the time: This is the instance of limited spatial overlap, where
all objects are within the ‘collective’ field of view of all the cam-
eras all the time (but not necessarily withineachcamera’s field of
view). This situation occurs most often when each UAV is in pur-
suit of a separate target.
3. Each object is simultaneously visible by some cameras for
a limited duration of time: This is the general case (within the
context of this work), where all objects are visible in some subset
of cameras simultaneously. This is the case most often encoun-
tered in extended runs.
4. Each object is visible by some cameras, but not necessarily
simultaneously: In this case,temporaloverlap does not neces-
sarily occur between any two cameras, while objects are visible
in their field of view. Without making some strong assumptions
about object or camera motion it is difficult to address this case.
This case is the spatio-temporal analog of the problem of track-
ing across stationary cameras with non-overlapping fields of view.
This is the only case we do not address.

In this work, we require at least limited spatio-temporal over-
lap between the fields of view of the cameras (Case 3) to discern
the relationship of observations in the (uncalibrated) moving cam-
eras, i.e. the proposed approach addresses Cases 1, 2 and 3. For
moving cameras, particularly airborne ones where large swaths
of areas may be traversed in a short period of time, coherent vi-
sualization is indispensable for applications like surveillance and
reconnaissance. In fact, the underlying concept of co-operative
sensing is to give global context to ‘locally’ obtained information
at each camera. Thus, we show that as a result of tracking objects
across multiple moving cameras with spatio-temporal overlap of
FoVs, the collective field of view of all the airborne cameras can
be simultaneously visualized using aconcurrentmosaic.

The notation we use in the paper is as follows: there areN
cameras, observing a scene withK objects. An objectk present
in the field of view of cameran is denoted asOn

k . The imaged
location ofOn

k at time t is xn
k,t = (xn

k,t, y
n
k,t, λ

n
k,t)

T ∈ P2, the
homogenous coordinates of the point1 in sequencen. The trajec-
tory of On

k is the set of pointsXn
k = {xn

k,i,x
n
k,i+1, . . .x

n
k,j},

where∆t is the duration from framei to frame j (for the re-
mainder of the paper, we will drop this notation of time unless
explicitly required). For two cameras, a correspondencecn,m

k,l is
an ordered pair(On

k , Om
l ) that represents the hypothesis thatOn

k

andOm
l are images of the same object. For more than two cam-

eras, a correspondencecm,n,o,...p
i,j,k,...l is a hypothesis defined by the

tuple (Om
i , On

j , Oo
k, . . . Op

l ). Note thatO1
1 does not necessarily

correspond toO2
1 , the numbering of objects in each sequence is

in the order of detection. Thus, the problem is to find the set
of correspondencesC such thatcm,n,o,...p

i,j,k,...l ∈ C if and only if
Om

i , On
j , Oo

k, . . . Op
l are images of the same object in the world.

The terminology of graph theory allows us to more clearly rep-
resent these different relationships (Figure 1(a)). We abstract the
problem of tracking objects across cameras as follows. Each ob-

1The abstraction of each object is as a point corresponding to the object
centroid.

served trajectory is modeled as a node and the graph is partitioned
into N partitions, one for each of theN cameras. A hypothesized
correspondence,c, between two observed objects (nodes), is rep-
resented as an edge between the two nodes. In Figure 1(a), Object
1 is visible in all cameras, and the correspondence across the cam-
eras is represented byc123

211. Object 2 is visible only in Camera 1
and Camera 3 and therefore an edge exists only between Camera
1 and 3. Object 3 is visible only in the field of view of Camera 2,
therefore there is a unconnected node in partition corresponding to
Camera 2.

The rest of the paper is organized as follows: In Section 2,
we present a means to estimate the likelihood of a correspondence
hypothesis. In Section 3, the Maximum Likelihood assignment
is computed for multiple cameras in a graph-theoretic framework.
Results in several controlled and real scenarios are shown in Sec-
tion 4, with conclusions and a summary in Section 5.

