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Abstract
Detecting moving objects using stationary cameras is an
important precursor to many activity recognition, object
recognition and tracking algorithms. In this paper, three in-
novations are presented over existing approaches. Firstly,
the model of the intensities of image pixels as indepen-
dently distributed random variables is challenged and it
is asserted that useful correlation exists in the intensities
of spatially proximal pixels. This correlation is exploited
to sustain high levels of detection accuracy in the pres-
ence of nominal camera motion and dynamic textures. By
using a non-parametric density estimation method over a
joint domain-range representation of image pixels, multi-
modal spatial uncertainties and complex dependencies be-
tween the domain (location) and range (color) are directly
modeled. Secondly, temporal persistence is proposed as a
detection criteria. Unlike previous approaches to object de-
tection which detect objects by building adaptive models
of the only background, the foreground is also modeled to
augment the detection of objects (without explicit tracking)
since objects detected in a preceding frame contain substan-
tial evidence for detection in a current frame. Third, the
background and foreground models are used competitively
in a MAP-MRF decision framework, stressing spatial con-
text as a condition of pixel-wise labeling and the posterior
function is maximized efficiently using graph cuts. Experi-
mental validation of the proposed method is presented on a
diverse set of dynamic scenes.

1 Introduction
Automated surveillance systems typically use stationary
sensors to monitor an environment of interest. The assump-
tion that the sensor remains stationary between the inci-
dence of each video frame allows the use of statistical back-
ground modelling techniques for the detection of moving
objects. Since ‘interesting’ objects in a scene are usually
defined to be moving ones, such object detection provides
a reliable foundation for other surveillance tasks like track-
ing and often is also an important prerequisite for action or
object recognition. However, the assumption of a stationary
sensor does not necessarily imply a stationarybackground.
Examples of ‘nonstationary’ background motion abound in
the real world, including periodic motions, such as a ceiling
fans, pendulums or escalators, and dynamic textures, such
as fountains, swaying trees or ocean ripples. Furthermore,
the assumption that the sensor remains stationary is often

nominally violated by common phenomena such as wind
or ground vibrations and to a larger degree by (stationary)
hand-held cameras. If natural scenes are to be modeled it is
essential that object detection algorithms operate reliably in
such circumstances.

In the context of this work, background modeling meth-
ods can be classified into two categories1: (1) Methods
that employlocal (pixel-wise) models of intensity and (2)
Methods that haveregionalmodels of intensity. Most back-
ground modelling approaches tend to fall into the first cat-
egory of pixel-wise models. In their work, Wrenet al [22]
modeled the color of each pixel,I(x, y), with a single 3
dimensional Gaussian,I(x, y) ∼ N(µ(x, y),Σ(x, y)). The
meanµ(x, y) and the covarianceΣ(x, y), were learned from
color observations in consecutive frames. Once the pixel-
wise background model was derived, the likelihood of each
incident pixel color could be computed and labeled. Simi-
lar approaches that used Kalman Filtering for updating were
proposed in [8] and [9] and a robust detection algorithm was
also proposed in [7]. However, the single Gaussianpdf is
ill-suited to most outdoor situations, since repetitive object
motion, shadows or reflectance often caused multiple pixel
colors to belong to the background at each pixel. To ad-
dress some of these issues, Friedman and Russell, and inde-
pendently Stauffer and Grimson, [2, 19] proposed modeling
each pixel intensity as amixtureof Gaussians, instead, to ac-
count for the multi-modality of the ‘underlying’ likelihood
function of the background color. While the use of Gaussian
mixture models was tested extensively, it did not explicitly
model thespatial dependenciesof neighboring pixel colors
that may be caused by a variety of real dynamic motion.
Since most of these phenomenon are ‘periodic’, the pres-
ence of multiple models describing each pixel mitigates this
effect somewhat by allowing a mode for each periodically
observed pixel intensity, however performance notably de-
teriorates since dynamic textures usually do not repeat ex-
actly (see experiments in Section 3). Another limitation of
this approach is the need to specify the number of Gaus-
sians (models), for the E-M algorithm or theK-means ap-
proximation. Some methods that address the uncertainty of
spatial location using local models have also been proposed.
In [1], El Gammalet al proposed nonparametric estimation
methods for per-pixel background modeling. Kernel den-
sity estimation (KDE) was used to establish membership,

