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| Given n frames taken at different time instants and m points in
each frame, the problem of motion correspondence is to map a
point in one frame to another point in the next frame such that no
two points map onto the same point. This problem is combinato-
rially explosive; one needs to introduce constraints to limit the
search space. We propose a proximal uniformity constraint to
solve the correspondence problem. According to this constraint,
most objects in the real world follow smooth paths and cover a
small distance in a small time. Therefore, given a location of a
point in a frame, its location in the next frame lies in the proximity
of its previous location. Further, resulting trajectories are smooth
and uniform and do not show abrupt changes in velocity vector
over time. An efficient, non-iterative polynomial time approxima-
tion algorithm which minimizes the proximal uniformity cost func-
tion and establishes correspondence over n frames is proposed. It
is argued that any method using smoothness of motion alone can-
not operate correctly without assuming correct initial correspon-
dence, the correspondence in the first two frames. Therefore, we
propose the use of gradient based optical flow for establishing the
initial correspondence. This way the proposed approach combines
the qualities of the gradient and token based methos for motion
correspondence. “Ihe algorithm is then extended to take care of
restricted cases of occlusion. A metric called distortion measure
for measuring the goodness of solution to this r frame correspon-
dence problem is also proposed. The experimental results for real
and synthetic sequences are presented to support our claims.
© 1991 Academic Press, Inc.

1. INTRODUCTION

Given n frames taken at different time instants and m
points in each frame, our problem is to come up with a
correspondence of a point in one frame to another point
in the next frame such that no two points map onto the
same point (see Fig. 1). The correspondence is required
in many computer vision algorithms, and there exist a
number of approaches to this problem. A slightly simpli-
fied form of this problem is encountered in stereo, where
the tokens from the left image are to be matched to those
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in the right image to compute the disparity. The disparity
is proportional to the depth of the objects the tokens
belong to in the three dimensional world. The problem
here is simplified due to the fact that the possible matches
can only occur along an epipolar line. In the case when
the objects are moving and frames are taken at different
time intervals, the possible matches can occur anywhere
in the next frame, unlike stereo where the frames are
separated in space not in time. ,

Motion correspondence in two frames can be used to
compute optical flow and structure from motion. If the
correspondence is known for a number of successive
frames, one can generate a path followed by a point lying
on an object. A path can be generated by starting from a
point in the first frame and ending at some point in the
last frame, touching each frame at not more than one
point, and by joining a point in a frame by a straight line
with its corresponding point in the next frame. Such a
path we call a trajectory. Each trajectory is identified by
a point in the first frame. A set of non-intersecting paths
which together involve all points in all frames is a zrajec-
tory set. A trajectory set can be analyzed to identify im-
portant events in the motion of the object. The disconti-
nuities in speed, direction, and acceleration are good
candidates for the events. This is an alternate approach
for utilizing the motion characteristics of objects without
actually recovering the structuure [13.

The correspondence problem is combinatorially explo-
sive. For instance, with n frames and m points in each
frame, the number of possible trajectory sets is m!*=D,
To give an idea, the number of possible trajectory sets for
m =5, n=41is given as (5!)* = 1203 = 1,728,000. There
are two interesting points to be noted here. First, trying
all possible trajectory sets will be almost impossible even
for a moderate number of frames and points. Second,
even if we know all possible trajectories, how do we
determine which set is the correct one?

In order to cope with the complexity of this problem,
the researchers have used a number of constraints. The
constraints include maximum velocity, small velocity
change or smoothness of motion, common motion, con-
sistent match, rigidity, etc. [2]. The maximum velocity
constraint implies that if the bound on the velocity is
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FIG. 1. (a) Input to the correspondence algorithm. Filled circles

denote feature points, and squares denote image frames. (b) Output of
the correspondence method, a set of trajectories. Each trajectory has
exactly one point in each frame and each point in a frame belongs to
exactly one trajectory, hence the mapping is isomorphic. (¢) Valid cor-
respondence. (d) Invalid correspondence.

known a priori, given a position of a point in one frame
one can limit the search for possible match in the next
frame to a small neighborhood of the position in the
present frame. The small velocity change heuristic as-
sumes that the direction and speed of the motion cannot
change by a large amount, so that one can eliminate some
false matches. This constraint essentially leads to smooth
motion [3]. Common motion constraints the motion of
the points in a small neighborhood to be similar, and
consistent match forces only one match for one point.

The rigidity and smoothness of motion assumptions
have received the most attention. Rigidity implies that
the objects in the three dimensional world are rigid,
therefore the Euclidean distance between any two points
on the rigid object will remain unchanged in the next
frame. In fact, Ullman and Yuille [4] have attempted to
show that smoothness follows from rigidity; that is, if the
objects are rigid their underlying motion will be smooth,
but not necessarily vice versa.

An important issue in the correspondence problem is
to convert the above qualitative heuristics into quantita-
tive expressions, which become the cost functions. Then
the aim is to search for the trajectory set which minimizes
one of these functions. Enumeration of all possible sets
and picking the one with the least cost is not possible.

Therefore, one needs to use a good approximation algo-
rithm to obtain a sub-optimal solution that is very close to
the optimum solution.

We propose the proximal uniformity (see Fig. 2) con-
straint to solve the correspondence problem. According
to this constraint, most objects in the real world follow a
smooth path and cover a small distance in a small time.
Therefore, given the location of a point in a frame, its
location in the next frame lies in the proximity of its pre-
vious location. Further, resulting trajectories are smooth
and uniform and do not show abrupt changes in velocity
vector over time.

We have also designed an approximate algorithm
which runs in polynomial time and gives a reasonably
good solution, but not necessarily the optimum one. We
observe that it is meaningful to use an approximate algo-
rithm for this problem if and only if two trajectories hav-
ing similar cost resemble each other in space; and that for
a cost function based on smoothness of motion to be
effective, the initial correspondence should be assumed
correct. In our method the initial correspondence is de-
termined by the use of the optical flow method proposed
by Little et al. [5]. The proposed algorithm is also able to
deal with cases of limited occlusion.