2 The Likelihood of a Correspon-
dence Hypothesis

In this section, we describe how the likelihood that two trajecto-
ries, observed by two different cameras, originated from the same
world object is estimated - the use of this, in turn, for multiple ob-
jects assignment across multiple cameras is described in Section
4. It should be mentioned at the outset that lower level processing,
such as object detection and trackingwithin each sequence is out-
side the scope of this work. Instead, we assume that tracks have
already been obtained and frame-to-frame estimation of homogra-
phy is available for each camera2. Our focus is to investigate meth-
ods on how to best use this data for correspondenceacrosscam-
eras. Thus, at a certain instant of time, we haveKi trajectories for
thei-th camera corresponding to the objects visible in that camera.
Since the frame-to-frame homography is available, the position of
each point in trajectoryXn

k is transformed to a reference coordi-
nate (e.g. the first frame) of the sequence. The measured image po-
sitions of objects,Xn

k = {xn
k,i,x

n
k,i+1, . . .x

n
k,j} are described in

terms of the true image positions,̄Xn
k = {x̄n

k,i, x̄
n
k,i+1, . . . x̄

n
k,j},

with independent normally distributed measurement noise,µ = 0
and varianceσ2, that is

xn
k,i = x̄n

k,i + ε, ε ∼ N (0, σ). (1)

The principal assumption upon which the similarity between
two trajectories is evaluated is that due to the altitude of the aerial
camera, the scene can be well approximated by a plane in 3-space
and as a result a homography exists between any two frames of
any sequence ([7]). This assumption of planarity dictates that a ho-
mographyHn,m

k,l must exist between any two trajectories that cor-
respond, i.e. for any correspondence hypothesiscn,m

k,l . This con-
straint can be exploited to compute the likelihood that 2D trajecto-
ries observed by two different cameras originate from the same 3D
trajectory in the world - in other words, to estimatep(cn,m

k,l |Xn
k ).

By assuming conditional independence between each correspon-
dencec, and the probability of a candidate solutionC given the
trajectories is,

p(C|{X}) =
Y

ci∈C

p(ci|Xi) (2)

2Several methods have been proposed to achieve this for airborne cam-
eras, and for representative literature on this problem the reader is directed
to [9], [19] and [3].

2



We are interested in the maximum likelihood solution,

C∗ = arg max
C∈C

p(C|{X}), (3)

whereC is the space of solutions. We now describe how to com-
pute the likelihood that two trajectories observed in two cameras
orignated from the same real world object. Using these pair-wise
estimates, we describe how to the maximization of Equation 3 in
Section 3.

2.1 Correspondence Estimators

Two cost functions that can be used to evaluate a correspondence
hypothesis are the algebraic distance and the geometric distance.
To compute the algebraic distancedalg(Xn

k ,Xm
l ) associated with

a correspondencecn,m
k,l , the Direct Linear Transform (DLT) algo-

rithm can be used [7], minimizing the norm||Ah||, where

A =

2
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andh is the inter-camera homography in row major form. The
similarity between two trajectories can be measured by observing
the condition number ofA, i.e. the ratio of the largest singular
value to the smallest singular value ofA. Thus, the algebraic dis-
tance between two trajectories can be computed using,

dalg(X p
k ,X q

l ) =
σA

1

σA
9

, (4)

whereσA
n is then-th largest singular value ofA. The advantage

of the algebraic cost function is that it provides a non-iterative
solution and can evaluate the similarity between two trajectories
without the need to explicitly estimate the inter camera homog-
raphy. However, the cost function does not have any geometrical
interpretation and it does not allow us to incorporate the measure-
ment error model explicitly. Instead, as will be seen presently, this
algebraic approach is useful as a stable initialization for a more
geometrically and statistically meaningful formulation.

