
Learning Motion Patterns in Crowded Scenes Using Motion Flow Field

Min Hu, Saad Ali and Mubarak Shah
Computer Vision Lab, University of Central Florida

{mhu,sali,shah}@eecs.ucf.edu

Abstract

Learning typical motion patterns or activities from
videos of crowded scenes is an important visual surveil-
lance problem. To detect typical motion patterns in
crowded scenarios, we propose a new method which
utilizes the instantaneous motions of a video, i.e, the
motion flow field, instead of long-term motion tracks.
The motion flow field is a union of independent flow
vectors computed in different frames. Detecting motion
patterns in this flow field can therefore be formulated
as a clustering problem of the motion flow fields, where
each motion pattern consists of a group of flow vectors
participating in the same process or motion. We first
construct a directed neighborhood graph to measure the
closeness of flow vectors. A hierarchical agglomerative
clustering algorithm is applied to group flow vectors
into desired motion patterns.

1. Introduction

Learning typical motion patterns of moving objects
in the scene from videos is an important visual surveil-
lance task. A significant amount of effort has been
been put in this area. In [8], the system first tracks
moving objects, learns the motion patterns, and finally
uses these motion patterns for abnormal event detection.
Johnson and Hogg [3] use neural networks to model
motion paths from trajectories. In [2], trajectories are
iteratively merged into a path. Wang et al. [5] proposed
a trajectory similarity measure to cluster trajectories and
then learn the scene models from trajectory clusters.
Porikli [1] represents trajectories in the HMM parame-
ter space; the affinity matrices are then computed and
eigenvalue decomposition is applied to find the clus-
ters. Instead of using trajectories of individual objects,
Vaswani et al. [6] model the motion of all the mov-
ing objects performing the same activity by analyzing
the temporal deformation of the “shape” which is con-
structed by joining the locations of objects at any timet.
These methods are based on long-term motion tracks of
moving objects and are applicable to the scenes where

moving objects are not densely crowded and motion
tracks of objects are reliable and are readily available.
All these methods require tracking algorithms to gen-
erate long-term locations of individual objects. Little
attention has been paid to learning motion patterns in
crowds where reliable tracks are harder to obtain.

To deal with this special scenario, instead of using
long-term motion tracks of moving objects we propose
a new method for learning typical motion patterns using
the motion flow field. The motion flow field is a set of
flow vectors representing the instantaneous motions in
a video. Each flow vector is a four-dimensional vector
including the location and instantaneous velocity of a
point detected in a frame. We first use existing optical
flow method to compute flow vectors in each frame and
then combine them into a global motion field. Given
the motion flow field, we detect the typical motion pat-
terns by clustering flow vectors. Without loss of gen-
erality, we assume each flow vector is associated with
only one motion pattern, i.e., no flow vector belongs to
two different motion patterns. Thus, each motion pat-
tern is a cluster of flow vectors. To make the proposed
method applicable to general motions or activities, we
make no assumption regarding the models of motion
patterns. To cluster flow vectors, we first need to an-
swer what is a motion pattern. According to the gestalt
theory of humans’ visual perception, the main factors
used in grouping are proximity, similarity, closure, sim-
plicity and common fate (elements with same moving
direction are seen as a unit). According to these laws,
a motion pattern should be smooth and the neighboring
flow vectors should be similar and close. Note that even
flow vectors in the same motion pattern may be very
different. For example, the pattern of “U-turn” contains
the flow vectors whose velocity are opposite. We use
the neighborhood graph to measure the similarity and
proximity of flow vectors. A summary of the proposed
method is given in Fig. 1.