The next section briefly reviews related work in mo-
tion correspondence. The formulation of the problem is
stated in Section three. An exact expression for the prox-
imal uniformity function and justification for its use are
also described in Section three, while the algorithm
which operates on the proposed cost function and estab-
lishes correspondence is outlined in Section four. Section
five deals with the description of the distortion measure.
Results are presented in Section six, and the discussion
of the results is given in Section seven. Finally the use of
optical flow in obtaining initial correspondence is dis-
cussed in Section eight, and a modified algorithm to deal

FIG. 2. Proximal uniformity. Trajectories ABC and ABD sk_\ow the
same amount of smoothness in velocity, but trajectory ABD ts more
proximally uniform than trajectory ABC.
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with limited cases of occlusion is outlined in Section
nine.

2. RELATED WORK

Ullman [6] has proposed a minimal mapping theory for
correspondence. He formulated the correspondence as a
minimization problem, the correct correspondence being
the one for which the sum of the negated logarithmic
values of the probabilities of point velocities is a mini-
mum. Ullman’s approach is probabilistic in nature; he
assumed that each point is moving independent of every
other point. When the points being tracked belong to the
same object, they move as a rigid structure and violate
the independence assumption. But, when the points in a
frame belong to different moving objects, the indepen-
dence assumption is better obeyed, as points on different
objects move independently of each other. At low veloc-
ity the cost function used by Ullman reduces to the dis-
tance. Though he proposes the use of correspondence for
recovering structure based on rigidity, the rigidity as-
sumption is not used explicitly in establishing correspon-
dence.

Jenkin [7] presented a method for tracking the three
dimensional motion of points from their changing two
dimensional perspective images as viewed by a noncon-
vergent binocular vision system. The scheme used the
concept of velocity smoothness. Given the initial 3-D po-
sitions and velocity of the points and a sequence of
frames, the scheme tracked the position and velocity of
points in 3-D. At any instant of time it considered two
frames. A frame is composed of a left stereo image and a
right stereo image. The stereo correspondence and the
velocity in the first frame are known and the stereo corre-
spondence and the velocity in the next frame are to be
determined. It should be noted that the position of a point
in 3-D can be obtained from the stereo correspondence.
He used a greedy strategy for choosing the best solution.

Aggarwal, Davis, and Martin {8] have proposed two
different methods to solve correspondence: iconic meth-
ods and structure based methods. Iconic methods com-
pare segments from two different frames by computing
normalized cross correlations of pixel values, absolute
differences of pixel values, and squares of differences in
pixel values. These methods, though computationally
costly, lend themselves to fast parallel implementations.
The structure based method consists of identifying the
interesting points in the two frames and the matching
problem is tackled through the Hough transform. This
algorithm is able to tackle shape and size deformation to
some extent and also occlusion.

Bernard and Thompson [9] use an iterative algorithm
to match feature points selected in two different frames

taken in a small time interval. This algorithm starts with
initial probabilities for matches between pairs of points
based on a common motion heuristic by correlating a
small neighborhood around the feature points, and re-
stricts the potential match for a point using the heuristic
that a point in the world does not move a large distance
between frames. The probabilities are refined to
strengthen common motion of neighboring points. The
algorithm terminates when all the probabilities of
matches between pairs of point are close either to 1 or
to 0.

Sethi and Jain [3] have proposed two different iterative
algorithms, GE (Greedy Exchange) and MGE (Modified
Greedy Exchange), which minimize the cost function
called path coherence. GE assumes the initial correspon-
dence between frame 1 and 2 to be known. Then it ex-
tends the trajectories frame by frame, from frame 3 to
frame n. When it is trying to extend the trajectories to
frame £, it assumes the correspondence to be the nearest
match to start with. It then goes into an iterative loop,
exchanging correspondences which improves the cost
function value. When no exchange is favorable, it repeats
the process for frame & + 1. This process continues until
correspondences in frame n are established. The differ-
ence between GE (Greedy Exchange) and MGE (Modi-
fied Greedy Exchange) is that GE assumes an initial cor-
respondence between the first and second frames based
on the nearest neighbor criterion, which does not change
till the end, while in MGE, the initial correspondence is
not assumed, and the above process is repeated in for-
ward and backward directions, which could alter the ini-
tially assumed correspondence.

Williams and Hanson [10] have formulated the corre-
spondence of line tokens between two views as finding a
minimal arc cover in a weighted bipartite graph. The de-

. tected line tokens in the two views are the nodes in the

graph and the cost on each arc is the error measure. Their
formulation accomodates the split and fusion of the to-
kens also. They make use of the optical flow measure-
ments computed by Anandan’s method [11] to predict the
location in the second view of a line token L from the first
view and consider all line tokens in a small rectangular
window around the predicted location as potential
matches for L. The error measure for correspondence of
L with a potential match is its average distance with the
potential match. They further outline a procedure for
computing depth based on the length of two correspond-
ing line segments. ‘

Recently, Weng, Ahuja, and Huang [12] have proposed
amethod to match two views of a scene. They minimize a
matching function which has terms for difference in in-
tensity, edgeness, and cornerness and terms which en-
courage a pixel to have similar motion to its neighbors.
The terms of edgeness and cornerness are again functions
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of intensity, and it would have been better computa-
tionally if the number of terms capturing the same infor-
mation had been reduced. Their algorithm is iterative.
The method has been tried on matching two different
views of the same static scene.

3. FORMULATION OF THE PROBLEM

We are given a sequence of n frames denoted by f!, 2,
. . ., f". We assume that the important tokens in each
frame have already been identified using a corner detec-
tor [13] or an interest operator. Therefore, each frame fi
is a set of points. Corresponding to the ith point in the jth
frame, we have its 2-D coordinates denoted by a vector
X{. Our aim is to come up with a one to one onto corre-
spondence ®* between points of the kth frame and the
(k + Dth frame.

