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Abstract. Manual analysis of pedestrians and crowds is often impractical for 

massive datasets of surveillance videos. Automatic tracking of humans is one of 

the essential abilities for computerized analysis of such videos. In this keynote 

paper, we present two state of the art methods for automatic pedestrian tracking 

in videos with low and high crowd density. For videos with low density, first 

we detect each person using a part-based human detector. Then, we employ a 

global data association method based on Generalized Graphs for tracking each 

individual in the whole video. In videos with high crowd-density, we track in-

dividuals using a scene structured force model and crowd flow modeling. Addi-

tionally, we present an alternative approach which utilizes contextual infor-

mation without the need to learn the structure of the scene. Performed evalua-

tions show the presented methods outperform the currently available algorithms 

on several benchmarks. 

Keywords: Human Detection, Tracking, Data Association, Crowd Density, 

Crowd Analysis, Automatic Surveillance. 

1 Introduction 

The number of surveillance cameras in urban area is increasing at a significant rate 

which results in massive amounts of videos to be analyzed. Observing crowds and 

pedestrians manually in such large amount of data is cumbersome and often impracti-

cal which makes automated methods extremely favorable for this purpose. Automatic 

tracking of pedestrians is one of the required abilities for computerized analysis of 

such videos.
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The density of pedestrians significantly impacts their appearance in a video. For 

instance, in the videos with high density of crowds, people often occlude each other 

and usually few parts of the body of each individual are visible. On the other hand, 

the full body or a significant portion of the body of each pedestrian is visible in videos 

with low crowd-density. These different appearance characteristics require tracking 

methods which suite the density of the crowd. In this paper, we present two state of 

the art methods for tracking pedestrians in videos with low and high density of 

crowds.  
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For videos with low density of pedestrians (Section 2), first we detect individuals 

in each video frame using a part-based human detector which efficiently handles oc-

clusion (Subsection 2.1). Later, we employ a global data association method based on 

Generalized Minimum Clique Graphs for tracking each person over the course of the 

whole video (Subsection 2.2). 

We present two approaches to tracking for videos with high density of crowds. In 

the first one, the scene layout constraint which is captured by learning Dynamic Floor 

Field, Static Floor Field and Boundary Floor Field along with crowd flow is leveraged 

to track individuals in the crowd. In the second approach, no learning or crowd flow is 

used to track targets. Instead, the tracking is performed utilizing salient and contextual 

information. 

2 Pedestrian Tracking in Videos With Low Crowd Density 

Our framework for tracking pedestrians in videos with low density of crowds consists 

of two main steps: Human Detection (subsection 2.1) and Data Association (subsec-

tion 2.2): 

2.1 Part-based Human Detection 

Human detection is a fundamental problem in video surveillance. Robust human 

tracking is highly dependent on reliable detection in each frame. Although human 

detection has been well studied in computer vision, most of the existing approaches 

are unsuitable for detecting targets with large variance in appearance. Therefore, ro-

bust human detection remains a challenge due to the highly articulated body postures, 

occlusion, background clutter and viewpoint changes. 

Many approaches have been proposed for human detection over the last decade. In 

most of them, the problem is formulated as a binary sliding window classification, i.e. 

an image pyramid is constructed and a fixed size window is scanned over all of its 

levels to localize humans using a non-maximum suppression procedure. 

Dalal and Triggs [6] use HOG as low a level feature which is shown to outperform 

other competitive features, such as wavelets, for human detection. HOG provides a 

robust feature set that allows the human body to be distinguished discriminatively 

even in cluttered background. The descriptor purposed by Dalal and Triggs computes 

an edge oriented histogram on a dense grid of uniformly spaced cells. Then, they use 

overlapping local contrast normalizations in order to improve the overall perfor-

mance. A linear SVM classifier is used to learn a model for the human body using 

positive and negative samples. The detector is then applied to the image to localize 

human bodies, i.e. the detector takes an image, a position within that image and a 

scale as the inputs and determines if there is a person in that particular location and 

scale. Fig. 1 (a) shows a sample positive image and its HOG descriptor. 

Using local features to learn body parts is another approach to human detection. 