2. Motion Flow Field Generation

Given an input video, for each frame we compute
sparse optical flows (instantaneous velocities) on inter-



(a) Input Video
0

100

200

300

400

0

100

200

300
1

2

3

4

5

6

xy

t

(b) Frame to Frame Flow Vectors

(c) Original Motion Flow Field (d) Reduced Motion Flow Field (e) Motion Patterns 

Figure 1. The main steps involved in proposed motion pattern detection method. Given an
input video (a), frame-to-frame flow vectors (b), which are c ombined in a single global motion
flow field (c). The original motion flow field (containing thous ands of flow vectors) is reduced
to the new motion flow field in (d) containing only hundreds of fl ow vectors. Finally typical
motion patterns are detected (e) .

est points ([4]) or dense optical flows for all pixels ([7])
in the image. The locationXi = (xi, yi) and the ve-
locity Vi = (vxi

, vyi
) of a point, i, in the image are

then combined into a vectorpi = (Xi, Vi). After flow
vectors in all frames are computed, we gather them into
a single global flow field. This flow field may contain
thousands of flow vectors, and, therefore, it is compu-
tational expensive to obtain the shortest paths based on
such a large number of data. These flow vectors always
contain lots of redundant information and noise. We
use Gaussian ART (the unsupervised version of Gaus-
sion ARTMAP see [9]) to reduce the number of flow
vectors from thousands to hundreds. The reduced num-
ber of flow vectors still maintain the geometric structure
of the flow field without effecting detecting of motion
patterns. Fig. 1-(d) shows the reduction results of the
motion flow field in Fig. 1-(e). The number of flow
vectors were reduced from1417 to 744.

3. Neighborhood Graph of the Flow Field

To exploit the proximity of flow vectors and the geo-
metric structure of high-dimensional data, we construct

p

dp

q

(a)

qp p q

dp(p,q)

(b)

qp

p qdp(q,p)

(c)

Figure 2. Distances in different cases:
(a) flow vectors p and q are on parallel
curves; (b,c) p and q are on the same
curve, and q follows p. (b) shows the dis-
tance D(p, q) where (c) shows the distance
D(q, p).

a neighborhood graph of flow vectors in the flow field.
The general neighborhood graph is an undirected graph
where edges connect neighboring points. The distance



between a pair of points is then given by the ”short-
est path”, i.e., geodesic distance, between them on the
neighborhood graph. In the flow field, as described ear-
lier each point is represented by a vectorp = (X,V )
whereX = (x, y) is the location andV = (vx, vy) is
the velocity. To capture the spatial structure and direc-
tion of the flow field, we extend the original undirected
neighborhood graph to the directed graph. The forward
distance from flow vectorp to q is defined as

D(p, q) = (dp(p, q)ds(p, q))
2 (1)

The reason of using the square is given below. The
spatial distancedp(p, q) and the directional difference
ds(p, q) are defined by two hypotheses (see Fig. 2):

1. p andq are on two parallel curves. In this case,

dp(p, q) = ‖Xp − Xq‖, (2)

ds(p, q) =

(

2

1 + ε + Vp · Vq

)2

, (3)

whereε = 10−6, V = V/‖V ‖.

2. p andq are on the same curve, andq follows p. In
this case,

dp(p, q) = ‖Xp + Vp − Xq‖, (4)

ds(p, q) =
2

1 + ε + cos θp

·
2

1 + ε + cos θq

,(5)

cos θp = Vp · Xq − Xp, (6)

cos θq = Vq · Xq − Xp. (7)

The final distance is chosen as the minimum of the dis-
tances in the above two hypotheses. After the distance
matrix is computed, we find the neighbors among the
vectors to reduce the computational burden in future
steps. B is a neighbor ofA if and only if D(A,B)
equals the shortest path (obtained by Floyd’s algorithm)
from A to B. Because we used the square in com-
puting D(A,B), D(A,B) is not necessarily less then
D(A,C) + D(C,B). If the directional difference fac-
tor were not included inD(A,B), it is easy to see that
when the angle∠ACB > π/2, D(A,B) > D(A,C)+
D(C,B), andB is not a neighbor ofA, becauseC is
roughly in the middle. Note that ifB is a neighbor
of A, A is not necessarily a neighbor ofB. If B is
not neighbor ofA, the edge fromA to B is removed,
i.e. D(A,B) is set to infinity. This step removes many
edges for future considerations.