It is not unrealistic to assume that in space objects
move small distances in a small time interval, and their
corresponding motion is smooth or uniform. If the time
interval between frames is small, then the 2-D projection
of 3-D motion will also be small and smooth. Therefore,
the location of a point in the next frame will be in the
proximity of the location in the previous frame. Smooth-
ness of the motion implies minimum change in velocity of
the point; that is, the object cannot change its direction
and speed instantaneously. Hence the objects will follow
a proximal uniform path. We propose to establish corre-
spondence by minimizing the proximal uniformity func-
tion 8, which will prefer the proximal uniform path,

X, Xh, XK
_ IXETXE - XEXFT)
2 2 X X Gy — X X
XX
S S0 XX |

+

where l = p, g, r=m2=sk=m-1;q = d(p);
X§X7*! is the vector from point g in frame k to the point
in frame k + 1; and || X|| denotes the magnitude of the
vector X.

Figure 3 shows a 3 frame 3 point sequence. The corre-
spondence between frames 1 and 2 is known. The corre-
spondence between points in frame 2 and those in frame 3
is to be established. The computation of the proximal
uniformity function 8§(X!, X3, X3) in this case is, as an
example,

L2 opn o IXIXT - XIXG] | IX3XG)
8(‘X‘13¢le’4X'])_ CI -+ C2 s

where

C1 = [IXixt - Xixi| + IX1x} - Xixj|
+ 1 Xix] - Xixs| + [1X1x3 - X3x3)
+ [lX2X3 - X3x3|| + [ X1X3 ~ X3x3]|
+1X5x35 - X3x3]| + [1X3X3 - X3x3||
+ 1 X1x3 - X%xi|

C2 = |lxixi| + IXix3| + [ xix3|
+ 1X3X3] + 1 X3X3] + | X33
+ 1 X3X3] + [ X330 + ([ X3X3),

The proximal uniformity function obeys the following
criteria.

* Speed does not change much between two succes-
sive frames.

+ Direction does not change much between two suc-
cessive frames.

+ Displacement of a point between two successive
frames tends to be small.

In our proximal uniformity function the first term rep-
resents a relative change in velocity, while the second
term denotes a relative displacement. The second term
forces the proximal matches, while the first term leads to
smooth and uniform trajectories. Note that the numera-
tor in each term represents an absolute quantity; for ex-
ample, the numerator of the first term represents an abso-
lute change in velocity of a point ¢ in frame k. The
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FIG. 3. (a) 3 frames with 3 points in ea_ch frame. (b) A denotes
X!X3. B denotes X1X3. A = B denotes X1.X3 — X X1.
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denominators denote sums of absolute quantities for all
possible matches. Hence, the ratio gives the relative
measure of quantities. Since a change in velocity is a
vector quantity, the magnitude in the first term incorpo-
rates the change in both speed and direction.

In our formulation we assume that @', an initial cor-
respondence, is known. ®* is determined such that
2 8(X; ' X4, X5') is minimized. We believe that for a
smoothness based method to be meaningful, the initial
correspondence should be known. Given the correct ini-
tial correspondence, the algorithm will correctly grow the
trajectories. Applying the smoothness constraint alone
without knowing any details about the initial movement
of the points may in many cases lead to false trajectory
sets.

Previously, researchers have missed one or the other
important point in the cost function to be minimized. For
instance, Ullman [6] asserted that humans prefer motion
which minimizes the distance as objective function. He
noted that his minimal mapping requires only the mea-
surement of distances between elements, not of the direc-
tions, a property that might have an advantage in terms of
economical implementation. Ullman also showed that
most of the time resulting trajectories are non-intersect-
ing. On the other hand, Sethi and Jain [14] first proposed
that only direction should be considered in the cost func-
tion for minimization. Later in [3] they used the direction
as well as a speed term. Most of the time their function
prefers intersecting trajectories. Our proximal uniformity
function is biased neither to intersecting nor to non-inter-
secting trajectories. Using our notations the cost function
¥ used by Sethi and Jain is

‘If(Xé_l, X%, X/r<+1)
=01+ (1 _ X HXSXf“H)
\XETRE| - |1 X5

o (7 Z 2= UGN = XX 0]
09 <(1 XT3 + [ XX )

where the first term captures smoothness in direction and
the second term smoothness in speed. We have noted
that when their cost function is minimized, the resulting
trajectories tend to prefer matches between points which
are far apart. This is due to the fact that the second term
in the above function can be reduced to a term having the
displacement in the denominator, and change in speed in
the numerator. Hence, for the same change in speed, this
function gives a lower value for correspondences involv-
ing greater displacement than for correspondences in-
volving smaller displacement.

Figure 4(a) shows this anomaly. In all our figures
points have been labeled with the frame number to which
they belong. Figure 4(a) violates the basic assumption

56 160 50 ’ 50 700 750
(2) ®

FIG. 4. Anomaly. (a) Wrong correspondence preferring longer dis-
tance. (b) Correct correspondence.

that between successive frames points do not move a
great deal, which has been used in many previous ap-
proaches. For instance, Ullman [6] has established this
point in which he derives the probability distribution
curve of 2D velocity in image plane to be a monotonically
decreasing curve, even though the 3D velocity distribu-
tion curve may not be so in the lower velocity ranges.
This implies that near matches are more probable than
distant matches. Figure 4(b) shows the expected corre-
spondence and is preferred by our method.

4. ALGORITHM

We have designed a non-iterative greedy algorithm A
which assigns correspondence of the points in one frame
with the points in the next frame, keeping the overall
proximal smoothness function as close to the minimum
as possible in addition to being fair to each individual
assignment.

Algorithm A

1. Fork=2ton—1do

(@) Construct M an (m * m) matrix, with the point
from kth frame along the rows and points from
(kx + 1th frame along the columns.

