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A corner is defined as the junction point of two or more straight line edges. Corners are
special features in a image. They are of great use in computing the optical flow and structure
from motion. In this paper, we report an optimal corner detector which uses a mathematical
model for a corner. An optimal gray tone corner detector is derived for a restricted case of
corners, i.e., corners made by lines which are symmetric about a horizontal axis. The resultant
corner detector is described by the product of the sine in x and an exponential in the y
direction in a portion of the mask and by the product of two sines in x and y directions in the
remaining portion. It is then generalized to include any corner of an arbitrary angle and
orientation. This results in an approximation of all corners by a total of twelve major types. It
is observed that all the twelve masks can actually be configured with four smaller sub-masks,
and this results in a significant reduction in the computations. The computations are further
reduced by using the separability of masks. Results for synthetic and real scenes are reported.
© 1989 Academic Press, Inc.

1. INTRODUCTION

A corner is defined as the junction point of two or more straight line edges.
Corners are special features in a image. They are of great use in computing the
optical flow and structure from motion. In this paper, we report an optimal corner
detector which uses a mathematical model for a corner. The work done by Canny [1]
on edge detection has been the motivation for this work. The earliest corner
detection methods involved first segmenting the image into regions and representing
the object boundary as a chain code. Corners were identified where the direction
changed rapidly [8]. Later attempts were directed at coming up with a corner
detector which operated directly on gray level images. These include the one
developed by Zuniga and Haralick [10], Kitchen and Rosenfeld [5], and the one by
Dreschler and Nagel [2]. In these approaches corners are considered as the points
where the rate of change of gradient direction is maximum.

We have noticed that the current corner detectors involve many stages: One has
to identify edges, compute gradient direction and its rate of change, and finally
apply a threshold to the rate of change of the gradient angle. Therefore, the errors
occurring in any one of these stages result in poor quality corners. We have designed
a new corner operator which will overcome the problems in the previous detectors.

We model the local gray level function around a corner point with additive
Gaussian noise and attempt to find an optimal function representing the corner
detector which when convolved with the gray level function yields a maximum at
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the corner point. We formulate our problem as an optimization problem and use
variational calculus to solve it. In order to choose an optimal function for the
desired corner detector from a class of possible functions we maximize an expres-
sion representing the performance measures of the corner detector. The resultant
corner detector is described by the product of the sine in x and an exponential in
the y direction in a portion of the mask and by the product of two sines in x and y
directions in the remaining portion. We classify the corners into twelve types and
extend the solution obtained for a restricted class of corners. We have included
some additional constraints to improve the performance of the corner detector.

Our experimental results reveal that the proposed corner detector performs very
well with the synthetic images with additive noise as well as the complex real
images. Moreover, the computational cost of our method is Sn + 5, where n is the
mask size, which is quite low as compared to other methods reported in the
literature.

Even though we have followed Canny’s approach in formulating our optimization
problem, our contribution is significantly different from Canny. We have con-
tributed in developing a model of a corner and solving the equations by introducing
some heuristics about the corner. Further, we have also contributed in generalizing
the corner model by approximating all possible corner types with only a small
number of masks, which is more crucial in the case of corners as compared to edges.
Finally, we have also contributed by reducing the computation time by a significant
factor.

In the next section, the related work in corner detection is reviewed briefly. The
precise statement of the problem solved in this paper is given in Section 3, where we
present a mathematical model of a corner having a fixed angle and a fixed
orientation, and identify the performance measures of the desired corner detector.
The problem of finding an optimal corner detector for a given model is formulated
as an optimization problem and solved using variational calculus in Section 4. We
have used some intuitive ideas to choose the unknown constants appearing in the
solution. Section 5 is devoted to generalization of the corner model, while the issues
related to reducing the computations are dealt with in Section 6. The algorithm is
summarized in Section 7, while experimental results for synthetic and real scenes are
reported in Section 8.