Since measurement errors are expected in both trajectories, we
use there-projectiondistance as a cost function. This re-projection
distance is an alternative cost function that explicitly minimizes
the transfererror between the trajectories. This approach evalu-
ates the probability of a correspondence hypothesis by estimating
a homography,Hl,q

k,p and two new trajectories̄X p
k andX̄ q

l , related

exactlyby Hl,q
k,p that minimize the geometric distance,

dr(X p
k ,X q

l ) =
X

t

d(xp
k,t, x̄

p
k,t) +

X
t

d(xq
l,t, x̄

q
l,t), (5)

whered(·) is a distance metric, like the Euclidean distance. In par-
ticular, it is an attractive choice since it can be shown that the re-
projection error is related to the Maximum Likelihood estimate of

both the homography and the object trajectories, [7]. Since the er-
rors at each point are assumed independent, the conditional prob-
ability of the correspondence given the trajectories in the pair of
sequences can be estimated,

p(X p
k ,X q

l | ck,p
l,q ;H, X̄ p

k ) =
Y

i

1

2πσ2
e−dr(Xp

k
,Xq

l
)/(2σ2). (6)

Thus, to estimate the data likelihood, we compute the optimal
estimates of the homography and exact trajectories (that minimize
Equation 5) and use them to evaluate Equation 7. However, when
attempting to obtain globally optimal assignment of multiple ob-
jects the lengths of trajectories may vary considerably from object
to object, since the effective length of trajectories depends on the
duration of temporal overlap between the FoVs of the two cam-
eras. Therefore, to obtain a normalized estimate with respect to
the duration of overlap between each trajectory,

p( ck,p
l,q |X p

k ,X q
l ) =

Y
i

 
1

2πσ2
e−dr(Xp

k
,Xq

l
)/(2σ2)

!1/∆t

, (7)

where∆t is the duration of overlap between the two trajectories.
Finally, taking the log we have,

log p( ck,p
l,q |X p

k ,X q
l ) ∝ − 1

∆t

X
i

log dr(X p
k ,X q

l ). (8)

3 Maximum Likelihood Assignment
of Global Correspondence

In the previous section, we developed a model to evaluate the
probability of correspondence between two trajectories. Gen-
erally, however, when several objects are observed simultane-
ously by multiple cameras we require an optimalglobal assign-
ment of object correspondences. We show that within the pro-
posed formulation, this global optimality can be described in
terms of a Maximum Likelihood estimate. As mentioned ear-
lier, the problem of establishing correspondence between trajec-
tories can be posed within a graph theoretic framework. Con-
sider first, the straightforward case of several objects observed
by two moving cameras. This can be modeled by constructing
a complete bi-partite graphG = (U, V, E) in which the vertices
U = {u(X p

1 ), u(X p
2 ) . . . u(X p

k )} represent the trajectories in Se-
quencep, andV = {v(X q

1 ), v(X q
2 ) . . . v(X q

k )} represent the tra-
jectories in Sequenceq, andE represents the set of edges between
any pair of trajectories fromU and V . The bi-partite graph is
complete because any two trajectories may match hypothetically.
The weight of each edge is the probability of correspondence of
TrajectoryX q

l and TrajectoryX p
k , as defined in Equation 7. By

finding the maximum matching ofG, we find a unique set of cor-
respondenceC′, according to the maximum likelihood estimate,

C′ = arg max
C∈C

X

c
k,p
l,q
∈C

log p(ck,p
l,q |X p

k ). (9)

whereC is the solution space. Several algorithms exist for the
efficient maximum matching of a bi-partite graph, for instance [14]
or [8] which areO(n3) andO(n2.5) respectively.

This formulation generalizes tomultiple moving cameras by
considering completek-partite graphs instead of the bi-partite
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Figure 1:Graphical representation. (a) Graphical Notation. Each partition corresponds to one camera input and each node corresponds
to an observed object in that sequence. An edge is a correspondence between objects seen in two cameras. (b) An impossible matching.
Transitive closure in matching is an issue for matching in three of more cameras. The dotted line shows the desirable edge whereas the
solid line shows a possible solution from pairwise matching. (c) A possible solution in three cameras. (d) The digraph associated with
correspondence in (c).

Objective
Given object trajectories from all cameras for∆t > 4, estimate globally optimal correspondence of object across cameras.