Part-based approaches which model an object as a rigid or deformable configuration 

of parts are shown to be very effective for occlusion handling. Felzenszwalb et al. [7] 



simultaneously learn parts and an object model. Their model is an enriched version of 

Dalal and Triggs’ which uses a star structured part-based model defined by a root 

filter plus a set of parts associated using a deformation model. The score associated to 

each star model is the summation of the scores of the root filter and parts at a given 

location and scale minus a deformation cost which measures the deviation of parts 

from their ideal location relative to the root. The scores of both parts and root are 

defined as the dot product of a learnt filter which belongs to that part and a set of 

extracted features for that specific location.  The same set of features as [6], i.e. HOG, 

is used in [7] with the difference that principle component analysis has been applied 

to HOG features in order to reduce the dimensionality. 

 

 

Fig. 1. (a) a sample positive image and its HOG descriptor. (b) Left: Detections obtained using 

part-based human detector in [7]. Right: A model for root and parts and a spatial model for the 

location of each part relative to the root. 

Human Detection with Occlusion Handling.  

While the deformable part-based model has recently shown excellent performance 

in object detection, it achieves limited success when the human is occluded. In partic-

ular, the final score in [7] is computed using the score of all the parts without consid-

ering that some of them can be occluded by other pedestrians or static objects in the 

scene. The occlusion happens especially in crowded scenes such as the example 

shown in Fig. 2 which signifies the drawback of this method.  Considering the score 

of the occluded parts in the final decision score may cause the algorithm to ignore 

most of the partially occluded humans in the final detection results. Therefore, some 

methods such as [8] or [9] rely on head detection only and disregard the rest of the 

body. 

To address this problem, we purpose in [10] to infer occlusion information from 

the score of the parts and utilize only the ones with high confidence in their emer-

gence. By looking at the score of each part, we find the most reliable set of parts that 

maximizes the probability of detection. Let   denote the HOG feature of the image, 

and         represent the location of a part. The detection score at location         
defined in [7] is: 
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where   is the bias term,   is the number of parts, and       is the score of part   
which is computed as: 
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where    
 is the part filter, and         denotes the vector obtained by concatenating 

the feature vectors from   at the sub window of the part   .         denotes the dis-

placement of the parts with respect to the anchor position. To address the discussed 

issue, instead of aggregating the score of all the parts, we select the subset of parts 

which maximize the detection score: 
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The sigmoid function is introduced to normalize the score of the parts. The pa-

rameters   and   are learned by the sigmoid fitting approach and      is the set car-

dinality. This equation corresponds to the average score of the parts in a subset which 

makes the comparison between different subsets easy. 

If there is an occluded part in a subset     , its average score will be lower than a 

case which doesn’t have any occluded parts. Therefore, by maximizing the above 

equation, we obtain the most reliable set of parts and its corresponding detection 

score. In our experiments we consider only three subsets of parts (full body, upper 

body and head only). We found these three subsets to be representative enough for 

most scenarios. That way, we do not need to search for all the 2
n
 parts. Fig. 2 demon-

strates the qualitative comparison between [7] and our approach.. 

 

 

Fig. 2. Left: human detection results using [7]. Right: human detection results using our ap-

proach where red boxes show the human detected as full bodies, green boxes show the humans 

detected as upper bodies, and yellow boxes show the humans detected as heads only. It is clear 

that [7] failed to detect occluded humans since it does not have an explicit occlusion model, 

while our approach detects the occluded parts and excludes them from the total detection 

scores, thus achieving significant improvements especially in crowded scenes. 

2.2 Data Association Using Generalized Graphs 

The method explained in subsection 2.1 detects humans in each video frame. Howev-

er, it does not specify which detections belong to one identity. We need to determine 

the detections which correspond to one particular pedestrian in order to form a trajec-

tory. We employ a data association method based on Generalized Minimum Clique 



Problem (GMCP) for this purpose. The input to the data association method is the 

detections obtained using the human detector of subsection 2.1, and the output is the 

trajectory of each pedestrian in the video. Fig. 3 shows the block diagram of this pro-

cess. First a video is divided into smaller segments and the human detector is applied 

to each video frame. Then, the GMCP-based data association method is utilized in 

order to form the tracklets of pedestrians in each segment. Later, we perform another 

data association using GMCP to merge the tracklets of one person found in different 

video segments into a full trajectory spanning over the course of the whole video. 

 

Fig. 3. Block diagram of the data association method. A video is divided into smaller segments, 

and the GMCP-based method is employed to find pedestrian tracklets and trajectories. 

Finding Tracklets of Pedestrians in One video Segment. 