(b) Let M[i, j1 = 8(X:'X4X5"), when ®'(p) =
i

(c) fora=1tomdo

i. Identify the minimum element [/, /] in each
row { of M. ;

ii. Compute priority matrix B, such that B[i,
LY =270 oy M, J1 + 230 g Mk, 1] for
each I.

iii. Select [Z, /;] pair with highest priority value
Bli, I;], and make ®%() = I,

iv. Mask row i and column J; from M.
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In our algorithm, when we consider the minimum along
the rows, it could happen that more than one minimum
lies along the same column j. That is, more than one
point in frame k competes for point j in the (¢ + Dth
frame. To get a one to one onto mapping, we should
choose only one of these. However, our scheme should
not just choose the minimum possible combination quan-
titatively, but should prefer a combination where each
individual correspondence is fairly good. The correspon-
dence from frame k£ to k& + 1 involves m points. The
minimum correspondence could be very favorable to
some (m — 1) points and not favorable for the mth point.
We should prefer a correspondence which is equally fa-
vorable to all points; at the same time we should not end
up with a very high proximity path uniformity function.
The algorithm was designed to take care of these condi-
tions.

The rationale behind the priority measure is that if [i, ]
is not assigned, any other element along the ith row or jth
column can get assigned. Assuming they are all equally
probable, their average value is a good measure for se-
lecting the order of assignments. We should choose the
one with the highest priority measure and assign that
first. Priority measure is a rough estimate of the alternate
assignment to {i, j].

This algorithm has the nice property that it will pick the
least cost assignment if there are just two points in the
frame. Consider the matrix M, with M {1, 1] = 0.6, M1,
21 =0.3,M[2,1]1 = 0.7, and M[2, 2] = 0.2. The minimum
along row 1 is element [1, 2] with value 0.3, while the
minimum along row 2 is element [2, 2] with value 0.2.
Therefore, B[1, 2] = (0.6 + 0.2) = 0.8, and B[2, 2] =
(0.7 + 0.3) = 1.0. Now, B{2, 2} > B{1, 2}, hence we
choose correspondence (2, 2) first. Then, mask row 2 and
column 1 with a high value. Next we pick the only assign-
ment possible, {1, 1]. For this assignment & = M[1, 1] +
M(2,2] = 0.6 + 0.2 = 0.8, which is the least possible for
this configuration.

Let us take a closer look at the priority measure. A low
priority measure means the other values along row i and
column j are very good candidates as well. Hence, there
is more competition for assignment {i, j]. By choosing
that assignment which has the highest priority measure,
we are committing to an assignment which we know will
give a very large value assignment if we miss. It should
be noted that this heuristic tries to keep the worst assign-
ment as small as possible. Since we are considering only
the minimum possible values along each row we are
keeping the proximal path uniformity function value as
low as possible. Also, since we blank out the ith row and
Jth column after assigning [/ /], we ensure one to one onto
mapping between points in frames 4 and & + 1. Hence,
we can say that our algorithm gets a one to one onto
assignment which Is close to the optimum assignment.

And it also has the property that no individuual assign-
ment will be very bad.

It should be noted that in an » frame correspondence
problem, with minimum proximal path uniformity the as-
signments in two consecutive frames need not be the
minimum possible. An algorithm which extends the tra-
jectory by one frame at a time starts with an initial corre-
spondence between frames 1 and 2 and extends it to 3 and
then to 4 up to n. In that case, getting the optimum as-
signment between the frames k and &£ + 1 need not neces-
sarily lead to a globally minimum trajectory set. In that
sense our heuristic assignment between frames k and k +
1, in addition to making a one to one onto assignment and
keeping the proximity path uniformity value close to min-
imum, also keeps the worst individual assignment low.
Thus it is suited to n frame correspondence even though
it looks at only three frames at a time.

5. PERFORMANCE MEASURE FOR CORRESPONDENCE

Every sub-optimal algorithm produces an approximate
solution. In many applications, we need to know how
good a given approximation is. Therefore, we propose a
measure called the distortion measure for grading the
determined trajectories. The higher the distortion mea-

. sure, the greater is the displacement of the established

trajectory from the actual trajectory. The distortion of a
trajectory is computed as follows. Take the square of
Euclidean distance between a point as it appears in the
actual trajectory and its position in the established trajec-
tory. Do this for each frame and add the distortion in all
frames to get the distortion measure of a trajectory. Add
the distortion measures of all trajectories in the sequence
of frames to get the distortion measures of a trajectory
set. By the nature of the problem, it is more reasonable to
use the summation of distortions of a trajectory set as a
performance measure, rather than distortion of any indi-
vidual trajectory. By the definition of the distortion mea-
sure, an ideal cost function should have the following
properties:

* The minimum trajectory set should have zero dis-
tortion.

» The higher the cost function value, the greater
should be the distortion measure.

Now, we will justify the use of Fuclidean distance as
distortion measure. Let A and B be the projections of two
points lying on a rigid object. Assume A was identified as
A’ due to the error in the correspondence process. Many
approaches to structure from motion consider the square
of the image distance between two points as the rigidity
term. Hence, the error passed on to the structure recov-
ering algorithm is denoted by |A’B|? — |AB|%. We show
that [AA'|?, the square of the Euclidean distance between
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the actual location (A4) of a point and its distorted location
(A"), 1s a good measure of the error.

|A'B| = |A'C| + |CB|
= |AA’| cos A\; + |AB| cos A,
|A'B|? — |AB* = |AA'|? cos A] + |ABJ? cos A
+ 2|AB||AA’| cos A\ cos Ay — |AB}?
= |AA’|2 cos A3 — |AB|? sin A}
+ 2|AB||AA’| cos A; cOs Aj.

But

|AC| = |AA’| sin A, = |AB] sin ),
|A'B|? — |AB|2 = |AA'[2 cos? Ay — |AA'|2 sin? A,
+ 2|AA’| |AB| cos A; cos A,
= |AA'|*[cos? Xy — sin? A;]
+ 2|AB| |AA’| cos A; cos As.
Since |AB|? is the rigidity term for the link between A and

B, the error in rigidity from distorting A with A" is (|A’B|?
—~ |AB|?). In the expression derived above we could as-

sume that |AB] is a constant as the object is rigid, and we
could ignore the effects of cosine and sine functions in
comparison with |AA’|?, |AA’|, and |AB], as they vary
from +1 to —1. Hence, the dominant factor in this ex-
pression is |AA’|%, and it is a good measure of the error
introduced by the correspondence process.

