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Abstract. Occlusion and lack of visibility in dense crowded scenes make
it very difficult to track individual people correctly and consistently.
This problem is particularly hard to tackle in single camera systems.
We present a multi-view approach to tracking people in crowded scenes
where people may be partially or completely occluding each other. Our
approach is to use multiple views in synergy so that information from
all views is combined to detect objects. To achieve this we present a
novel planar homography constraint to resolve occlusions and robustly
determine locations on the ground plane corresponding to the feet of the
people. To find tracks we obtain feet regions over a window of frames and
stack them creating a space time volume. Feet regions belonging to the
same person form contiguous spatio-temporal regions that are clustered
using a graph cuts segmentation approach. Each cluster is the track of
a person and a slice in time of this cluster gives the tracked location.
Experimental results are shown in scenes of dense crowds where severe
occlusions are quite common. The algorithm is able to accurately track
people in all views maintaining correct correspondences across views.
Our algorithm is ideally suited for conditions when occlusions between
people would seriously hamper tracking performance or if there simply
are not enough features to distinguish between different people.

1 Introduction

Tracking multiple people accurately in dense crowded scenes is a challenging
task primarily due to occlusion between people. If a person is visually isolated
(i.e. neither occluded nor occluding another person in the scene) it is much sim-
pler to perform the tasks of detection and tracking. This is because the physical
attributes of the person’s foreground blob like color distribution, shape and ori-
entation remain largely unchanged as he/she moves. With increasing density of
objects in the scene inter object occlusions increase. A foreground blob is no
longer guaranteed to belong to a single person and may in fact belong to sev-
eral people in the scene. Even worse, a person might be completely occluded
by other people. Under such conditions of limited visibility and clutter it might
be impossible to detect and track multiple people using only a single view. The
logical step is to try and use multiple views of the same scene in an effort to
recover information that might be missing in a particular view. In this paper



Fig. 1. Four views of a scene containing a crowd of nine people. The ground plane is
clear and visible from each view. Notice the occlusions. The scene is so crowded that
no person is visually isolated in every view. In fact most people are either occluded or
occluding other people in every view. There are also cases of near total occlusion in
views on the top row.

we propose a multi-view approach to detecting and tracking multiple people in
crowded scenes. We are interested in situations where the crowds are sufficiently
dense that partial or total occlusions are very common and it can not be guar-
anteed that any of the people will be visually isolated. Figure 1 shows four views
of a crowded scene from one of our experiments that will be used to illustrate
our method. Notice that no single person is viewed in isolation in all four images
and there are cases of near total occlusion.

In our approach we do not use color models or shape cues of individual peo-
ple. Our method of detection and occlusion resolution is based on geometrical
constructs and only requires the distinction of foreground from background. At
the core of our method is a novel planar homography constraint that combines
foreground likelihood information (probability of a pixel in the image belong-
ing to the foreground) from different views to resolve occlusions and determine
ground plane locations of people. The homography constraint implies that only
pixels corresponding to the ground plane locations of people (i.e, the feet) will
consistently warp (under homographies of the ground plane), to foreground re-
gions in every view. The reason we use foreground likelihood maps instead of
binary foreground images is to delay the thresholding step to the last possible
stage. Warping foreground likelihood maps from all views onto a reference view



and multiplying them out, the pixels pertaining to feet of the people are seg-
mented out. To track these regions we obtain feet blobs over a window of frames
and stack them together creating a space time volume. Feet regions belonging
to the same person form contiguous spatio-temporal regions that are clustered
using a graph cuts segmentation approach. Each cluster is the track of a person
and a slice in time of this cluster gives the tracked location.