2. RELATED WORK

Zuniga and Haralick [10] have proposed three different methods for detecting a
corner. They fit a continuous surface over a small neighborhood of each point and
consider the following three quantities as measures of cornerness: 1. incremental
change in gradient direction along the tangent line at the edge point; 2. incremental
change in gradient direction along the contour line of the fitted surface; 3. instanta-
neous rate of change in gradient direction in the direction of the tangent line.
Kitchen and Rosenfeld [5] have proposed three other methods to capture corners.
They include: 1. Use the product of gradient of intensity and gradient of gradient
direction at a pixel as a measure of cornerness. 2. Use the difference between the
gradient directions of neighboring pixels which are perpendicular to the gradient
direction of the pixel as a measure of its cornerness. 3. In a 3 by 3 neighborhood,
locate the two pixels, 4, B which are similar in gray value to the center pixel C. The
difference in direction between vectors AC and CB is a measure of curvature and
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hence of cornerness. Shah and Jain [9] have proposed a time varying corner
detector, in which they consider the product of cornerness using facet model [10]
and temporal derivative of pixel values as a basis for selecting time varying corners.
Besides corners, researchers have also used other properties to choose feature points
in the gray level images. One such, defined by Moravec [6], is called an inferest
operator. This calculates the sum of squared differences of adjacent pixels in the
horizontal, vertical, and the two diagonal directions. Points with a local maximum
for the smallest value of these four sums are used as feature points. Another feature
point selection criteria is laid by Enkelmann et al. [3]. They classify each pixel into
one of the eight bins 0 through 8, depending on the number of pixels in a 3 by 3
neighborhood having gray levels less than the central pixel. '

Our approach is different from the previous approaches in the sense that we do
not consider the rate of change of gradient angle for identifying corners, instead we
consider the gray level characteristics around a small neighborhood of a corner
having a fixed angle and orientation. We apply a corner mask to the image which
responds with a very high value at the candidate corner points. Since there can only
be a finite number of possible angles and orientations of corners in a digitized
image, we are able to capture almost all possible corners by applying only twelve
masks. The proposed corner detector is very similar in spirit to a2 number of edge
detection schemes proposed in the literature. In these methods the edges are
detected by applying a convolution mask to the image with a minimoum control
strategy, in some cases these edge detectors have been called edge operators in the
literature. In this paper, we will also use the terms corner detector and corner
operator interchangeably.

3. STATEMENT OF PROBLEM

Consider a corner at the origin oriented so that the X-axis bisects the angle as
shown in Fig. 1. Let m be the slope of the upper bounding edge, and —m the slope
of the lower bounding edge. The function describing the gray levels around a corner
is

A if x> 0and —mx <y < mx
I(x,y) = .
(x ») {0 otherwise.

y=mx

y=-mx

F1G. 1. A corner model.
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Let g(x, y) be the operator to be determined, and r(x, y) be white Gaussian
noise. Then the gray level function with the additive noise is

F(x,y)=1I(x,y) +n(x,y).

We are interested in detecting a corner at the origin by first convolving F(x, y)
. with an unknown function g(x, y) called a corner operator and then identifying the
maximum of the result, O(x, y) = F(x, y)*(x, y), where *“ *” is the convolution
\ operation. There will be a class of functions containing g(x, y) which will satisfy
the above requirement, but we want to pick the function which best fulfills the
following criteria: 1. The operator should not be sensitive to the noise. 2. It should
1 not delocalize corner points. 3. The detected corner point should also be an edge
point. 4. The detected corner point should have at least two neighbors which have a
different gradient direction than the corner point itself. The above criteria guarantee
1 elimination of false corners and detection of valid localized corners. They also
| enforce the intuitive notion that a corner is the intersection of two physical edges.
We have been able to convert the first two qualitative criteria into quantitative
functions. We will use signal to noise ratio (SNR) to represent the first criteria and
E[x3 + yi] for delocalization, where E is the expectation operator and (xg, y,) is
the location where the corner at (0, 0) is actually detected. Criteria (3) and (4) will be
enforced by removing candidate points which are not edge points and by removing
candidate corner points which contain two edge points having the same gradient
angle in a small neighborhood.

4. FINDING OPTIMAL CORNER DETECTOR

In this section we formulate the problem of finding a corner detector as an
optimization problem and solve it using variational calculus. In our case, the
corresponding Euler equation gives rise to two differential equations which are
solved in Section 4.2 while the unknown constants are chosen in Section 4.3.