Algorithm
While p(C| {X p

m X p
n . . .X p

o }, {X q
i X q

j . . .X q
k }) > γσ do,

1. Number cameras arbitrarily

2. For all pairwise c, computep(cn,m
k,l |Xn

k ,Xm
l )

• Normalization of Xn
k : Compute a similarity transform,Tn

k , transforming the mean of the points to the origin and making the
average distance of the points from the origin equal to

√
2. This should be done separately for each trajectory.

• Initialization : Use the DLT algorithm to compute an initial estimate ofH̃n,m
k,l for each correspondence hypothesis. Denormal-

ize the computed homography,Hn,m
k,l = Tn

k
−1H̃n,m

k,l Tn
k .

• Minimize Re-projection Error : Minimize the re-projection error of Equation 5 using the Levenberg-Marquardt non-linear
minimization algorithm. For large number of points sparse minimization methods are recommended (see [20]).a

3. Construct Split Graph G∗: Find the maximum matching of the split of the acyclic directed graph described in Section 3.

4. Evaluate confidence in solution: Using the estimated maximum matching, compute the confidence in solution according to Equation
12.

Figure 2: Algorithm for object tracking across moving cameras

aThis step is optional. Estimates provided by the DLT algorithm usually suffice.

graphs considered previously, shown in Figure 1. Each hyper-
edge represents the hypothetical correspondencecm,n,o,...p

i,j,k,...l be-
tween(Om

i , On
j , Oo

k, . . . Op
l ). However, it is known that thek-

dimensional matching problem is NP-Hard fork ≥ 3. A possi-
ble approximation that is often used is pairwise, bi-partite match-
ing, however such an approximation is unacceptable in the current
context since it is vital that transitive closure is maintained while
tracking. The requirements of consistency in the tracking of ob-
jects across cameras is illustrated in Figure 1(b). Instead, to ad-
dress the computational complexity involved while accounting for
consistent tracking, we construct a weighted digraphD = (V, E)
such that{V1, V2, . . . Vk} partitionsV , where each partition corre-
sponds to a moving camera. Direction is obtained by assigning an
arbitrary order to the cameras (for instance by enumerating them),
and directed edges exist between every node in partitionVi and
every node in partitionVj wherei > j (due to the ordering). This
can be expressed asE = {v(X p

k )v(X q
l )|v(X p

k ) ∈ Vp, v(X q
l ) ∈

Vq}, wheree = v(X p
k )v(X q

l ) represents an edge andq > p. The
solution to the original correspondence problem is then equivalent
to finding the edges of maximum matching of the splitG∗ of the
digraphD (for a proof see [21]). By forbidding the existence of
edges against the ordering of the cameras,D is constructed as an
acyclic digraph, and therefore this approach can be used to obtain
correspondence can be obtained efficiently. Figure 1(c) shows a
possible solution and it’s corresponding digraph, Figure 1(d).

Finally, we need to ensure that ‘left-over’ objects are not as-
signed correspondence. For instance, consider the case when all
but one object in each of two cameras have been assigned corre-
spondence. Now, although the ‘left-over’ objects in each camera
correspond to the two different objects in the real world (each that
did not appear inone of the camera FOVs), they would be as-
signed correspondence. In order to avoid this we introduce a new
partition in the graph corresponding to anull camera, with a node
correpsonding to each object in each camera. The null camera is
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assigned to be the last in the camera ordering so a directed edge
exists between every node in the rest of the graph and a node in the
null partition. The weight of each such edge discounts ‘left-over’
correspondences if the data likelihood is too low, computed as

p(cp,0
k,0|X p

k ) = − 1

∆t

X
i

log dr(X p
k ,X p,0

k,0 ) (10)

where
X p,0

k,0 = X p
k + γ · σ (11)

andσ is the standard deviation of the noise model of 1 andγ is
an empirical constant (set to 2 for all experiments reported in this
paper). In a meaningful way this ensures that correspondence hy-
potheses with low likelihoods are ignored.