1The body of work on background modeling is fairly vast, and only the
most relevant work has been reviewed here.
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and since KDE is a data-driven process, multiple modes in
the intensity of the background were also handled. They ad-
dressed the issue of nominally moving cameras with a local
search for the best match for each incident pixel in neigh-
boring models. Renet al too explicitly addressed the issue
of background subtraction in a dynamic scene by introduc-
ing the concept of a spatial distribution of Gaussians (SDG),
[16]. ‘Nonstationary’ backgrounds have most recently been
addressed by Plesset al [15] and Mittalet al [12]. Plesset
al proposed several pixel-wise models based on the distrib-
utions of the image intensities and spatio-temporal deriv-
atives. Mittal et al proposed an adaptive kernel density
estimation scheme with a pixel-wise joint-model of color
(for a normalized color space), and the optical flow at each
pixel. Other notable pixel-wise detection schemes include
[20], where topology free HMMs are described and sev-
eral state splitting criteria are compared in context of back-
ground modeling, and [17], where a three-state HMM is
used to model the background.

The second category of methods use region models of the
background. In [21], Toyamaet al proposed a three tiered
algorithm that used region based (spatial) scene informa-
tion in addition to per-pixel background model: region and
frame level information served to verify pixel-level infer-
ences. Another global method proposed by Oliveret al [13]
used eigenspace decomposition to detect objects.The back-
ground was modeled by the eigenvectors corresponding to
theη largest eigenvalues, that encompass possible illumina-
tions in the field of view (FOV). The foreground objects are
detected by projecting the current image in the eigenspace
and finding the difference between the reconstructed and
actual images. The most recent region-based approaches
are by Monnetet al [11], Zhonget al [23]. Monnetet al
and Zhonget al simultaneously proposed models of im-
age regions as an autoregressive moving average (ARMA)
process, which is used to incrementally learn (using PCA)
and then predict motion patterns in the scene.

The proposed work has three novel contributions.
Firstly, the method proposed here provides a principled
means of modeling the spatial dependencies of observed in-
tensities. The model of image pixels as independent ran-
dom variables, an assumption almost ubiquitous in back-
ground subtraction methods, is challenged and it is further
asserted that there exists useful structure in the spatial prox-
imity of pixels. This structure is exploited to sustain high
levels of detection accuracy in the presence of nominal cam-
era motion and dynamic textures. By using nonparamet-
ric density estimation methods over a joint domain-range
representation, the background itself is modeled as a sin-
gle distribution and multi-modal spatial uncertainties are di-
rectly handled. Secondly, unlike all previous approaches,
the foreground is explicitly modeled to augment the detec-
tion of objects without using tracking information. The cri-
terion of temporal persistence is proposed for simultaneous
use with the conventional criterion of background differ-
ence, without explicitly tracking objects. Thirdly, instead
of directly applying a threshold to membership probabili-
ties, which implicitly assumes independence of labels, we
propose a MAP-MRF framework that competitively uses
the foreground and background models for object detection,

while enforcing spatial context in the process. The rest of
the paper is organized as follows. A description of the pro-
posed approach is presented in Section 2. Within this sec-
tion, a discussion on modelling spatial uncertainty and on
utilizing the foreground model for object detection and a de-
scription of the overall MAP-MRF framework is included.
We then outline the complete algorithm in Section??. Ex-
perimental results are discussed in Section 3, followed by
conclusions in Section 4.

2 Object Detection

In this section we describe the global representation of the
background, the use of temporal persistence to formulate
object detection as a competitive binary classification prob-
lem, and the overall MAP-MRF decision framework. For
an image of sizeM × N , let S discretely and regularly
index the image lattice,S = {(i, j)|1 ≤ i ≤ N, 1 ≤
j ≤ M}. In context of object detection in a stationary cam-
era, the objective is to assign a binary label from the set
L = {background, foreground} to each of the sites inS.

2.1 Joint Domain-Range Background Model

If the primary source of spatial uncertainty of a pixel is
image misalignment, a Gaussian density would be an ade-
quate model since the corresponding point in the subsequent
frame is equally likely to lie in any direction. However, in
the presence of dynamic textures, cyclic motion, and non-
stationary backgrounds in general, the ‘correct’ model of
spatial uncertainty would often have an arbitrary shape and
may be bi-modal or multi-modal because by definition, mo-
tion follows a certain repetitive pattern. Such arbitrarily
structured spaces can be best analyzed using nonparamet-
ric methods since these methods make no underlying as-
sumptions on the shape of the density. Non-parametric esti-
mation methods operate on the principle that dense regions
in a given feature space, populated by feature points from
a class, correspond to the modes of the ‘true’ pdf. In this
work, analysis is performed on a feature space where the
p pixels are represented byxi ∈ R5, i = 1, 2, . . . p. The
feature vector,x, is a joint domain-range representation,
where the space of the image lattice is thedomain, (x, y)
and some color space, for instance(r, g, b), is the range.
Using this representation allows aglobalmodel of the entire
background,fR,G,B,X,Y (r, g, b, x, y), rather than a collec-
tion of pixel-wise models. These pixel-wise models ignore
the dependencies between proximal pixels and it is asserted
here that these dependencies are important. The joint repre-
sentation provides a direct means to model and exploit this
dependency.