4. Detecting Motion Patterns

In the flow field, each motion pattern consists of a
group of flow vectors participating in the same process

(a) (b)

(c) (d)

Figure 3. Hierarchical clustering based on
the neighborhood graph: (a) one image
of the input video, different clustering re-
sults: (b) 9 clusters, (c) 12 clusters, (d) 7
clusters with removed noise.

or motion. Detecting motion patterns is therefore the
problem of clustering flow vectors. We use a hierar-
chical agglomerative clustering algorithm, i.e, single-
linkage clustering algorithm, to cluster flow vectors.
The complete detection algorithm is given below.

According to the law of the common fate, flow vec-
tors with the similar directions should be considered as
a unit. This leads to the idea of iteratively grouping
the nearest neighbors into clusters using the agglomer-
ative hierarchical clustering algorithms. One important
reason we use the hierarchical clustering algorithm is
that its computational complexity is polynomial in the
number of edges in the neighborhood graph. Note that
although the distance matrix computed in the previous
step can identify the neighbors very efficiently and pro-
duce accurate results, it does not necessarily serve as a

Algorithm 1: Motion Pattern Detection Algorithm.
Input: a flow fieldF of a set of flow vectors

{p1, p2, ..., pN}, and the number of clustersn
Output: a set of motion patterns{M1, M2, ...}.
Compute the distance matrixD according to (1).1

Compute the shortest path lengthL using Floyd’s2

method.
for i← 1 to N do3

for j ← 1 to N do4

if D(i, j) > L(i, j) then5

D(i, j)←∞6

end7

end8

end9

Apply the hierarchical agglomerative clustering10

algorithm.



Algorithm 2: Hierarchical Agglomerative Cluster-
ing Algorithm

Input: Distance matrix (adjacent matrix of the
neighborhood graph or geodesic distance matrix)
with sizeN ×N of a flow field, andn, the
number of clusters.

Output: Output:n clusters{G1, G2, ..., Gn}.
for m← N to n do1

Identify the two nearest pointsp, q and combineq2

into p.
for i← 1 to N do3

D(p, i)← min{D(p, i), D(q, i)},4

D(i, p)← min{D(i, p), D(i, q)},5

D(q, i)←∞,6

D(i, q)←∞.7

end8

end9

good measure for our clustering algorithm. The reason
is that if bothB andC are neighbors ofA, we may tend
to choose the one with similar direction toA regard-
less of the spatial distance. Therefore, we provide the
option to modify the finite distances to the directional
difference defined in (3).

The clustering algorithm works as follows. Ini-
tially every vector is treated as a cluster. We use a
greedy approach to merge the clusters efficiently: in
each step, we choose the shortest edge and merge the
corresponding vectors (sayp andq) by setting the dis-
tanceD(p, i) to min{D(p, i),D(q, i)} andD(i, p) to
min{D(i, p),D(i, q) for each vectori and by removing
the edges connectingq (i.e. settingD(q, i) = D(i, q) =
∞ for eachi). When the number of clusters reaches a
specified numbern, we stop merging. Since the noisy
flow vectors may result into independent clusters, we
need to remove the clusters with very few vectors, and
in our experiments we setn slightly higher than our de-
sired number of clusters. To have a better control on the
final number of clusters, we could start noise removal
when the current number of clusters is close to the de-
sired one. Fig. 3 shows the results with different num-
bers (9, 12) of clusters and after noise removal. From
this figure, we can see that the clustering results are sim-
ilar. The difference lies in some small groups (the size
is less than 5) generated by increasing the number of
clusters. These small groups will be deleted by noise
removal step. After noise removal, seven clusters are
detected (Fig. 3-(d)).