3.1 Evaluating the Matching

For the correspondence of objects to be meaningful, the object
must be observed in both cameras simultaneously for some short
duration. The minimum number of observations required to dis-
cern correspondence for two objects is five observations, i.e. both
objects are observed in the field of view for four (not necessarily
consecutive) frames, since four correspondences are the minimum
required to estimate a homography. Of course, since the motion of
cameras is smooth, the duration of overlap is usually significantly
greater than four and this allows numerically stable computation
of correspondence. However, in real world scenarios, objects tend
to move in straight lines, displaying more variant (non-collinear)
motion only over larger durations of observation. This can often
cause degenerate estimates of the homographies during short dura-
tions of observation. Thus, if matching is only performed between
objects, as described earlier, the approach becomes dependent on
the degree of non-collinearity of the object motion. What needs to
be specified is a termination criteria: at what point in time can a
set of correspondenceC′ (see Equation 9) be made confidently?

The base case in the online tracking assumes that some simul-
taneous observations have been observed (> 4). To evaluate con-
fidence in the solution we have,

Proposition 1 All homographies mapping pairs of corresponding
tracks in Sequencesp andq are equal (up to a scale factor), and are,
in turn, the same homography that maps the reference coordinate
of Sequencep to that of Sequenceq.

Since all the objects lie on the same plane, the homography
relating the image of the (global-motion compensated) trajectory
of any objectHp,q

k,l in Sequencep to the image of the trajectory
of that object in Sequenceq is the same as the homographyHp,q

i,j

relating any other object’s trajectories in the two sequences (i.e.
i 6= p andj 6= q). Since these trajectories lie on the scene plane,
these homography are equal toHp,q, the homography that related
the images of Sequencep to the images of Sequenceq.

Proposition 1 provides us with a termination criteria. By using
all the points simultaneously to evaluate the confidence in the so-
lution at each time instance, the spatial separation of different tra-
jectories enforces a strong non-colinear constraint on correspon-
dence. In this way, even with relatively small durations of ob-
servation the correct correspondence of objects can be discerned.
Since the cameras are continuously moving, matching with small
durations of observation is one basic challenge of this work, and
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Figure 4: Variation of some global correspondence hy-
potheses. (a) Variation for Controlled Experiment 1. (b)
Variation for UAV Experiment 2. Due to colinear motion
of the object, ambiguity in correspondence exists initially
which is quickly resolved as the object begin to show more
non-colinear behavior.

the ability to handle this case is an important advantage of our ap-
proach. Since a characteristic of the correct correspondence is that
all homographies between each pair of corresponded trajectories
is equal, a final assignment of correspondence between two se-
quences is made based on the probability ofall objects matching
simultaneously,

p(C| {X p
m X p

n . . .X p
o }, {X q

i X q
j . . .X q

k }) (12)

whereC is the set of correspondence of all objects between two
cameras that is found by the matching algorithm. Clearly, Equa-
tion 12 can be computed in the same way as Equation 7. Thus, if
p(C| {X p

m X p
n . . .X p

o }, {X q
i X q

j . . .X q
k }) > γσ for each pair of

cameras, then we commit to the current solution. The final algo-
rithm is summarized in Figure 2.

3.2 Concurrent Visualization
The purpose of aerial surveillance is to obtain an understanding
of what occurs in an area of interest. While it is well known that
video mosaics can be used to compactly represent a single aer-
ial video sequence, they cannot compactly represent several such
sequencessimultaneously. If, on the other hand, the homogra-
phies between each of the mosaics (corresponding to each aerial
sequence) are known, aconcurrentmosaic can be created of all
the sequences simultaneously. Since each sequence is aligned to a
single coordinate frame during the construction of individual mo-
saics, Proposition 1 provides us with the means to register mosaics
from multiple sequences onto one concurrent mosaic. To this end,
the known point-wise correspondences from object tracking can be
used to compute the ‘inter-sequence’ homography (e.g. the eigen-
vector associated with the smallest eigenvalue of the matrixA).
Final alignment is then refined using direct (gradient based) regis-
tration.