6. RESULTS

In this section we present the results for real and syn-
thetic sequences using our algorithm. Figure 5(a) shows a
synthetic set of five points in four frames used by Sethi
and Jain [3]. Figure 5(b) shows the correspondence estab-
lished by our algorithm. This sequence is a good example
of trajectories which cross over. Next, a six frame Blocks
Sequence obtained by digitizing two moving cardboard
cutouts was considered. One of the cutouts is a triangle,
and the other one is a five sided irregular polygon. Figure
6(a—b) shows the first two frames taken from that Blocks
Sequence and Fig. 6(c) shows the last frame in that se-
quence. The locations of the corner points picked manu-
ally were input to our method and the resultant trajecto-
ries are shown in Fig. 6(d). To see if our method was
sensitive to the number of objects in the scene, we sepa-
rated the feature points of the triangle and the irregular
polygon and presented them to our method. The correct
set of trajectories was generated in both the cases. Figure
6(e) shows the generated trajectories with the points of
the triangle alone input to the method and Fig. 6(f) shows
the generated trajectories with the points of the irregular
polygon alone input to the method.

Figure 7 shows the trajectories obtained for the Walker
Sequence. This sequence was obtained by a program re-
ported by Cutting {15]. In this sequence a person is

T T T T T T
1
1
2 5
10l 3 10l
2 3 43 57
4
2 5
33
sl 2 | sl
1 4
1 5
: -t . ! b

(b)

FIG. 5. Synthetic Sequence. (a) Four points in five frames. (b) Resultant trajectories.
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FIG. 6. Blocks Sequence. (a) Frame 1. (b) Frame 2. (c¢) Frame 5. (d) Established trajectories with corners of the triangle and the five sided
irregular polygon as the input. () Established trajectories with corners of the triangle alone as the input. (f} Established trajectories with corners of

the five sided irregular polygon alone as the input.

shown walking. Eleven points, head, right shoulder, left
and right knee, left and right elbow, right hip, left and
right wrist, and left and right ankle are tracked through 10
frames. This figure is an exception to the labeling conven-
tion we have adopted. Here the point label corresponds
to a specific part of the body and the index is shown on
the top right corner of the figure. The entire body moves
up and down in a slight bouncing manner. The move-
ments of the shoulder and hip are ellipsoidal and the
movement of arms and legs are pendular. Finally, the
results for the Superman Sequence are shown in Fig. 8.
Six points on the heads and belts of three soldiers moving
in different directions were tracked from the movie Su-
perman as reported by Sethi and Jain. Actual coordinates
of points in various frames are shown in Figure 8(a).

7. DISCUSSION

In order to study the effect of initial correspondence
and the effectiveness of our method we conducted exper-
iments on the 5 frame synthetic sequence having 4 points

in each of the frames shown in Fig. 5(a). We applied the
Sethi-Jain method to it. We tried all possible combina-
tions, and found that the set of trajectories corresponding
to the global minimum found by exhaustive search was
totally different from the computed set of trajectories.
Also, we found that these two sets of trajectories have
costs close to each other and still are very different in
space. But, this problem did not surface when a correct
initial correspondence was assumed to be known. Figure
9a) shows the minimum trajectory set without assuming
initial correspondence. Figure 9(b) shows the trajectory
set that was found by the Sethi-Jain method. Figure 9(c)
shows the trajectory set with the least cost function value
when the correct initial correspondence was assumed.
Trajectory sets in Figs. 9(a) and (b) differ in their initial
correspondence, whereas trajectories in Figs. 9(b) and (c¢)
have the same initial correspondence. It should be noted
that the trajectory set in Fig. 9(b) does not resemble the
one in Fig. 9(a) even though they have similar cost,
whereas the trajectory sets in Figs. 9(b) and (c) have
similar costs and resemble each other more closely.
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FIG. 9. Effect of initial correspondence on spatial similarity. (2) Minimum trajectory set for Sethi-Jain path coherence function without initial
correspondence. (b) Trajectory set identified by Sethi~Jain method (with initial correspondence}. (¢) Minimum trajectory set for Sethi-Jain path
coherence function with initial correspondence assumed. (d) Minimurn trajectory set with proposed method. Trajectory sets in (a) and (b) have
similar values on the Sethi-Jain path coherence function; however, they are very different in space. When trajectory sets agree on initial

correspondence, similarity in space is better captured by the path coherence function, (b) and (c) have similar values of the path coherence function
and they do closely resemble each other in space.
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Hence, we concluded that applying the smoothness
constraint alone without knowing any detail about the
initial movement of the points may in many cases lead to
false trajectory sets.

It should be noted that there are two parts to a method:

* A cost function.
* An algorithm which works using the cost function.

An exponential algorithm that gives the best result is
the brute force strategy which enumerates all trajectory
sets and finds the minimum trajectory set. It can be used
to analyze how good an algorithm is. Figure 9(d) shows
the minimum trajectory set found using our cost function.
The distortion measure between the computed trajectory
set and the minimum trajectory set by our method was
found to be 2 as shown in Fig. 10(a). The same measure
for the Sethi—Jain method was found to be 218, as shown
in Figure 10(b) when initial correspondence was not as-
sumed. The same measure for the Sethi-Jajn method was
found to be 12, as shown in Figure 10(c), when initial
correspondence was assumed.