5. Experiments

We have tested the method on videos of some com-
plex scenes. Fig. 4 shows the crossing on the Hong

(a)

(b) (c) (d)

Figure 4. Motion pattern detection in a
video of a street in Hong Kong. (a) Images
of the input video (frame numbers are 1,
100, 180 and 248 respectively from left to
right); (b) Motion flow field; (c) Detected
motion patterns compared to (d) manually
generated ground truth.

Kong street. In this video, people cross the road from
two opposite sides and intersect in the middle part. Seen
from the detected motion flow field, the intersection of
their flow vectors make the clustering problem hard. By
using the directed neighborhood graph, these intersect-
ing flow vectors are correctly distinguished and the cor-
responding two major motion patterns are correctly de-
tected. More results are shown in Fig. 5. The first row
shows the results of a traffic scene. The vehicles on the
two left lanes and those on the two right lanes move in
opposite directions. Our method detects seven motion
patterns. Four of them correspond to those in the ground
truth. One of three is caused by a short side road on the
right. Two extra clusters on the top are falsely classi-
fied due to the perspective distortions. The second row
shows results of another traffic scene. Three motion pat-
terns corresponding to three lanes in are detected. Note
that when motions on two right lanes are merged to-
gether it is impossible and unnecessary to distinguish
them. In the results shown in the third row, there are
two typical motions. One is on the top of the image,
people move in one direction in the building. In the
other motion pattern, people move around a center in
the image. This results in some false classification. The
results for a more complex crowded scene are shown in
the last row. People move in different directions.

To measure the performance of our method, we com-
pare the the results of our method with the ground truth
on the test data. The ground truth is manually generated
from the detected motion flow field. Table. 5 shows the
comparison results on the number of motion patterns,
miss-classification error.

6. Conclusions

In this paper, we propose a new method for learning
typical motion patterns in challenging crowded scenes



(a) (b) (c) (d)

Figure 5. Motion pattern detection. (a) Input videos; (b) Motion flow field; (c) Detected motion patterns compared to (d)
manually generated ground truth. Each row demonstrates the results forone video.

number of misclassification
video motion patterns rate among

detected ground truth flow vectors
high-way 7 5 2.4%

3-way traffic 3 3 0
Hajj005 3 2 2.4%
old street 5 7 5.3%
Hajj009 3 3 0

Hong Kong St 2 2 0.7%

Table 1. Comparison results between our
method and the ground truth.

using the motion flow field representing the instanta-
neous motions in a video. The neighborhood graph is
constructed to measure the similarity and proximity of
flow vectors. The agglomerative clustering algorithm is
applied to cluster flow vectors into motion patterns.

Acknowledgements: This research was funded
by the US Government VACE program.

References
[1] F. M. Porikli, Trajectory Pattern Detection by HMM

Parameter Space Features and Eigenvector Clustering,
ECCV, 2004.

[2] D. Makris and T. Ellis,Path Detection in Video Sequence,
IVC, Vol. 30, 2002.

[3] N. Johnson et al.,Learning the Distribution of Object
Trajectories for Event Recognition, IVC, 14, 1996.

[4] B. D. Lucas and T. Kanade,An Iterative Image Regis-
tration Technique with an Application to Stereo Vision,
IJCAI, 1981.

[5] X. Wang et al.,Learning Semantic Scene Models by Tra-
jectory Analysis, ECCV, 2006.

[6] N. Vaswani et al.,Activity Recognition Using the Dynam-
ics of the Configuration of Interacting Objects, CVPR,
2003.

[7] R. Gurka et al.,Computation of Pressure Distribution Us-
ing PIV Velocity Data, Workshop on Particle Image Ve-
locimetry, 1999.

[8] W. E. L. Grimson et al.,Using Adaptive Tracking to Clas-
sify and Monitor Activities in a Site, CVPR, 1998.

[9] J. R. Williamson,Gaussian ARTMAP: A Neural Network
for Fast Incremental Learning of Noisy Multidimensional
Maps, Neural Netw., 1996.