4 Results
In this section, we report the experimental performance of the pro-
posed method in two controlled scenarios, and two real scenarios.
In each experiment, we demonstrate the efficacy of the approach to
accurately track moving objects across multiple moving cameras.
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Figure 3:Corresponding frames from two sequences. Both rows show frames recorded from different cameras.

We have tested under a diverse set of situations: with multiple
cameras, multiple objects, cameras of different modalities and at
different zooms. It is recommended that the results be viewed in
color. Additional results and videos associated with these results
have been included in the supplementary folder.

4.1 Controlled Sequences

Two controlled experiments were carried out, where remote con-
trolled cars were observed by moving camcorders. In the first ex-
periment, two moving cameras were used, along with two remote
controlled cars. The cars were operated on a (planar) floor with
the two moving cameras viewing their motion from the height of
about 12 feet. Figure 5 shows the trajectories of the car on the reg-
istered coordinate frame of Sequence 1. With two views and two
objects there are five possible hypothesis,

1. {(O1
1, O2

1), (O
1
2, O2

2)}
2. {(O1

2, O2
1), (O

1
1, O2

2)}
3. {(O1

1, O2
1), (O

1
2), (O

2
2)}

4. {(O1
2, O2

1), (O
1
1), (O

2
2)}

5. {(O1
2), (O

2
1), (O

1
1), (O

2
2)}

According to the first two hypothesis there are at least 2 objects
present in the world, according to the third and the fourth hypoth-
esis there are at least three objects in the world, and according
to the fifth hypothesis there are at least four objects in the world.
The variation of the first two hypotheses with respect to time is
shown in Figure 3.2(a). Clearly, the first hypothesis is the correct
one. Videos and online results are available in the supplementary
material.

The second controlled experiment was carried out to test the
performance of the system for more than two cameras. Three mov-
ing cameras at various zooms observed a scene with two remote
controlled cars. Using successful object tracking results across
the moving cameras, the inter-sequence homographies were esti-
mated and all three mosaics were registered together to create the
concurrent mosaic, as shown in Figure 6(a). Figure 6(b) shows
the correspondence of the three sequence trajectories. The final
correspondence of objects can be seen in Figure 6(c). The supple-
mentary video contains the individual videos and some extended
images describing the correspondence graph.

4.2 UAV Sequences
In these experiments, two unmanned aerial vehicles (UAVs)
mounted with cameras viewed real scenes with moving cars, typ-
ically with a smaller duration of overlap than the controlled se-
quence. In the first experiment, six objects were recorded by one
EO and one IR camera3. The vehicles in the field of view moved
in a line, and one after another performed a u-turn and the dura-
tions of observation of each object varied in both cameras. Since
only motion information is used, the different modalities did not
pose a problem to the proposed approach. Figure 7 shows all six
trajectories color coded in their correspondence. Final correspon-
dence likelihoods are shown in Table 4.2. Despite the fact that the
sixth trajectory (color coded yellow in Figure 7) was viewed only
briefly in both sequences and underwent mainly colinear motion
in this duration, due to the global spatial constraint of Equation 12
and the maximum matching, correct global correspondence was
obtained.

In the next experiment, sequences with very short temporal
overlap was used. Since the motion of aerial vehicles is far less
controlled than that of controlled sequences, the duration of time
in which a certain object is seen in both cameras is smaller. We
show that despite the challenge of smaller overlap, object can be
successfully tracked across the moving cameras. The variation
of the ’goodness’ of each hypothesis is shown in Figure 3.2(b).
Since the motion of the objects were generally colinear in the be-
ginning of the experiment, the probability of each correspondence
fluctuates, but the correct correspondence, (Hypothesis: 1 2 3),
is clearly higher as the process reaches an equilibrium. Using this
correspondence, the concurrent mosaic of the scene was generated,
shown in Figure 8. Examples of frames from the two sequences
can be seen in Figure 3.