In order to determine if a group of detections from different video frames belong to 

one person, we utilize two features for each detection: Appearance and Spatial Loca-

tion. If the visual appearances of a group of detections are similar and the tracklet 

they form is smooth, we conclude that they belong to one identity. On the other hand, 

if the appearances of some of the detections are not similar to the rest or if the trajec-

tory they form includes abrupt jumps, we infer that some of the detections must be-

long to other pedestrians. In order to perform this task, we formulate the input to our 

data association problem as the graph           where     and  denote the set 

of nodes, edges and edge weight respectively. Each node represents one human detec-

tion. The nodes in   are divided into a number of disjoint clusters. Each cluster repre-

sents one video frame and the nodes therein represent the detections in that particular 

frame. An edge weight is defined as the difference between the color histograms of 

two detections. Therefore, if two human detections are visually similar, the weight of 

the edge between their representing nodes is expected to be low and vice versa.  

The solution to our data association problem is found by identifying one detection 

from each frame in a way that all the selected detections belong to one person. In 

other words, a feasible solution can be represented by a subset of the nodes of   

which we call    . We define the appearance cost of a feasible solution, 

               , as the summation of all the edge weights between its nodes. There-

fore, by solving the optimization problem          
                  , the feasible 

solution with the most consistent appearance features is found.  

Generalized Minimum Clique Problem (GMCP) [12] is defined as selecting a sub-

set of nodes from a superset in a way that the summation of edges weights between 

the selected nodes is minimized. The nodes in the superset are divided into a number 

of disjoint clusters. Exactly one node from each cluster should be included in the sub-

set of selected nodes. As can be understood from the definition of GMCP, solving 



GMCP for the graph   is equivalent to solving our data association problem 

of         
  

                 . Therefore, we find the generalized minimum clique 

of   in order to find the feasible solution     which has the minimum cost. 

However, we add a term based on motion to our optimization function in order to 

incorporate the smoothness of trajectory in identifying the best feasible solution. 

Therefore, the optimal feasible solution,  ̂ , is found by solving: 

 

 ̂        
  

                               

 

The motion cost,            , is based on the fact that humans tend to move smooth-

ly and avoid unnecessary abrupt changes in direction and speed. Since a video seg-

ment usually covers a short temporal span of a few seconds, the motion of pedestrians 

therein can be assumed to be near constant velocity. We utilize a global motion model 

proposed in [11] in order to assign a cost to a feasible solution based on motion. The 

employed motion model assigns a low cost to    if the corresponding tracklet follows 

constant velocity model and vice versa. 

 ̂  found by solving the aforementioned optimization problem identifies the detec-

tions in different video frames which belong to one person. Therefore, by finding  ̂  

the tracklet of one pedestrian in one video segment is found. Then, we exclude the 

nodes included in  ̂  from the graph   and solve the optimization problem again in 

order to compute the tracklet for the next pedestrian in the segment. This process 

continues until the time no or few nodes are left in graph   which implies all the pe-

destrians are tracked. 

The human detector may fail to detect a pedestrian in one frame. This may happen 

due to several reasons such as occlusion, articulated pose or noise. Since GMCP se-

lects one detection from each frame, it will choose an incorrect node for the frames 

where a particular person does not have a detection. Therefore, we add hypothetical 

nodes to each cluster which are supposed to represent virtual detections for the cases 

where human detector failed. The appearance features and spatial locations of hypo-

thetical nodes are calculated based on the other detections included in    as explained 

in [11]. 

The tracklets found in 4 segments of a sample video sequence are shown in fig 4 

(a).  

 



 

Fig. 4. (a) Tracklets found in 4 segments of a sample video sequence. (b) Tracklets are merged 

into full trajectories for all the pedestrians. 

Merging Tracklets into Trajectories. 

The explained process forms the tracklets of pedestrians in each video segment. In 

order to form the full trajectory of one person over the course of the whole video, we 

need to identify the tracklets which belong to one identity and merge them into a tra-

jectory. This task in fact requires solving another data association problem. We em-

ploy a method similar to the one explained earlier in order to perform the association 

between tracklets. For this purpose, each tracklet in one segment is represented by one 

node. The appearance feature of each node is the average of color histograms of the 

detections in the corresponding tracklet. The spatial location of a node is defined as 

the middle point of the corresponding tracklet. We form an input graph similar to    

and solve the optimization problem explained earlier [11]. Doing that, the tracklets 

which include visually similar detections and form a smooth trajectory are associated 

together. Therefore, the trajectories of all pedestrians in the whole video are found. 