The above example highlights an important property
any method should have. Trajectories with similar costs
should resemble each other; they should not be very dif-
ferent in space. The distortion measure introduced in this
paper essentially computes this, by computing the square
of Euclidean distance. This point should be emphasized
more when the search space for this problem is very

Trajectory | frame-1 | frame-2 | frame-3 | frame-4 | frame-5 | distortion of trajectory
P [4] 0 1 0 0 1
q 0 0 0 0 0 6
r 0 ) 0 0 0 0
s 0| 0 1 G 0 1
| Total | | 3
(a)
Trajectory | frame-1 [ frame-2 | frame-3 | frame-4 | frame.5 | distortion of tra jectory
p 0 4 17 25 37 93
q [} 1 %0 25 16 65
r 0 1 17 2 4 24
= 0 4 13 2 17 36
Total 218
b)
Trajectory | frame-1 [ frame-2 | frame-3 | frame-4 | frame-5 | distortion of trajectory
b 0 ] T 0 0 i
a 0 0 0 0 5 5
r 0 [ 0 0 5 5
s 0 0 1 0 0 1
Total 12
c)
[ With Initial Correspondence | Without Initial Correspondence
Minimum cost 0.150548 0.146734
Found cost 0.169654 0.169654 1
Distortion 12 218

(d)

FIG. 10. Distortion measures. (a) With proposed method. (b) Dis-
tortion of established trajectory set by Sethi-Jain method without initial
correspondence. (¢) Distortion of established trajectory set by Sethi-

.Jain method with initial correspondence. (d) Comparison table.

large, and it is not possible to use an exhaustive search
algorithm. All computationally feasible algorithms find
sub-optimal solutions for this problem. It is clear that a
sub-optimal solution is not meaningful if two trajectory
sets with similar costs have a very high distortion mea-
sure.

It is in this context that an algorithm which starts with
some arbitrary initial correspondence and Iater refines it
to get the trajectory set with least cost may not be doing
the right job. What such an algorithm is missing is the fact
that two trajectory sets over the same set of points and
frames may have very similar cost and still their layout in
space may be totally different. It is this spatial distance
that the distortion measure is capturing. It is here that the
importance of correct initial correspondence comes into
play. Given the correct initial correspondence velocity
smoothness based schemes will grow these initial corre-
spondences.

As shown in the sample computation in Fig. 10, focus-
ing on the distortion value of the trajectory sets we find
that our method performs better than the Sethi-Jain
method. From Figure 10(d), assuming initial velocity of
points (in our formulation, assuming initial correspon-
dence) is more reasonable for schemes which use
smoothness of motion for correspondence.

Also, our algorithm is a non-iterative one and is com-
putationally faster than the Sethi-Jain method. Our algo-
rithm always terminates and it does not get caught in
local minima. When we consider the level of interaction
between frames we observe that in our scheme the ith
frame can affect correspondences in frames { + 1 to n,
which is the same as that of GE. But in MGE because of
the additional backward pass frame i can affect corre-
spondences in frames (; — 1) down to 1 in addition to
frames i + 1 to n. However, the price paid is very heavy:
there is a good chance of its going into an infinite loop
with the forward pass undoing what the backward pass
did and vice versa. Also it is not clear if this increased
level of interaction is buying anything more in the end
result.

8. INITIAL CORRESPONDENCE USING OPTICAL FLOW

Assumption of correct initial correspondence is rather
unrealistic. However, we can remove this unrealistic as-
sumption by making use of optical flow to give an esti-
mate of the initial image velocity of the feature points,
and use it for the initial correspondence.

There are two classes of algorithms for computing opti-
cal flow: gradient based and feature based. In our case, it
will be appropriate to use a gradient based approach for
computing optical flow, since that method does not re-
quire the correspondence problem to be solved. This way
we will be able to combine the gradient based technique
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with our correspondence algorithm for estimating the
motion characteristics of objects in the scene.

We consider frames f! and f? to find the optical flow,
and generate a fictitious frame, f°, with feature points

(x5, ¥, &2, 99, LoD, . - L xh, v
such that
X0 =x! = ul
yi=yi—ul,

where u ! is the image plane velocity in the x direction and
v} is the image plane velocity in the y direction of feature
point { in frame f!. This way we know the initial corre-
spondence between frames f° and f!, therefore the pro-
posed correspondence algorithm can be applied to frames
fland f2.

In our lab the only working implementation of the opti-
cal flow algorithm available is that of the one proposed by
Little er al. [5]. Therefore, in order to check the proposed
correspondence algorithm, we used the optical flow com-
puted by Little ez al. A number of experiments were per-
formed with this initial correspondence, and in all cases
the correct correspondence was achieved. As an example
Fig. 11(a) shows the (x, y) image coordinates of nine
points in frame f! to f¢ of Blocks Sequence. Figure 11(b)
shows the optical flow vector (u, v) computed by Little et
al.’s method, and the computed coordinates for frame f°.

Note that Little et al.’s algorithm is essentially feature
based. However, we assume that any good gradient
based optical flow algorithm will provide similar results.
Therefore, as far as the performance of our correspon-
dence algorithm is concerned it should not make any dif-
ference.

9. CORRESPONDENCE WITH OCCLUSION OF
FEATURE POINTS

An object or part of the object is occluded if it does not
appear in the image due to some other object surface

coming between the object and the camera. When part of
an object is occluded, the feature points in that part are
also occluded, and are missed in that frame. The other
reason for missing feature points could possibly be due to
a failure to detect the feature point, even though it was
present in the frame. The only source of information for
finding the occlusion is the number of feature points.
The different cases of occlusion to be handled are:

I. Some points visible in frame & get occluded in
frame k + 1;that is, mus; < my.

2. Some points occluded in frame & become visible in
frame k + 1; that is, my.; > my.

-

3. Some points visible in frame & get occluded in
frame k£ + 1, and some points occluded in frame k become
visible in frame £ + 1. An interesting offshoot of this is
that the number of points in frame & and frame k + 1 may
remain the same, but still some points visible in frame &
could be occluded in frame £ + 1.

We assume that there is no occlusion in the first two
frames, and all feature points show up in those frames.
Hence the first time an occlusion occurs, it will be a case
1 occlusion. Our algorithm detects this occlusion and fills
up for the missing point in frame k& + 1 using the corre-
spondence in the frames & — 1 and £. As every time an
occlusion occurs, it is detected and filled up immediately,
the algorithm never encounters cases 2-3, even though
the data may have such cases.