It should be noted that we neither detect nor track objects from any sin-
gle camera, or camera pair; rather evidence is gathered from all the cameras
into a synergistic framework and detection and tracking results are propagated
back to each view. We assume the ground plane homography between cameras
is available which requires that the ground plane is visible in each view. This
is a reasonable assumption in typical surveillance installations monitoring peo-
ple in busy crowded places. Usually the ground plane occupies a large enough
image region to be automatically detected and aligned using robust methods of
locking onto the dominant planar motion (e.g via one of the 2D parametric esti-
mation techniques such as [1, 2]). We do not assume that the camera calibration
information is known.

The rest of the paper is structured as follows. In Section 2 we discuss re-
lated work. Section 3 details the observation and theory behind the homography
constraint. In section 4 we present our algorithm that uses the homography con-
straint to segment out pixels representing ground locations of people in the scene.
Section 5 describes our tracking methodology. Section 6 details our experiments
and results providing insight into the utility and efficiency of our method. We
conclude this paper in section 7.

2 Related Work

There is extensive literature on single-camera detection and tracking algorithms,
almost all of which suffer from the difficulties of tracking multiple objects under
occlusions. Zhao and Nevatia [3] presented a method for tracking multiple people
in a single camera. They used 3D shape models of people that were projected
back in image space to aid in segmentation and resolving occlusions. Each hu-
man hypothesis was then tracked in 3D with a Kalman filter using the objects
appearance constrained by its shape. Okuma et al. [4] propose an interesting
combination of Adaboost for object detection and particle filters for multiple-
object tracking. The combination of the two approaches leads to fewer failures
than either one on its own, as well as addressing both detection and consistent
track formation in the same framework. Leibe et al. [5] present a pedestrian
detection algorithm for crowded scenes. Their method operates in a top-down
fashion, iteratively aggregating local and global patterns for better segmenta-
tion. These and other similar algorithms [6, 7, 8] are challenged by occluding
and partially occluding objects, as well as appearance changes. Connected fore-
ground regions may not necessarily correspond to one object, but might have
parts from several of them.



Some researchers have developed multi-camera detection and tracking algo-
rithms in order to overcome these limitations. Orwell et al. [9] present a tracking
algorithm to track multiple objects in multiple views using ‘color’ tracking. They
model the connected blobs obtained from background subtraction using color his-
togram techniques and use them to match and track objects. Cai and Aggarwal
[10] extend a single-camera tracking system by starting with tracking in a single
camera view and switching to another camera when the system predicts that
the current camera will no longer have a good view of the subject. Krumm et al.
[11] use stereo cameras and combine information from multiple stereo cameras in
3D space. They perform background subtraction and then detect human-shaped
blobs in 3D space. Color histograms are created for each person and are used
to identify and track people. Mittal et al. [12] use a similar method to combine
information in pairs of stereo cameras. Regions in different views are compared
with each other and back-projection in 3D space is done in a manner that yields
3D points guaranteed to lie inside the objects.

Even though these methods attempt to resolve occlusions, the underlying
problem of using features that might be corrupted due to occlusions remains.
The scene shown in figure 1 would be difficult to resolve for any of these methods.
Not only are there cases of near total occlusion, the people are dressed in very
similar colors. Using blob shapes or color distributions for region matching across
cameras would lead to incorrect segmentations and detections.

The homography constraint we present in this paper and its application to
localize people on a ground plane can also be interpreted as a visual hull inter-
section process. The difference is that unlike traditional visual hull intersection
algorithms [13, 14, 15], our method uses only 2D constructs and dose not re-
quire camera calibration. This is because the homography constraint effectively
performs visual hull intersection on a plane.