Sample result of the merging process is shown in fig. 4 (b). The tracklets shown in 

fig. 4 (a) are merged to form the full trajectories shown in fig. 4 (b).  

Experimental Results.  

We evaluated the described data association method on 4 standard sequences. 

Town Center is a sequence of 4500 frames which shows a semi-crowded scene. TUD-

Crossing and TUD-Stadtmitte are two sequences with 201 and 170 frames respective-

ly. PETS2009-S2L1 includes 800 frames with a challenging scenario because of fre-

quent changes in the directions of the pedestrians.  

 

 



 

Table 1 shows the tracking results for town center sequence along with comparison 

to the state of the art. MOTA and MOTP represent the accuracy and precision of 

tracking based on CLEAR MOT metrics [13]. Prec. and Rec. denote precision and 

recall value of assigning detections to their appropriate trajectories respectively. IDsw 

denotes number of ID-switches which represents the number of times a trajectory 

incorrectly switches between two different identities. Table 2 shows the evaluation 

results for TUD-Crossing, TUD-Stadtmitte and PET2009-S2L1 sequences. As can be 

seen, the presented data association method outperforms the state of the art on all the 

sequences.  

The average time of performing data association is 4.4 seconds per frame using 

non-optimized Matlab code. The time complexity can be significantly improved upon 

availability of a parallel and optimized implementation in C.  

3 Pedestrian Tracking in Videos With High Crowd Density 

High density crowded scenes are characterized by a large number of individuals per 

unit area. With high density comes a new set of challenges that are not present in non-

crowded scenes. These include a large number of individuals and their complex inter-

actions, small target size, and difficulty in establishing correspondences due to prox-

imity among individuals as well as occlusions caused by inter-object interactions. 

Furthermore, these challenges are dependent on density, the higher the crowd density, 

the more difficult it is to detect and track individuals. Fig. 5 provides some examples 

of dense crowds. 

 

Fig. 5. Examples of high-density crowded scenes 

 



3.1 Tracking in dense crowds using Floor Fields 

The first approach [26] we present for tracking high-density crowds leverages on the 

observation that the behavior of one individual in a crowded scene is dependent on its 

interactions with other individuals as well as structure of the scene. A model that cap-

tures these interactions in space-time can serve as an auxiliary source of information, 

thereby constraining the likely movement of individuals in the scene. Since move-

ment of individuals in a crowd is restricted by other individuals and scene structure, 

we can treat the crowd as a collection of mutually interacting particles. At each point 

in the scene, we build a matrix of preferences that captures the likelihood of transition 

of a particle from one point in the scene to another point in its spatial neighborhood. 

Each transition is associated with a probability, where higher probability higher like-

lihood for a transition to occur. With inspiration from evacuation dynamics, where 

floor fields are manually specified for simulation purposes, in this approach, we au-

tomatically learn and model the interactions among individuals of a crowd through 

floor fields and use them for generating better predictions when establishing corre-

spondences across frames. 

 

Fig. 6. In (a, b), the red dots are the particles on an individual while (c) shows the transition 

matrix that is obtained from the floor fields. 

 

Static Floor Field (SFF). SFF captures the general movement of crowd in the scene, 

for instance, the dominant path taken by the crowd towards the preferred exit location. 

People tend to form crowds when they share the same goal and this goal-directed and 

rational behavior of crowds provides an important cue to the movement of individuals 

in the crowd. The process to compute SFF follows: First, optical flow is computed at 

each location for the initial Ns frames. The flow vectors are then averaged over Ns 

frames providing smoothed-out average flow at each location in the scene. Next, sink 

seeking process is performed to discover the sinks – attractive regions towards which 

the individuals in the crowd move. For this, we initialize a grid of particles over com-

puted flow field. Each particle moves under the influence of the flow field taking into 

account the influence from neighboring flow vectors. 

 



 

Fig. 7. Computation of Static Floor Field. (a) shows the dense optical flow whereas (b) is the 

smoothed out flow. (c) describes the sink-seeking process where red dots are velocity vectors 

from  (b) for one particle, cyan dots are the neighbors, orange dot is the sink, whereas rectan-

gles are the sliding windows. (d) shows the path for one particle originating at yellow and end-

ing at red (the sink). 
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where X is the location, V is the velocity, i denotes the individual and j is its neigh-

bor. After performing sink seeking for each point in the scene, each point in a path is 

replaced by the number of steps required to reach the sink. Repeating this for all paths 

gives the SFF (shown in fig. 8 (d) ). 