4.1. Formulation of Optimization Problem

Our aim is to find an optimal corner detecior which will satisfy the criteria listed in
the previous section. We will use optimization techniques to find an expression for
g(x, y) such that a performance measure 2 is maximized. We will follow Canny [1]
and use SNR (=) and Delocalization (A) as performance measures for our corner
detector. The signal to noise ratio and the delocalization terms can be derived to be
the following expressions:

Af(:wfjmr:xg(x, y) dydx

= —— 1)
no\/f_co f_oo g*(x, y) dydx

+oo p+ o0 + oo + o0
ndf [ 8ix,y)dydx i [ g (x,y) dvax
— 0 — o0 — o0 - 20
A= + (2)

2 e =,
(Aj;: fjm’: Sex (X, ¥) dde) (Af0+ fjmx gyy(x, y) dydx

I1]
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where n3 is the variance of the Gaussian n(x, y), g the operator to be determined,
8xs 8)» Bxx> 8y, the partial derivatives of g, A the contrast of the corner, and m the
slope of the bounding edges in the corner model. For an ideal corner detector one
will be interested in zero delocalization and very high value of signal to noise ratio.
Therefore, we will use the quotient of = and A) as given below as the expression we
want to maximize,

Af+°°f+mg(x, y) dydx

—mx

0
no\/fj:fj:gz(x, y) dydx
2= L [teo proo +o0 r+oo - (3
”0/_00 f_w g:(x, y) dydx n%f_w f_wgi(x,y)dydx
+

CYA Y dydx)2 (AL e )

2

The general strategy is to use the calculus of variations to maximize (or minimize)
one of the integrals with the others held constant. However, the fact that the
integrals have different limits cannot be handled easily in the calculus of variations.
Therefore, we need to change the finite limits into infinite limits. OQur method is to
let H(x, y) be a function defined as follows:

1 ifx>0and —mx <y < mx
H(x, = )
(x, 7) {0 otherwise.

Then, all the integrals may be given infinite limits,

j(;+oof+me(x, y) dydx = /j:fj:K(x, y)H(x, y) dydx.

—mx

The expression to be maximized is then
Afj:fj:g(x, yYH(x, y) dydx
no\/f_+:f_+ “g¥(x, y) dydx
[ e ) dvas
()7 [ g ) ) dydx)z

n%f_+°°f_+:g§(x, y) dydx

(Afj:fj:gyy(x, y)YH(x, y) dydx)2
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The maximization may now be stated as a variational calculus problem: minimize
[I®[*®g?(x, y)dydx with all other integrals held constant as constraints. Mini-
mizing the term in the denominator and keeping all the other terms constant we will
essentially maximize the above expression. Refer to Appendix A in [4] for introduc-
tory material on variational calculus.

4.2. Solving for g

With LaGrange multipliers, we can write the above problem as

.. + 0 + o0
mlmrmzef f F(x,y,8, gx>gy7gxx7gyy) dy dx,
— o0 — 00

where F(xa Y, & gx, gy’ 8xx> gyy) = g2 + >\1Hg + >\2g3 + }\3g)% + A4ngx +
AsHg,,. The related Euler equation is given by

d a? a2
F —

—F, -~ —F, + —F_+—=F, =0
4 Ix 8x 3}, 8y 3x2 8xx ayz

&

Taking the partial differentials of F and substituting their values in the above
equation we get

92 32

28 + MH — 28, = 2A38,, + Moy H + H =0.
X

%

Since H(x, y) 1is constant, its derivatives are zero; therefore the last two terms in the
above equation will disappear. Now, setting A, /2 = p, the above equation becomes

}\ngx + >\3g_yy — 8= “’H

Since H(x, y) = 1 when x < 0 and —mx < y < mx, thus, it is necessary to solve
two differential equations:

Aogee tAs8,—g=p  whenx >0, —mx<y<mx (4)
A28 T Asg,, —g=0  otherwise. (5)
Let us call the part of function g(x, y) defined by Eq. (4) as the cone portion of

the mask and that defined by Eq. (5) as the non-cone portion of the mask.
Solving Egs. (4) and (5) by separation of variables [7], we get

max
7 [—(e + e %) + e + e ] (6)

g(x,y) = ¢, sin

. om@x | nymy
»Y) = —sin———, 7
g(x,y) =c¢,sin S (7)
where W is the mask size, and ¢,, c,, m, ny, n,, and z are constants. The cone
portion of the mask is formed by Eq. (6) and the non-cone portion is formed
by Eq. (7).
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4.3. Choosing Unknown Constants