In order to build a background model, consider the sit-
uation at timet, before which all pixels, represented in5-
space, form the setψb = {y1,y2 . . .yn} of the background.
Given this sample set, at the observation of the frame at
time t, the probability of each pixel-vector belonging to the
background can be computed using the kernel density esti-
mator ([14, 18]). The kernel density estimator is a member
of the nonparametric class of estimators and under appro-
priate conditions the estimate it produces is a valid proba-
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bility itself. Thus, to find the probability that a candidate
point,x, belongs to the background,ψb, an estimate can be
computed,

P (x|ψb) = n−1
n∑

i=1

ϕH

(
x− yi

)
, (1)

whereH is a symmetric positive definited × d bandwidth
matrix, and

ϕH(x) = |H|−1/2ϕ(H−1/2x), (2)

where ϕ is a d-variate kernel function usually satisfy-
ing

∫
ϕ(x)dx = 1, ϕ(x) = ϕ(−x),

∫
xϕ(x)dx = 0,∫

xxT ϕ(x)dx = Id and is also usually compactly sup-
ported. Thed-variate Gaussian density is a common choice
as the kernelϕ,

ϕ
(N )
mathbfH(x) = |H|−1/2(2π)−d/2 exp

(
− 1

2
xT H−1x

)
.

(3)
Within the joint domain-range representation, the kernel
density estimator explicitly models spatial dependencies,
without running into the difficulties of parametric mod-
elling. Furthermore, since it is known that thergb axes are
correlated, it is worth noting that the kernel density estima-
tion also accounts for this correlation. Lastly, in order to en-
sure that the algorithm remains adaptive to slower changes
(such as illumination change or relocation) a sliding win-
dow of lengthρb frames is maintained. This parameter cor-
responds to the learning rate of the system.

2.2 Modeling the Foreground

The intensity difference of interesting objects from the
background has been, by far, the most widely used criterion
for object detection. In this paper,temporal persistenceis
proposed as a property of real foreground objects, i.e.in-
teresting objects tend to have smooth motion and tend to
maintain consistent colors from frame to frame. The joint
representation used here allows competitive classification
between the foreground and background. To that end, mod-
els for both the background and the foreground are main-
tained. An appealing aspect of this representation is that
the foreground model can be constructed in a similar fash-
ion to the background model: a joint domain-range non-
parametric densityψf = {z1, z2 . . . zm}. Just as there was
a learning rate parameterρb for the background model, a
parameterρf for the number of foreground samples is de-
fined.

However, unlike the background, at any time instant the
likelihood of observing a foreground pixel at any location
(i, j) of any color is uniform. Then, once a foreground re-
gion is been detected at timet, there is an increased like-
lihood of observing a foreground region at timet + 1 in
the same proximity with a similar color distribution. Thus,
foreground likelihood is expressed as a mixture of a uniform
function and the kernel density function,

P (x|ψf ) = αγ + (1− α)m−1
m∑

i=1

ϕH

(
x− zi

)
, (4)
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Figure 2: Improvement in discrimination using temporal per-
sistence. (a) Histogrammed log-likelihood values for back-
ground membership. (b) Histogrammed log-likelihood ratio val-
ues. Clearly the variancebetweenclusters is decidedly enhanced.

whereα ¿ 1 is a small positive constant that represents the
uniform likelihood andγ is the uniform distribution equal
to 1

R×G×B×M×N
2. If an object is detected in the preced-

ing frame, the likelihood of observing the colors of that ob-
ject in the same proximity increases according to the second
term in Equation 4. Therefore, as objects of interest are de-
tected all pixels that are classified as ‘interesting’ are used
to update the foreground modelψf . In this way, simultane-
ous models are maintained of both the background and the
foreground, which are then used competitively to estimate
interesting regions. Finally, to allow objects to become part
of the background (e.g. a car having been parked or new
construction in an environment), all pixels are used to up-
dateψb. Figure 1 shows plots of some marginals of the
foreground model.