5 Conclusion and Summary
In this paper, we propose a method to correspond objects across
uncalibrated cameras that are mounted on aerial vehicles. By
defining an appropriate error model for our measurements, a geo-
metrically and statistically meaningful approach is presented to
estimate the likelihood of a correspondence hypothesis. Next,

3The relative positions of the cameras were fixed in this sequence but
no additional constraints were used during experimentation.
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Figure 5:First Controlled Sequence - Two cameras and two objects. The trajectories of each object in Sequence 1 (red) and Sequence 2
(blue) are shown, along with the trajectory of Sequence 2 registered to Sequence 1 (dashed black) using the mosaic-mosaic homography.
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Figure 6:Second Controlled Experiment - Three cameras and two objects. (a) Concurrent visualization of three sequences. Information
from all three zooms are simultaneously visible in this view.(b) Correspondence of points in trajectories viewed in each cameras. (c)
Correspondence graph of objects in the three views.

Figure 7:First UAV Experiment - two cameras, six objects. Concurrent visualization of two sequences. The two mosaics were blended
using a quadratic color transfer function. Information about the objects and their motion is compactly summarized in the concurrent mosaic.

after computing likelihoods for all pair-wise hypotheses we find
the Maximum Likelihood assignment of correspondences. This
is done by posing the problem in graph-theoretic terms and using
an approximation tok-dimensional matching. A major advantage
of such an approach is that the matching is coherent, i.e. transi-
tive closure is maintained in assignment. We define a termination
criteria based on the ‘goodness’ of the solution to avoid commit-
ting to degenerate configurations, and finally show that as a result
the multiple video streams can be concurrently visualized. There

are three important assumptions of the proposed approach. First,
we assume that the height of the aerial vehicle allows the scene
to be modelled by a plane. It is noted here that for oblique-view
aerial vehicles or for aerial vehicles monitoring terrain with sig-
nificant relief, this assumption may be acceptable. Second, we
assume that limited spatio-temporal overlap occurs between the
fields of view of each pair of cameras. An interesting future di-
rection would be to investigate the case where such overlap does
not necessarily occur, i.e. Case 4 of the introduction. Third, we as-
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O2
1 O2

2 O2
3 O2

4 O2
5 O2

6
O1

1 -4.848 -15.106 -32.925 -40.430 -69.078 -69.078
O1

2 -10.434 -4.484 -26.017 -57.386 -21.647 -69.078
O1

3 -35.285 -15.242 -4.726 -14.998 -14.634 -63.502
O1

4 -69.078 -38.826 -15.954 -4.451 -3.662 -38.261
O1

5 -69.078 -19.473 -18.328 -7.690 -3.879 -13.840
O1

6 -69.078 -69.078 -51.216 -42.026 -51.688 -18.042

Table 1:Object correspondence log-likelihoods for the first UAV
experiment. The values of correct correspondences are shown in
bold. Despite some ambiguities (such as correspondencec1,2

6,6 and

c1,2
4,6) the maximum matching resolves these ambiguities. Clearly,

a greedy algorithm would have failed.

sume that the object display sufficiently non-colinear motion. This
is not a strong constraint, since as we have demonstrated conclu-
sively through Figure 3.2(b) the degree of non-colinearity does not
have to be very large. One of the major strengths of the proposed
approach is that we demonstrate that calibration information is not
required to discern correspondence of object across the cameras.
To our knowledge, this problem has not been tackled before, with
calibrated or uncalibrated cameras.

Finally, using multiple aerial vehicles for observing wide ar-
eas is an idea of significant applicability. While several algorithms
have been proposed for rearranging the positions of the aerial vehi-
cles based on some sensors like GPS or INS for optimal coverage,
object correspondence across multiple aerial vehicles presents an
interesting option once the ‘control loop’ is closed, namely that of
rearranging multiple sensors using image information and object
correspondence. Instead of a cost function of maximum cover-
age, or maximum overlap between aerial vehicles, more intelli-
gent cost functions based on object positions, proximity or object
importance can be autonomously used.
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