  

Boundary Floor Field (BFF). BFF captures the influence from barriers and bounda-

ries of the scene. Walls and boundaries tend to repel the individuals away from them. 

BFF is computed on NB frames from the future. First, crowd flow is segmented using 

the segmentation algorithm proposed in [25] where the boundaries in the flow field 

are computed as ridges in Finite Time Lyapunov Exponent (FTLE) field. The seg-

mentation map is then used compute an edge map retaining only the boundary pixels. 

Next, for each point in the scene, its distance to the nearest barrier/boundary is com-

puted using a distance transform thus, giving BFF. The larger the distance of a point 

from the boundary, the smaller its influence on an individual near that point. Fig. 8 (a-

c) show the computation of BFF.  

 

Fig. 8. (a) is the FTLE field computed using [25]  and (b) shows the boundaries computed as 

the derivative of (a). (c) is BFF using distance transform on (b). (d) is SFF obtained after sink-

seeking process. 

Dynamic Floor Field (DFF). DFF captures the instantaneous flow around point, 

using the ND frames in the future. The idea is similar to SFF but DFF is temporally 

localized compared to SFF. Stacking optical flow for ND frames into a 3D volume, a 

grid of particles is then overlaid and numerically advected while keeping counts of 



how many times a particle jumps from one point to another during advection. This 

gives a measure of dynamic interaction between points at each time instant, or DFF. 

 

Tracking. The probability for an individual at cell i transitioning to cell j is given by: 

ij
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where Dij ,Sij and Bij are the transition probabilities based on the three floor fields 

and kD ,kS and,kB are the corresponding coefficients while Rij is probability based 

on appearance calculated using Normalized Cross Correlation. 

 

Experiments. We performed experiments on three marathon sequences for this ap-

proach. Sequence 1 has 492 frames and 199 individuals were selected for tracking, 

sequence 2 has 333 frames with 120 individuals, and 50 individuals were selected for 

tracking in sequence 3 which has 453 frames. Fig. 9 (a-c) shown the tracks obtained 

through the proposed approach. We compared this approach against MeanShift and 

the ground truth. Fig. 9 (d) shows a significant difference in tracking error between 

the proposed approach (green) and MeanShift (yellow). Fig. 9 (e) shows the compari-

son with the ground truth for selected individuals. The y-axis is the track length from 

proposed approach (black) and ground truth (green). As evident from the graph, for 

the 100 individuals compared, track length is very close to that of ground truth. 

 

Fig. 9. (a-c).Tracked individuals in the three sequences. (d) Comparison with Meanshift. (e) 

Comparison with ground truth. 



3.2 Tracking in Dense Crowds using Prominence and Neighborhood Motion 

Concurrence 

The approach presented in previous section depends on learning the crowd flow, both 

averaged over time (SFF) as well as dynamic flow (DFF). The floor fields serve as a 

strong prior on the motion of individuals at each point in the scene. The assumption 

that an individual always behaves in a manner consistent with global crowd behavior 

does not always hold. The restriction on the motion of individuals from time-invariant 

priors may cause the tracker to fail when the crowd flow is dynamic, the crowd flow 

explores new region in the scene not previously learned, or when there is camera mo-

tion which may introduce errors in learning. In this section, we introduce the second 

approach [27] to the problem of tracking dense crowds in an online fashion without 

using any learning or crowd flow modeling. 

Similar to the previous approach, we use Normalized Cross Correlation to obtain 

confidence for appearance. Owing to the challenges introduced by the high density 

crowds, the simplicity of template based tracker demands more than just appearance 

to perform well in crowded scenes. For that, we supplement the tracker with salient 

and contextual sources of information that significantly reduce the confusion in estab-

lishing correspondence across frames. 

 

Prominence. The first idea in this approach is the prominence of individuals in terms 

of appearance. In any crowded scene, appearance of certain individuals will be differ-

ent from the rest, that is, such prominent individuals can be tracked with high confi-

dence.  

In order to select prominent individuals, we generate features from the templates 

by extracting RGB values at each pixel. Then, we cluster all the features into k clus-

ters using mixture of Gaussians. The clusters are sorted w.r.t density, where mass 

equals the number of points in that cluster and volume is given by

2/12/3
)2( 

. 