At this point, whether a pixel vectorx is ‘interesting’
or not can be competitively estimated using a simplelike-
lihood ratio classifier, [4]), − ln P (x|ψb)

P (x|ψf ) > κ, whereκ is
a threshold which balances the trade-off between sensitiv-
ity to change and robustness to noise. The utility in using
the foreground model for detection can be clearly seen in
Figure 2. Evidently, the higher the likelihood of belonging
to the foreground, the lower the likelihood ratio. However,
as is described next, instead of using only likelihoods, prior
information of neighborhood spatial context is enforced in
a MAP-MRF framework. This removes the need to specify
the arbitrary parameterκ.

2.3 MAP-MRF Estimation

The inherent spatial coherency of objects in the real world is
often applied in a post processing step, in the form of mor-
phological operators like erosion and dilation, or by neglect-
ing connected components containing only a few pixels,
[19]. Furthermore, directly applying a threshold to mem-
bership probabilities implies conditional independence of
labels, i.e.P (`i|`j) = P (`i), where i 6= j. We assert that
such conditional independence rarely exists between prox-
imal sites. Instead of applying ad-hoc heuristics, Markov
Random Fields provide a mathematical foundation to make
a global inference using local information. The MRF prior
is precisely the constraint of spatial context we wish to im-
pose onL. The set of neighbors,N , is defined as the set of

2R, G, B are the support of color values, typically 256, andM, N are
the spatial support of the image
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Figure 1: Foreground Modelling. Using kernel density estimates on a model built from recent frames, the foreground can be detected
in subsequent frames using the property of temporal persistence, (a) Current Frame (b) theX, Y -marginal,fX,Y (x, y) High membership
probabilities are seen in regions where foreground in the current frame matches the recently detected foreground. The non-parametric
nature of the model allows the arbitrary shape of the foreground to be captured accurately (c) theB, G-marginal,fB,G(b, g) (d) the
B, R-marginal,fB,R(b, r) (e) theG, R-marginal,fG,R(g, r).

sites within a radiusr ∈ R from sitei = (i, j),

Ni = {s ∈ S| distance(i, s) ≤ r, i 6= s}

wheredistance(a,b) denotes the Euclidean distance be-
tween the pixel locationsa andb. The 4-neighborhood or
8-neighborhood cliques are two commonly used neighbor-
hoods. The pixel-vectorŝx = {x1,x2, ...xp} are condi-
tionally independent givenL, with conditional density func-
tionsf(xi|`i). Thus, since eachxi is dependant onL only
through`i, the likelihood function may be written as,

l(x̂|L) =
p∏

i=1

f(xi|`i) =
p∏

i=1

f(xi|ψf )`if(xi|ψb)1−`i (5)

Spatial context is enforced in the decision through a pair-
wise interaction MRF prior, used for its discontinuity pre-
serving properties,p(L) ∝ exp

( ∑p
i=1

∑p
j=1 λ

(
`i`j +(1−

`i)(1 − `j)
))

, whereλ is a constant, andi 6= j are neigh-
bors. By Bayes Law,

p(L|x̂) =
p(x̂|L)p(L)

p(x̂)
(6)

wherep(x̂|L) is as defined in Equation 5,p(L) is as de-
fined andp(x̂) = p(x̂|ψf ) + p(x̂|ψb). The log-posterior,
ln p(L|x̂), is then equivalent to (ignoring constant terms),

L(L|x̂) =
p∑

i=1

ln

(
f(xi|ψf )
f(xi|ψb)

)
`i+

p∑

i=1

p∑

j=1

λ
(
`i`j + (1− `i)(1− `j)

)
. (7)

The MAP estimate is the binary image that maximizes

arg max
L∈L

L(L|x̂) (8)

whereL are the2NM possible configurations ofL. An
exhaustive search of the solution space is not feasible due
to its size, but sinceL belongs to theF2 class of energy
functions (as defined in [10]), efficient algorithms exist for
the maximization ofL using graph cuts, [5, 10]. To opti-
mize the energy function (Equation 7), we construct a graph
G = 〈V, E〉 with a 4-neighborhood systemN . In the graph,
there are two distinct terminalss and t, the sink and the

Objects Det. Mis-Det. Det. Rate Mis-Det. Rate
Seq. 1 84 84 0 100.00% 0.00%
Seq. 2 115 114 1 99.13% 0.87%
Seq. 3 161 161 0 100.00% 0.00%
Seq. 4 94 94 0 100.00% 0.00%
Seq. 5 170 169 2 99.41% 1.18%

Table 1:Object level detection rates. Object sensitivity and speci-
ficity for five sequences (each one hour long).

source, andn nodes corresponding to each image pixel lo-
cation, thusV = {v1, v2, · · · , vn, s, t}. The graph construc-
tion is as described in [5], with a directed edge(s, i) from s
to nodei with a weightτ (the log-likelihood ratio), ifτ > 0,
otherwise a directed edge(i, t) is added between nodei and
the sinkt with a weightτ . For the second term in Equation
7, undirected edges of weightλ are added if there corre-
sponding pixels are neighbors as defined byN . The min-
imum cut can then computed through several approaches,
the Ford-Fulkerson algorithm [3], the faster version in [5]
or through the generic version of [10]. The configuration
found corresponds to an optimal estimate ofL.