3 Homography Constraint

We begin with the basic notions of planar homographies. Let p = (z,y, 1) denote
the image location (in homogeneous coordinates) of a 3D scene point in one
view and let p’ = (2’,4’,1) be its coordinates in another view. Let H denote
the homography of the plane II between the two views and Hs be the third
row of H. When the first image is warped toward the second image using the
homography H, then the point p will move to p,, in the warped image:*
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For 3D points on the plane II, p,, = p’. For 3D points off IT, p,, # p’. The
misalignment p,, —p’ is called the plane parallax. Geometrically speaking warping
pixel p from the first image to the second using the homography H amounts to
projecting a ray from the camera center through pixel p and extending it till it

! For the remainder of this paper we will use only Hp to denote this operation
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Fig. 2. The figure shows a cylinderical object standing on top a planar surface. The
scene is being viewed by two cameras. H is the homography of the planar surface from
view 1 to view 2. Warping a pixel from view 1 with H amounts to projecting a ray on
to the plane at the piercing point and extending it to the second camera. Pixels that
are image locations of scene points off the plane have plane parallax when warped.
This can be observed for the red ray in the figure.

intersects the plane II at the point often referred to as the ‘piercing point’ of pixel
p with respect to plane II. The ray is then projected from the piercing point
onto the second camera. The point in the image plane of the second camera
that the ray intersects is p,. In effect p,, is where the image of the piercing
point is formed in the second camera. As can be seen in figure 2, 3D points on
the plane IT have no plane-parallax while those off the plane have considerable
plane-parallax.

Suppose a scene containing a ground plane is being viewed by a set of wide-
baseline stationary cameras. The background models in each view are available
and when an object appears in the scene it can be detected as foreground in each
view using background difference. Any 3D point lying inside the foreground ob-
ject in the scene will be projected to a foreground pixel in every view. The same
is the case for 3D points inside the object that lie on the ground plane, except
however that the projected image locations in each view will be related by ho-
mographies of the ground plane. Now we can state the following proposition:

Proposition 1 If 3P € R3 such that it lies on plane II and is inside the
volume of a foreground object then, the image projections of the scene point P
given by p1,p2,...,pn in any n views satisfy both of the following:

— V;, if ¥; is the foreground region in view i then, p; € ¥;,
— Vipi = H; jpj, where H; ; is the homography of plane II from view j to
view i.



View |

View 1

- Viewn

Ground Plane Ground Plane

(a) (b)

Fig. 3. The figure shows people viewed by a set of cameras. The views show the fore-
ground detected in each view. For figure (a) the blue ray shows how the pixels that
satisfy the homography constraint warp correctly to foreground in each view, while
others have plane parallax and warp to background. Figure (b) demonstrates how oc-
clusion is resolved in view 1. Foreground pixels that belong to the blue person but are
occluding the feet region of the green person satisfy the homography constraint (the
green ray). This creates seemingly a see through effect where the feet of the occluded
person can be detected.

As discussed earlier warping a pixel from one image to another using a ho-
mography of the ground plane amounts to projecting a ray through the pixel
onto the piercing point and then projecting it to the second camera center. If
the ray projected through a pixel in a view intersects the ground plane inside a
foreground object in the scene, it follows from proposition 1 that the pixel will
warp to foreground regions in all views. This can be formally stated as follows:

Proposition 2 Let @ be the set of all pixels in a reference view and let H;
be the homography of plane IT in the scene from the reference view to view 4. If
Jp € & such that the piercing point of p with respect to IT lies inside the volume
of a foreground object in the scene then V;p; € ¥;, where p; = H;p and ¥; is the
foreground region in view 1.

We call proposition 2 the homography constraint. The homography constraint
has the dual action of segmenting out pixels that correspond to ground plane
positions of people in the scene as well as resolving occlusion. To see this consider
figure 3. Figure 3a shows a scene containing a person viewed by a set of cameras.
The foreground regions in each view are shown as white on black background. A
pixel that is the image of the feet of the person will have a piercing point on the
ground plane that is inside the volume of the person. According to the homog-
raphy constraint such a pixel will be warped to foreground regions in all views.
This can be seen for the pixel in view 1 of figure 3a that has a blue ray projected
through it. Foreground pixels that do not satisfy the homography constraint are