Our optimal corner detector is described by two equations: Equation (6) is
applicable to the cone portion of the mask and Eq. (7) applicable to the non-cone
portion of the mask. The constants ¢; and ¢, can be set to 1 as they are going to just
scale the values in the mask. These two solutions involve four other unknown
constants:

e m found in the sine term, sin(mwx/W) in both the solutions for cone
portion.

e 1, found in the sine term, sin(n;7x/W) in the solution for non-cone
portion.

* 1, found in the sine term, sin(n,7x/W) found in the solution for the
non-cone portion.

e 7 found in the exponential term in the solution for the cone portion.

In this section, we develop some rationale for selecting the values of these four
unknowns. Since the image is discrete we would like to come up with a discrete
mask for our optimal corner detector described by Eqgs. (6) and (7). This will be
achieved by sampling the continuous functions at integer values for x and y.

A mask for detecting a corner formed by lines symmetric about the horizontal
axis can be developed based on the following intuitive ideas. As usual, we will
assume that the gray levels corresponding to the object are higher than the
background. Let us stick to the ideal case in which there is no noise. The distinction
of the corner pixel over the bright image pixels is that it has the maximum number
of background pixels as its neighbor. So if we apply a corner mask, which has
negative weights in the non-cone portion and positive weights in the cone portion,
the corner pixel will stand out giving a very high value in the result.

Now, let us attempt to determine the value of the first unknown m. It is to be
noted that the term [—(e?? + e7*") + ¢ + ¢~#’] in Eq. (6) is always negative, as
0 <y < W in the cone portion. When m = —1, for x varying from 0 to W, the
sin(max/W) term varies from sin0 to sin —« which is then one-half of the sine
wave having negative values. If m takes any other value, some negative values will
appear in the cone portion which is not desired. The intuitive mask has negative
values in the non-cone portion. To achieve this for the optimal mask we choose
n; =1 and n, = —1, thus the sin(n,7x/W) term is out of phase by 180° with
sin(n,7x /W) and the product in Eq. (7) is always negative. We have not been able

3(-5(-561-3[0[-3}|-5}-5]-3
-5(-9/-9)-6(0]-5|-9]-9]|-5
5(-9(-91-5|0|-5!-9|8][35
-3[(-5|-5{-3|0|6}9]9]6
0|]0[0j0]|0]|6|10]|10]|6
3[(-5/-5(-3|]0]6[9]9]|6
51-91-9|-5|0]-5]{-9}|8]35
5(-919|-5{0{-5|-9]-9]-5
-3|-5({-5]{-3{0{-3|-5|-5]-3

F16. 2. Optimal masks for 60°.
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(a)

(b) (c)

F16. 3. Results of optimal corner detector for a noisy image: (a) synthetic image of 60°; (b) synthetic
image with additive Gaussian noise of ¢ = 4; (¢) detected corner superposed on the original image.

to find any rationale for selecting the value of z yet; however, we have noted from
our experiments that the higher the value of z the greater is the noise fighting
capability of the mask. One could also vary the size of the mask (2W) and as it is
clear from Eq. (6) this will have similar effect on performance of corner detector as
of z.

The optimal mask of size 9 by 9 was created for § = 60°, with m = —1, n; = 1,
n, = —1, and z = 0.2 and is shown in Fig. 2. The masks were applied to the test
cases listed previously without noise and with an additive noise of o = 64. A sample
of the results is shown in the Fig. 3.

5. GENERALIZING THE MODEL

So far our model for a corner has been very simple and unrealistic. We have
assumed that the corner is made by lines symmetric about the x axis. This implies
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that the orientation of the corner is fixed. But in a real image the corner can appear
in any arbitrary orientation. Also, another restriction in our model is that the mask
is dependent on the slope of the lines making the corner, which would mean a large
number of masks to cover all the possible slopes of lines.