We modify algorithm A to take care of occlusion as
follows. When m; > my.,, there is occlusion between
frames k and £ + 1. In the original algorithm we look for
the minimum along a row i, to identify the point in frame
k + 1 that suits the point i of frame k the best. But when
there is occlusion, not every point in frame £ is going to
be assigned a point in frame k& + 1. Hence the minimum
on some rows need not be considered at all, and if consid-
ered it affects the assignment of feature points badly.
Whereas every point in frame £ + 1 is to be assigned to
some point in frame k. Therefore, looking at the mini-
mum along a column j will indicate the point in frame &
that suits this point j of frame k& + 1 the best. This strat-

point fi I fid fA FAl fe point ffolulv f°

T | (346,236) | (245,251) | (236,258) | (230,263) | (225,270) | (205.277) T [ (246,236) | -2 | 14 | (248,959}
2 [ (275,234 | (273,240) | (266,255) | (360,260) | (254,264 | (236.360) 2 1(275,234) | 3 | 15 | (277,519)
3| (275,207) | (274,293) | (965,227) | (257,233) | (229,238 | (229 .242) 3 (275,007) | 2 {15 | (277,199)
1| (275,213) | (273,207 | (264,233) | (258,239) | (250,246) | (331.251) 1 | (275.013) [ -2 | 16 | (277.197)
5[ (277,287) | (269,293) | (259,295) | (249,296) | (242,301) | (223.308) 5 (277,587) | 0] 7 | (286,280)
§ | (213,273) | (265,280) | (754,282) | (244,284) | (337,280) | (317.395) 5 [ (273.273) [ 8] 7 | (381,967)
7| (282,256) | (275,263) | (265,264) | (257,266) | (348,270) | (326.977) 7| (282,256) | 8 | 7 | (290,249)
8 | (291,252) | (285,259) | (274,261) | (266,264) | (257,268) | (335.273) § | (291.252) | 8 | 7 | (209,245)
9| (302,278) | (293,286) | (254,288) | (274.291) | (%67,794) | (247,300) 9 (302,578) | 8 & | (310,570)

(2) (b

FIG. 11. (a) The coordinates of feature points in Blocks Sequence. (b) The constructed frame £° and the initial flow vectors (u, v) computed by

the method proposed by Little er al.
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egy is better in the presence of occlusion, as every mini-
mum along a column is meaningful and could lead to an
assignment. A similar modification, to look along the
columns only, is done in computing the elements of the
priority matrix. The modified algorithm B is as follows:

Algorithm B
1. Fork=2ton~—14do
(a) Setup M, and (my. * my.;) matrix, with the ny
points from the kth frame along the row and
my+1 points from the (X + 1)th frame along the
column.
(b) Let M[i, j] = 8(X; ' XfX!*"), when ®*1(p) =
i
(¢) if (my., < my) then /*This is a case of occlu-
sion*®/
i. fora =110 myy do

A. Identify the minimum element [/;, j]
in each column j of M.

B. Compute priority matrix B, such that
Bll, j1= 210, MU, j1

C. Select[l;, j1 pair with highest priority
value B{l;, j], and make ®*(l;) = j.

D. Mask row /; and column j from M.

ii. identify m; — my4 points for which corre-
spondence has not been found. For those
points create new feature points in frame
k + 1 by extrapolating the correspondence
from frame & — 1 to frame £.

ii.  Set myy = n.
else /¥ No Occlusion */

i. fora = 1to my., do

A. Identify the minimum element [/, })
in each row i of M.

B. Compute priority matrix B, such that
Bli, ] = 27, MU, j1 + 27 s
M{k, ;] for each i.

C. Select {i, {;] pair with highest priority
value B[z, [;], and make ®*@) = ;.

D. Mask row i and column /; from M.

The modified algorithm first identifies points in frame
Sf* which do not have corresponding points in the frame
f¥*1, and creates new feature points in frame f4*! corre-
sponding to those missing points. Let us assume that a
point a in frame k with coordinates (x%, y%) which corre-
sponds to a point ¢ in frame k¥ — 1 with coordinates (x*~!,
y&7 1) is such a point without a corresponding point in
frame f**1. A new feature point b with coordinates (x§*!,
y’g“) 1s created to correspond to point a as follows:

X7 = b+ (e - xth

I

i = yh 4 (pE - yE Y.

In these equations the extrapolation between the coordi-
nates of frame k — 1 and frame & is computed. This ex-
trapolation ensures smoothness in velocity, both in mag-
nitude and in direction. Also, this creation of new feature
points ensures that there are n points in frame &, which is
used during the correspondence between frames k and
k+ 1.

We tried this algorithm over the Blocks Sequence re-
moving the point (257, 266) in frame f4, and the Super-
man Sequence removing the points (189, 303) in frame
f*, and (200, 303) in frame f3. In both cases our algorithm
worked well, and the occluded point was filled up suit-
ably, and the correspondences in subsequent frames
were obtained correctly. Figure 12 shows the resultant
trajectories. The points marked with = show the new fea-
ture points created to take care of the induced occlusion.

We also tried this algorithm for a synthetic Polygon
Sequence with two squares, one rectangle, one triangle,
and one hexagon as shown in Fig. 13. The velocity vec-
tors of these polygons and the depth are tabulated in Fig.
14. The locations of the corners in these polygons were
generated for 15 frames with unit time intervals. When-
ever a corner of a polygon is occluded by some other
polygon in front of it, its position is not available to the
correspondence algorithm. The square in the lower part
of the image does not participate in any of the occlusions,
and its trajectories are spatially isolated from others.
Some corners of the upper square get occluded by the
hexagon in frames 3, 4, and 6. These occlusions are de-
tected correctly and the points are filled up suitably.
Some corners of the triangle are also occluded by the
upper square in frames 9, 10, 11, and 12. In frame 10, one
of the comers of the upper square is very close to where
one of the occluded corners of triangle should have been.
The algorithm makes a mistake in assigning the corner of
the square to the triangle and filling in a corner for the
square. In frames 11 and 12 the algorithm correctly iden-
tifies the corners of the triangle to be occluded, but the
filled up location is distorted as the algorithm made a
mistake in frame 10. But when all the corners of the
triangle become visible again in frame 13, the propagation
of the error stops. Because of the error made in frame 10,
one of the trajectories belonging to the triangle is not
perfectly straight. Some corners of the rectangle are oc-
cluded by the triangle in frames 13, 14, and 15. The algo-
rithm did well to detect the occlusion and to fill up the
missing points. Figure 15 shows the computed trajecto-
ries of this polygon scene.