images of points off the ground plane. Due to plane parallax they are warped
to background regions in other views. This can be seen for the pixel with the
red ray projected through it. Figure 3b shows how the homography constraint
would resolve occlusions. The blue person is occluding the green person in view
1. This is apparent by the merging of their foreground blobs. In such a case
there will be two sets of pixels in view 1 that satisfy the homoraphy constraint.
The first set will contain pixels that are image locations of blue person’s feet
(same as in figure 3a). The other set of pixels are those that correspond to the
blue person’s torso region but are occluding the feet of the green person. Even
though these pixels are image locations of points off the ground plane, they have
piercing points inside a foreground object which in this case happens to be the
green person. This process creates a seemingly see thorough effect detecting feet
regions even if they are completely occluded by other people. It is obvious that
having more people between the blue and the green person will not affect the
detection of the green person.

It should be noted that the homography constraint is not limited to the
ground plane and depending on the application any plane in the scene could be
used. In the context of localizing people the ground plane is used and finding
pixels in all views that satisfy the homography constraint will give us the loca-
tions of people’s feet (location on ground). In the next section we develop an
operator that does exactly this.

4 Using the Homography Constraint to Locate People

Let @1,P5,...,9, be the images of the scene obtained from n uncalibrated
cameras. Let @1 be a reference image. H; is homography of the ground plane
between the reference view @, and any other view i. Using homography H;, a
pixel p in the reference image is warped to pixel p; in image @;. Let z1,25 ..., 2,
be the observations in images @1, s, . . . @, at locations p,p) ..., pl, respectively
ie x; = @;(p}). Let X be the event that pixel p has a piercing point inside a
foreground object (i.e. p represents the ground location of a foreground object
in the scene). Given x1, s ..., Z,, we are interested in finding the probability of
event X happening, i.e P(X | x1,22...,%y,).

Using Bayes law:

P(X | z1,22...,2n) X P(z1,22...,2, | X)P(X). (1)

The first term on the right hand side of equation 1 is the likelihood of making
observation z1,xs...,2, given event X happens. By conditional independence
we can write this term as:

P(xy,x9...,x, | X)=P(x1 | X) X P(ze | X) X ... X P(zy, | X). (2)

Now the homography constraint states that if a pixel has a piercing point inside a
foreground object then it will warp to foreground regions in every view. Therefore
it follows that:

P(zi | X) o< L(x;), 3)



where L(xz;) is the likelihood of observation z; belonging to the foreground.
Plugging (3) into (2) and back into (1) we get:

n

=1

Pixel p is classified as image of ground location of an object to be tracked if
P(X | z1,22...,2,) given by equation 4 is above a threshold. In the case fore-
ground objects are people, pixel p will correspond to the feet of a person in the
scene. Since pixel p and its warped locations in other views p),p} ..., pl, all have
the same piercing point, they all correspond to the same location on the ground
plane. Therefore by finding pixel p in the reference view that satisfies the homog-
raphy constraint, we have in fact, determined the image locations in all views of
a particular person’s feet i.e pi,p5 ..., pl,. This strategy also implicitly resolves
the issue of correspondences across views. Note that it is irrelevant which view
is chosen as the reference view. The results will be equivalent if some view other
than &, was chosen as the reference. In the following subsection we outline our
algorithm for finding the feet locations of people in the scene.

4.1 Algorithm

Our algorithm for locating people is quite straight forward. First we obtain
the foreground likelihood maps in each view. This is done by modelling the
background using a mixture of gaussians [16] and finding the probability for
each pixel belonging to the foreground. In the second step instead of warping
every pixel in the reference image to every other view we perform the equivalent
step of warping the foreground likelihood maps from all the other views on to
the reference view. These warped foreground likelihood maps are then multiplied
according to equation 4 to produce what we call a ‘synergy map’. A threshold
is then applied to the synergy map to obtain pixels in the reference view that
represent ground plane locations of people in the scene. This image is warped
back from the reference view to every other view to obtain ground locations of
people in each view. Following are the steps in our algorithm:

1. Obtain the foreground likelihood maps ¥, % ..., V.
2. Warp likelihood maps to a reference view using homographies of the ground
plane. Warped likelihood maps are ¥y, W5 ... ¥,
3. Multiply the warped likelihood maps to obtain the synergy map: Osynergy =
Rz
4. Threshold the synergy map. For all pixels p in 0synergy
— if Osynergy(p) > T then return 1
— else return 0
5. Warp thresholded image to every other view.