3 Results and Discussion

The algorithm was tested in the presence of nominal cam-
era motion, dynamic textures, and cyclic motion. On a 3.06
GHz Intel Pentium 4 processor with 1 GB RAM, an opti-
mized implementation can process up to 11 fps for a frame
size of 240 by 360. Comparative results for the mixture of
Gaussians method have also been shown. The first sequence
that was tested involved a camera mounted on a tall tripod.
The wind caused the tripod to sway back and forth caus-
ing nominal motion in the scene. In Figure 3 the first row
is the current image. The second row shows the detected
foreground proposed in [19], and it is evident that the mo-
tion causes substantial degradation in performance, despite
a 5-component mixture model and a high learning rate of
0.05. The third row shows the foreground detected using
the proposed approach. It is stressed thatno morphologi-
cal operators like erosion / dilation or median filters were
used in the presentation of these results. Figures 4 shows
results on a variety of scenes with dynamic textures, includ-
ing fountains (a), shimmering water (b) and waving trees
(c) and (d).
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Figure 4:Detection in the dynamic scenes. The top row are the
original images, the second row are the results obtained by the
Mixture of Gaussians method, [19] and the third row are the results
obtained by the proposed method. Morphological operators were
not used in the results.

We performed quantitative analysis at both the pixel-
level and object-level. For the first experiment, we man-
ually segmented a 300-frame sequence containing nominal
motion (as seen in Figure 3). In the sequence, two objects
(a person and then a car) move across the field of view caus-
ing the two bumps in the number of pixels. The per-frame
detection rates are shown in Figure 5 in terms of specificity
and sensitivity, where

specificity=
# of true positives detected

total# of true positives

sensitivity=
# of true negatives detected

total# of true negatives
.

Clearly, the detection accuracy both in terms of sensitiv-
ity and specificity is consistently higher than the mixture of
Gaussians approach. Next, to evaluate detection at the ob-
ject level (detecting whether an object is present or not), we
evaluated five sequences, each one hour long. Sensitivity
and specificity were measured in an identical fashion to the
pixel-level experiment, with an object as each contiguous
region of pixels. Results are shown in Table 1.

4 Conclusion

There are a number of fundamental innovations in this
work. From an intuitive point of view, using the joint rep-
resentation of image pixels allows local spatial structure
of a sequence to be represented explicitly in the modeling
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Figure 5: Pixel-level detection sensitivity. Average True Nega-
tives - Proposed Method 99.65 %, Average True Negatives - Mix-
ture of Gaussians 94.22 %, Average True Positives - Proposed
Method 90.66 %, Average True Positives - Mixture of Gaussians
75.42 %

process. The background is represented by asingledistri-
bution and a kernel density estimator is to find member-
ship probabilities. Another novel proposition in this work
is temporal persistence as a criterion for detection without
feedback from higher-level modules. By making coherent
models of both the background and the foreground, changes
the paradigm of object detection from identifying outliers
with respect to a background model to explicitly classify-
ing between the foreground and background models. The
likelihoods obtain in this way are utilized in a MAP-MRF
framework that allows an optimal global inference of the so-
lution based on local information. The resulting algorithm
performed suitably in several challenging settings.

Since analysis is being performed inR5, it is important to
consider how the so-called curse of dimensionality affects
performance. Typically higher dimensional feature spaces
mean large sparsely populated volumes, but at high frame
rates, the overriding advantage in the context of background
modeling and object detection is the generous availability
of data. Here, the magnitude of the sample size is seen as
an effective means of reducing the variance of the density
estimate, otherwise expected [4] (pg. 323). Future direc-
tions include using a fully parameterized bandwidth ma-
trix for use in adaptive Kernel Density Estimation. Another
promising area of future work is to fit this work in with non-
parametric approaches to tracking, like mean-shift tracking.
Since both background and foreground models are continu-
ously maintained, the detection information can be used to
weight likelihoodsapriori.
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