It would be very hard to enumerate all possible corners and generate a mask for
each one of them. One can attempt to come up with a small class of corners which
can approximate most of the possible corners in real images. We have found that
there are three major classes of corners depending on the total number of quadrants
occupied by the cone portion of the corner in our model. The first class contains all
the corners in which the cone portion lies in only one quadrant; the second class
contains all the corners in which the cone portion lies in two consecutive quadrants;
finally the third class contains all the corners in which the cone portion lies in three
consecutive quadrants. Therefore, in total we have 13 corner types as shown in

72
] /
quadrant
corner comer
| quadrant | quadrant comne! comer
i NIANNN
Ly quadrant
;ucdrom
corner
comer | comer N I\\>\
quadrant WV quadiant q\u\c\c}}mf

%

corner

1L

L
uadrant
cormer
/ / (ee, comer
LIV rets

77 /
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g
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F1G. 4. Types of corners.
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11 | -18 [-18 | -11
211 | -18 [-18 | -11
6 |-11|-11| -6

2 |77 ] 4
8 |13 |13 | 8
10 | 17 | 17 | 10
12|19 | 19 | 12
T2 20 | 20 | 12
6 |-11|-11] -6
11 [ -18 | -18 | 11
11 [ -18 | -18 | -11
6 |-11|-11] -6

o|o|o|o|olo|ejo|o

F1G. 5. Approximate optimal mask.

Fig. 4. One of these types in which the cone portion will occupy all four quadrants,
while the non-cone portion will not be present at all and will violate our corner
model. We propose to use only 12 masks to detect any corner having an arbitrary
angle and orientation.

For each of the cases listed above the mask is formed as follows. Use the solution
given in Eq. (6) for the quadrant(s) containing the cone portion of the corner and
the solution given in Eq. (7) for the remaining quadrants. For example, in Fig. 5 we
have shown a mask generated by this method for detecting corners with the cone
portion in quadrant 1. Note that this mask is ideal for detecting corners which make
90° with the X-axis. However, this mask will respond to almost all the possible
corners in quadrant I. The difference between the ideal corner of 90° and any other
corner in quadrant I is that in the former case the cone portion will occupy the
whole quadrant, while in the latter case the cone portion will occupy only a part of
quadrant I depending on the angle of the corner. Therefore, the total response of the
mask at the corner point in the ideal case will be higher than the response of the
mask for any other angle. Recall that this observation is true for the previous
approaches also; in these approaches the rate of change of gradient angle is used as
the measure of cornerness. The rate of change is higher for the ideal case of 90° as
compared to the rate of change of any smaller angle.

477470 12]19]19]12]0
13[i3[ 8]0 10 [17]17]10]0
101717100 8 {13713 8]0
21919120 417174710
oJoJoojo ojoJo]o]o
(a) (b)
6 [-11T-11] -6 Jo
-1 [-18[-18 110
-1 [-18[-181-11]0 (12120720 [12T0]]
6 [-11[-11] -6 |0
oJoJoloio
(<) (d)

F1G. 6. Four principal sub-masks: (&) C1; (b) C2; (¢) NC; (d) CX.
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6. REDUCING COMPUTATIONS

In the previous section, we found that a total of 12 masks will be needed to detect
a corner of any angle appearing in an arbitrary orientation. For a mask of size 11,
the 12 masks will require 11*11*12 multiplications for each pixel in an image.
Computationally this method will be very expensive. It can be observed that each of
the twelve masks can be constructed from the four submasks shown in Fig. 6. As an
example, Fig. 7 shows how the mask for corner Type-1 is constructed from these
four sub-masks. Let I(x, y) be the image value at point (x, y) and let (2n + 1) be
the mask size. Let us compute the following values at each pixel (x, y).

n/2 n
Ic1(x’J’)=I*C1(va’)= Z ZCl(i,j)~I(x+i,y+j)
j==—n/2i=0
Ioy(x,y)=1*C2x,y) = X X C2(i, j) - I(x + i, y+))
j=0i=0
Inc(x,y) =I*NC(x,y) = X X NC(i, j) - I(x + i,y +j)
j=0i=0
Iey(x, y)I+CX(x,y) = X CX(i, j) - I(x, y +j)-
j=0

Now, I(x, y)* g(x, y) for corner Type-1 can be computed as
I(x, y)*g(x,y) =Iq(x +d,y+d—1) + I.x(x + d, y)
+ly(x+d,y—d)+Iy(x—d+1,y+d-1)
+Iy(x—d+1,y—-4d),

|
|
b mask |
Sub mask Sul cl
NC
Sub mask
CX
Sub mask Sub mask
NC NC

Fic. 7. Generation of mask for Type-1 corner.