Next, all the points in each cluster are assigned back to individual templates starting 

from the least dense cluster. This process of back assignment is stopped once T% of 

the templates are filled by at least two-thirds. Fig. 10 shows the intermediate results of 

this procedure. 

 

Fig. 10. Intermediate steps for the method of selecting prominent individuals. Red are the 

ground truth (manually selected) prominent individuals whereas green are the rest of the indi-

viduals. As evident, during back assignment, templates belonging to prominent individuals get 

filled first and therefore selected. 



Neighborhood Motion Concurrence (NMC). The motion of an individual in dense 

crowd is similar to its neighbors. This information can be captured through a motion 

model that incorporates influence from neighbors. Let 
t

i

Tt

i
Σx  , velocity)(position,]xx [  represent the state and covariance of an indi-

vidual i at time t, A be the 2x4 matrix that captures state transition, and ),(   a 2d 

Gaussian distribution. NMC for individual i with neighbors j is has two components, 

self and neighbor. The two components are given by: 
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Fig. 11 (b,c) is an illustration depicting NMC. Black Gaussian in fig. 11 © corre-

sponds to self-component of the individual under consideration (black square in fig. 

11 (b) ) while the colored Gaussians show the neighbor component of NMC. 

 

Hierarchical Update. After having defined the notions of prominence and NMC, 

the final aspect of this approach is the order in which individuals in a crowded scene 

are updated. In fig. 12, the prominent individual (white square in fig 12 (a) ) has ap-

pearance surface given in fig. 12 (b), whereas its neighbor (red square in fig. 12 (a) ) 

has the appearance surface given in fig 8c. It is evident that prominent individuals 

have less confusion with their neighbors and they should be placed on top of the 

tracking hierarchy. The algorithm, therefore, starts by updating prominent individuals, 

followed by their neighbors and continues till all the position of all individuals is 

updated. The position of non-prominent individuals is updated using NMC. 

 

Fig. 11. Final output of the procedure to detect prominent individuals. (b) Black square is the 

individual under consideration while colored squares are its neighbors. Black arrows show the 

velocities with which the individuals are moving. (c) Cross hair marks the position of individu-

al with black square in (b). Colored Gaussians are the corresponding contributions to NMC of 

individual under consideration. 



 

 

Fig. 12. Hierarchical Update. (a) White square marks a prominent individual whereas red 

square marks its non-prominent neighbor. (b) and (c) are their appearance surfaces which 

shows that prominent individuals with their unique appearance are less likely to be confused 

with the neighbors and therefore should be places at the top of tracking hierarchy. (d) shows the 

order in which individuals in this scene were updated (red to yellow). 

Results. We compared approach presented in this section with MeanShift, Normal-

ized Cross Correlation tracker, MeanShift Belief Propagation as well as the approach 

based on floor fields presented in previous section. The experiments were performed 

on nine sequences of medium to high density. In Table 3, various characteristics of 

the nine sequences such as number of frames, number individuals and template size 

used for tracking are given in first three rows. Tracking accuracy is reported for the 

five methods and nine sequences as a percentage of number of points (in all trajecto-

ries) that lie within 15 pixel threshold. 

Qualitative comparison between the two approaches is given in Fig 13. The three 

cases are presented where the second approach (red) performs better than floor fields 

(yellow). Ground truth trajectory is drawn in green. 

 

Fig. 13. This figure provides the comparison between the two approaches presented. Green is 

the ground truth trajectory, yellow is from first approach and red is from the second approach. 



 

Table. 3. Quantitative comparison for the two approaches against Normalized Cross Correla-

tion, MeanShift and MeanShift Belief Propagation for nine crowded sequences of medium to 

high density. 

4 Conclusion 

Automatic tracking of pedestrians is essential for computerized analysis of surveil-

lance videos. In this keynote paper, we present two state of the art tracking methods 

for videos with low and high density of crowds. The method for low density scenarios 

first detects pedestrians in each video frame using a part-based human detector. Then, 

a data association method based on Generalized Graphs is employed for tracking each 

individual in the whole video. For videos with high crowd density, two approaches 

are presented. The first one is based on using the scene structure based force model, 

while the second approach utilizes contextual information. Our Experiments show the 

presented frameworks outperform the currently available methods on several bench-

marks. 
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