Figure 4 shows the algorithm applied to the scene shown in figure 1. The fore-
ground likelihood maps are warped into view 4 (bottom right image of figure 1)
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Fig. 4. The four smaller images are foreground likelihood maps obtained from the
background model (mixture of gaussians) on the images shown in figure 1. In all images
in the figure the colormap used assigns a hotter palette to higher values. View 4 was
chosen as the reference view. The image on the bottom is the synergy map obtained
by warping views 1, 2, and 3 onto view 4 and multiplying them together. The pixels
representing the ground locations of the people are segmented out by applying an
appropriate threshold. The binary image shown is the result of applying the threshold
and rectifying with the ground plane (the white regions corresponding to the feet).

which was chosen as the reference view. Multiplying the warped views together
we obtain the synergy map which clearly highlights the feet regions of all the
people in the scene. The threshold T" does not need to be precise as the values
at the correct locations in the synergy map are typically several magnitudes
higher than the rest. This is a natural consequence of the multiplication in step
3 and can be seen in figure 5. Notice how occlusions are resolved and the ground
locations of people are detected. For the purpose of tracking the binary image
obtained after thresholding is rectified with the ground plane. The rectified im-
age is an accurate picture of the relative ground locations of the people in the
scene.

5 Tracking

Instead of tracking in each view separately we track feet blobs only in the refer-
ence view and propagate the results to other views. This is simply because feet
blobs in other views are obtained by warping feet blobs in the reference view
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Fig. 5. A surface plot of the synergy map shown in figure 4. The peaks are the ground
plane locations of the people in the scene.

and consequently the tracks can be obtained by warping as well. The only infor-
mation available about the blobs is their relative ground plane positions (after
rectifying with the ground). No other distinguishing feature is available. In fact
a features like color could be misleading in the case of occlusions as already
discussed in previous sections. Obtaining accurate tracks from these blobs is not
a trivial task. The blobs represent feet of the people on the ground and the feet
of a single person come close and move away every walk cycle. The result is one
person’s feet blob splitting and merging with itself. In fact one person’s blob
might temporarily merge with another person’s if they come too close to each
other.

Our tracking methodology is based on the observation that the feet of the
same person are spatially coherent in time. That is to say that even though a
person’s feet might move away from each other, (as the person makes a forward
step) over time they remain closer to each other than feet of other people. We
therefore propose a look-ahead technique to solve the tracking problem using a
sliding window over multiple frames. This information gathering over time for
systems simulating the cognitive processes is supported by many researchers in
both vision and psychology (e.g., [17], [18], [19]). Neisser [19] proposed a model
according to which the perceptual processes continually interact with the incom-
ing information to verify hypotheses formed on the basis of available information
up to a given time instant. Marrs principle of least commitment [18] states that
any inference in a cognitive process must be delayed as much as possible. Many
existing algorithms use similar look-ahead strategies or information gathering
over longer intervals of time (for example, by backtracking) [20, 21].