OPTIMAL CORNER DETECTOR 241

2T4[2]2]

() (b) (c) (d)

F16. 8. One-dimensional masks using separability: (a) XC1; (b) YC1; (¢) YC2; (d) YCs3.

(a) (b

F16. 9. Results of corner detector for the synthetic image: (a) original image; (b) detected corners
superposed on the original image.

(2) (®)

F16. 10. Results of corner detector for the cardboard image: (a) original image; (b) detected corners
superposed on the original image. ’
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where d = 1(n + 1). Since all 12 masks can be constructed from the sub-masks C1,
C2, NC, and CX, it is sufficient to compute I * C1(x, y), I * CAx, y), I * NC(x, y),
I+ CX(x, y) for each pixel (x, y) in the image and combine these results to get all
of the 12 masks.

Further, sub-masks C1, C2, and NC can be split into two one-dimensional
masks. For example, C1 is split into XC1 and YC1, XC1 using solution (6) and
YC1 using solution (7) (Fig. 8). Now the operation I(x, y)*Cl(x, y) can be
computed as

J

:0( _Zn‘,ol(x +i,y+j)- XCl(i)) - YC1(f)

I(x, y)*Cl(x, y) = (

(b)

F1c. 11. Results of corner detector for the Tiwanaku image: (a) original image; (b) detected corners;
() detected corners superposed on the edge image.
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The computational cost of our method is 5»n + 5, where » is the mask size. Which is
quite low as compared to other methods reported in the literature. Moreover, our
method gives superior results.

7. SUMMARY OF ALGORITHM
In this section, we describe the final algorithm for detecting corners. For each of
the 12 masks perform the following steps:
1. Compute cornerness at all pixels by applying the corner masks to the given
image.

2. Select the pixels with value greater than a preset global threshold as
candidate corners. Typically a low threshold like 50% of the maximum response is

(2)

AR

Fic. 12. Results of corner detector for the car image: (a) original image; (b) detected corners;
(c) edge image.
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used to retain all corners, and the later steps are used for eliminating noncorner
points.

3. As a corner pixel is also an edge pixel, remove candidate corner pixels
obtained from the previous step that are not edge pixels. We use Canny’s operator
for finding the edge pixels.

4. Discard corners which have at least two neighbors in a 3 by 3 neighborhood
with a similar gradient angle.

5. Declare the remaining corners as valid corners.

8. EXPERIMENTAL RESULTS

Figures 9-12 show the results obtained using our corner detector for some
synthetic and real images. In Fig. 9a a synthetic image of corners of 120° and 210°
are shown, while Fig. 9b shows the original image with the superposed corners
detected by our method. Next, the results for a real scene of two objects are shown
in Figs. 10a, b. This image is taken from a cardboard sequence of moving objects.
Notice that all true corners are detected; in addition, one false corner is also
detected in the lower object. In fact, this additional corner is a valid corner which is
made between the lower object and a thin edge running through the object. Next,
Figs. 11a—c show the results obtained for the Tiwanaku image. Notice that this is a
very complex image with lots of potential corners. However, our corner detector is
able to identify most true corners in two standing statues. Finally, the results for a
toy car are shown in Figs. 12a—c.

9. CONCLUSIONS

We have presented a new approach for modelling a corner in gray level images,
which is significantly different from the previous approaches which model a corner
as a point where the rate of change of gradient angle is high. Using this new
mathematical model we derived an optimum corner detector which, when convolved
with the gray level image, responds with a very high value at the location of the
corner. We have shown by presenting the experimental results for the synthetic and
real scenes that the performance of our corner detector is very good. Further, we
have outlined a very efficient algorithm which uses the separability of corner masks
to reduce the computational cost. Our future work will focus on the use of corners
as tokens for establishing correspondence in a sequence of frames.
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