Next, we tried our algorithm on an Apple Sequence
with four objects, a Rubik Cube, a toy apple, a toy vessel,
and a toy lid. These objects were moved on a table and a
sequence of five frames were taken. The camera was
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FIG. 12. (a) Trajectories of Blocks Sequence with a missing point in frame f* which is filled up by a point marked *. (b) Trajectories of
Superman Sequence with missing points in frame £ and frame 3 which are filled up with points marked *.

given a viewpoint and orientation such that the table was
seen sloping in the image. If the viewpoint did not show
the table sloping, the trajectories computed tended to be
flat. Two points on the apple, three points on the lid, and
two points on the vessel were tracked. The Rubik Cube
was used to creat occlusion of the feature points. All
points are visible in the first two frames. In the third
frame one of the points on the cover of the vessel is
hidden by the Rubik Cube. In the fourth frame the points

FIG. 13. First frame of the Polygon Sequence. There are two
squares, one hexagon, one triangle, and one rectangle in the scene.

on the apple are hidden by the Rubik Cube, one of the
points on the lid is also hidden by the vessel, and another
point from the lid is omitted to simulate feature points
being not detected. In Frame 4, 4 points out of the 7
feature points are occluded. In frame 5, all points are
visible, but one of the points on the apple is left out. Our
algorithm performed well in this sequence as well detect-
ing the occlusions properly and filling in the missing
points. Figure 16(a—e) shows the sequence and Fig. 16(f)
shows the trajectories. Because of poor imaging condi-
tions the quality of the images is not very good.

Finally, this algorithm was applied to the configuration
shown in Fig. 17. In this example there are two disks, one
shown shaded and the other unshaded. One disk is par-
tially occluded by the other. Trajectories for points
marked 1, 2, 3, and 4 are tracked. Points I and 2 are on
disk 1, which is shaded dark, and points 3 and 4 are on
disk 2, which is unshaded. The disks are positioned such
that when both the disks rotate point 1 gets occluded
after 30° of rotation and Point 2 gets occluded after 120°

Polygon Velocity in X direction | Velocity in ¥ direction | Depth
Triangle 5 5 16
Upper Square -7 -10 15
Hexagon 10 7 10
Lower Square -1 1 3
Rectangle 4 -8 17

FIG. 14. This table shows the velocity vectors and the depth values
of the polygons. A polygon with a lower depth value occludes the
polygon with higher depth value when they overlap.
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FIG. 15. The trajectories of the corners in the Synthetic Polygon Sequence tracked over 15 frames. The points in frames 1, 6, 11, and 15 are
shown on the trajectories marked by their frame numbers. The polygons as they appear in the first frame are also drawn. Some corners of the upper
square get occluded in frames 3, 4, and 6, and of the triangle in frames 9, 10, 11, and 12, while those of the rectangle get occluded in frames 13, 14,
and 15. These occluded corners are detected while performing the correspondence and are suitably filled up and are shown by * in this figure.

of rotation. Point 1 remains occluded till 135° of rotation
and since the points are tracked every 15° of rotation, it
reappears at 150°. The instances of points when they are
occluded were removed and the data were presented to
our algorithm. Our algorithm could handle the occlusion
of point 1 till 135°; however, it failed to give a correct
correspondence when point 1 reappeared. It is due to fact
that an important event between 105° and 135°, when the
point changes its course, has been occluded. Figure 18(b)
shows the results. The new feature points generated by
the algorithm to take care of occlusion are marked with .
When we introduce the point at 135° so that the event is
not occluded our algorithm gives correct results as shown
in Figure 18(c).

10. CONCLUSION

We considered the problem of establishing a corre-
spondence among »n frames with each frame having m

points. There are two parts to this problem. First, the
introduction of constraints in order to limit the search
space; this leads to a cost function. Second, a sub-opti-
mal algorithm which minimizes the cost function in order
to determine a set of trajectories. We proposed a proxi-
mal uniformity constraint which forces near matches,
and with this constraint the resulting trajectories are
smooth and uniform. A non-iterative algorithm was pre-
sented which gives very good results for synthetic and
real sequences. In order to compare the performance of
correspondence algorithms we defined a distortion mea-
sure, which captures the error due to incorrect corre-
spondence, We also improved this method by making use
of optical flow to get the initial correspondence. The al-
gorithm was further modified to handle a restricted ver-
sion of occlusion. As a continuation of this work, we
intend to investigate the performance of our method on
motion which does not obey the smoothness of velocity
assumption.
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FIG. 16. Areal image Apple Sequence with occlusion (a)—(e) frames fi-
the frame number. The occluded points which are filled in are indicated by *
points on the lid; and « and v are of the points on the vessel.

f (f) Trajectories of this scene. The points in a frame are denoted by
- Trajectories p and g are of the points on the apple; 7, s, and ¢ are of
No point on the Rubik Cube was tracked. It was used to occlude the feature points.



FIG. 17. Two rotating disks positioned in space such that one disk is partially occluded by the other. Trajectories for points marked 1, 2,3 . 4are
tracked.
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FIG. 18. Rotating disks. (a) Ideal trajectories. (b) Trajectories with even: occlusion. (c) Trajectories without even: occlusion. In these

trajectories, the locations of two different points coincide in the image plane at different time instances, which is shown by overwriting one number
on the other.
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