For a window of size w using the algorithm described in the previous section
we obtain the blobs for all frames in the window. Stacking them together in
a space time volume, blobs belonging to the same person will form spatially
coherent clusters that appear like ‘worms’. Figure 6b shows an example of worms
formed from the sequence shown in figure 1. Each worm is in fact the track of a
person’s feet as he moves in time. To segment out worms belonging to different
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Fig. 6. Figure (a) shows a sequence of frames with feet blobs obtained using our algo-
rithm. Stacking them in time the feet blobs form spatially coherent 'worms’ that can
be seen in figure (b). Different worms clustered out are colored differently to help in
visualization. The spiralling pattern of the worms is only a coincidence. This resulted
because the people were walking in circles in this particular sequence.

people from this space time volume we use graph cuts to obtain the tightest
clusters in this space time volume. Each blob pixel in the space time volume
forms a node of a completely connected graph. Edge weights are assigned using
the image distance (euclidean) between pixels connected by the edge. Using
normalized cuts [22] on this graph we obtain the optimum clustering of blob
pixels in the volume into worms. A slice in time of the worms give the ground
plane locations of each person in the scene at that particular time. These are
warped back to each view to obtain the image locations of each person’s feet in
different views.

6 Results and Discussions

To evaluate our approach we conducted several experiments with increasing
number of people and varying the number of active cameras. The attempt was
to increase the density of people till the algorithm broke down and to study the
breakdown thresholds and other characteristics. Each sequence was roughly 750
frames long. The people were constrained to move in an area of approximately
5 meters by 5 meters to maintain the density of the crowd.

To negate a spot on the ground plane as a candidate location for a person, it
must be visible as part of the background in atleast one view. If the spot is not
occupied by a person but is occluded in each view (by the people in the scene),
our algorithm will trigger a false positive at that spot. Note that this is not a
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Fig. 7. A plot of false positives reported in our experiments. Each sequence was 500
frames long and contained between 5 and 9 people that were constrained to move in
an area of 5x5 meters to simulate different densities of crowds. We varied the number
of active cameras in different runs of the experiments to assess the effect of increasing
and decreasing view points.

limitation of the homography constraint, which states that the region should
project to foreground in all (every possible) view. Therefore by increasing the
number of views of the scene we can effectively lower false positives. This trend
can be observed in figure 7, that summarizes the performance of our algorithm
for crowds of various densities with increasing number of cameras.

In figure 8 we show track results from the densest sequence we tested our
algorithm on. Note that the tracking windows do not imply that all pixels of the
people were segmented (only the pixels representing feet blobs are known). The
purpose of the track windows is to aid in visualization. The width of each track
window is set as the horizontal spread of the feet blobs. The height is calculated
by starting from the feet pixels and moving up the connected foreground region
before background is encountered. The sequence contained nine people and was
captured from four different view points encircling the scene. Due to the density
of the crowd occlusions were quite severe and abundant. An interesting thing
to notice is the color similarity of the people in the scene. Naturally a method
that uses color matching across views would perform poorly in such a situation
whereas our method performs quite well.

One of the limitations of our method is its susceptibility to shadows. Cur-
rently the scheme incorporated in our method to handle shadows is to use HSV
rather than RGB color space in background subtraction. This is sufficient for
scenes like the one in figure 8 where the shadows are small and diffused. But
with hard shadows our current implementation has increased false detections.
We are working on several strategies to tackle this problem. One of the directions
is to use an imaginary plane parallel to but higher than the ground plane in the
homography constraint. This will cause foreground due to shadows to have plane
parallax thus filtering them out.



Fig. 8. Tracking results for a sequence containing 9 people captured from 4 view points.
Top to bottom the rows correspond to views 1, 2, 3 and 4. Left to right the columns
correspond to frames 100, 300 and 500 in the respective views. Track windows are
color coded and numbered to show the correspondences that our algorithm accurately
maintains across views.

7 Conclusions

In this paper we have presented a novel approach to tracking people in crowded
scenes using multiple cameras. The major contribution of our work is the detec-
tion of ground plane locations of people and the resolution of occlusion using a
planar homography constraint. Combining foreground likelihoods from all views
into a reference view and using the homography constraint we segment out the
blobs that represent the feet of the people in the scene. The feet are tracked by
clustering them over time into spatially coherent worms. In the future we plan
to investigate the use of multiple planes to handle shadows as well as complete
segmentation of the people.
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