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In order to review past accomplishments and discuss future chal-
lenges, we organized a panel session during the workshop. Four pan-
elists were invited to participate: Steve Blask from Harris Corporation,
Lisa Brown from IBM, Harpreet Sawhney from Sarnoff Corporation, and
Rick Szeliski from Microsoft. The panelists were asked to select three or
four questions from the following ten questions and express their views.
In this section, I will discuss each question, and express some of my
opinions. The next three sections deal with the opinions of the three
panelists.

1 What has been accomplished in video frame-to-frame registration
in the context of mosaics, panoramas, etc., and what are the new
challenges?

One success story of motion analysis research is the estimation
of global frame-to-frame motion. Traditional efforts to estimate
pixel-wise optical flow have met with mixed success. However, for
the estimation of global motion, the information in all pixels is
used to estimate the global transformation, like affine, projective,
or psuedo-perspective. Such transformations can then be used to
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align video frames to generate mosaics or panoramas. This has
been a very active area during the last few years, and continues to
be a hot area in the context of computer graphics, visualization,
surveillance, segmentation, etc.

2 What is the role of video registration in object-based segmentation
of images captured by a moving camera, and how far are we from
automatic segmentation of video objects for an arbitrary scene in
the context of MPEG-4?

Object-based segmentation of video is very important for video
compression, video understanding, etc. In particular, segmenta-
tion of video containing both object and camera motion is pretty
complex. One obvious solution is to first estimate the camera
motion and compensate for the motion to generate video with no
camera motion. This can then be used to segment moving and sta-
tionary objects. However, estimation of camera motion with large
local motion is a pretty difficult problem. The other alternative is
to segment and track each individual object throughout the video,
without necessarily estimating a global motion.

3 Does Engineering Support Data (telemetry) like the DEM and the
camera orientation and location really help in registration of video
frames with the reference image? What are the hard problems in
this area?

The traditional structure from motion problem in computer vision
deals with the recovery of camera translation and rotation and
the scene depth using two or more images. Even though lots of
theoretical work has been done in this area during the last two
decades, it is still not possible to robustly solve the structure from
motion problem for any general scene, since there are too many
unknowns and the problem is non-linear in nature. If the 3-D ro-
tation and translation between the video and the reference image
can be recovered, the registration of the video image with the ref-
erence image becomes trivial. When nothing else besides the two
images is known, the registration is the most complex. However,
when additional information is available, the registration can be
simplified and more accurate results can be obtained. In some
cases, additional information (metadata or telemetry) about how
images were taken, like the location and orientation of the camera
and the Digital Elevation Map (DEM), is readily available and can
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be used as an aid in the registration process. For pictures taken by
various satellites, like LANDSAT, SPOT, or IRS, telemetry data
is widely available. In the context of the DARPA Airborne Video
Surveillance (AVS) program, each video frame contained telemetry
data, including aircraft longitude, latitude, heading, and velocity.

4 Is registration of 3-D data (e.g. CT with MR) easier than regis-
tration of video (2-D) data with 3-D data (e.g. overlay of video on
CT)? Or vice versa?

Video imagery projects a 3-D scene on a 2-D image plane, therefore
one dimension is lost during the perspective projection. Moreover,
2-D video imagery does not contain any 3-D information. On
the other hand, both CT and MR are in 3-D nature. Therefore,
registration of video with 3-D data requires estimation of the 3-D
pose of the video camera in order to overlay video on CT or MR.

5 Is the wide baseline stereo problem solved now?

Several good algorithms exist for small baseline stereo, such as
graph cuts, layers, and SAD. However, some very interesting ap-
plications need to obtain disparity maps over a wide baseline, such
as view morphing and reconstruction from multiple images. The
most popular approaches use the affine model, which works very
well when the image warping includes scaling, shearing and small
rotation, since all of them can be approximated as linear expansion
of the first order gradients. However, the affine model fails to track
if a large rotation between the two frames is introduced. Since
the rotation component is non-linear indeed, it is very difficult to
capture the non-linear part by employing the linear expansion of
horizontal and vertical image gradients Ix and Iy.

6 Does correlation still play an important role in registration? Has
anything new happened in correlation during the last 50 years?

Correlation is probably the oldest method for registering two im-
ages, and it remains one of the most popular methods used in in-
dustry, due to its simplicity and robustness. One big drawback of
correlation is its large computational complexity, therefore several
efficient hardware and software approaches have been proposed to
speed up the computation. Currently, new approaches that com-
pute the correlation of image histograms (distributions) instead of
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individual pixel intensities are also being explored. Correlation of
raw intensity or color values may be more sensitive to image noise,
therefore correlation of the gradient or texture features offers more
attractive alternatives.

7 Is video registration harder than visual tracking? Why or why not?

Tracking using a static camera does not require image registration.
Tracking using a moving camera is much more complex, since the
global motion caused by the camera motion must be differentiated
from the local object motions. As mentioned earlier, one possible
approach is to first estimate and compensate for the global camera
motion, and then perform tracking in stabilized video. However,
tracking in videos acquired by moving cameras can also be per-
formed without global motion compensation. A simple way to
achieve this is to perform object detection (object segmentation)
in every frame, and then solve the motion correspondence between
detected object regions. One possible class of methods for object
detection is those based on active contours.

8 What is the role of image features in video registration?

Registration can be performed by using raw intensity or color val-
ues directly, therefore these methods have been called direct meth-
ods. Another method first detects features in each frame, then
correspondence between these features can be solved to register
images. The most common features include edges, lines, corners,
interest points, line intersections, roads and building structures.
The difficulty in the feature-based approaches to registration is
the robust detection of features in images of featureless scenes like
deserts and forests.

9 What are the next most important problems which need to be
solved in video registration?

Registration of video in the presence of large local motion and par-
allax is still hard problem. Registration of video with site models
is another interesting problem. Finally, spatial and temporal reg-
istration of non-overlapping video sequences is pretty challenging,
and will find many uses in the future.
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10 What have been the most successful solutions so far and the most
successful approaches?

The use of all image information in a least squares fashion to esti-
mate frame-to-frame motion is probably one of the most successful
approaches in computer vision, compared to estimation of pixel-
wise optical flow. As a result, mosaics and panoramas generated
from video sequences using estimated global motion are very im-
pressive.
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1. Introduction

A decade ago, as part of my candidacy requirements, I wrote a sur-
vey of image registration methods [4]. Since that time, there has been
widespread application of image registration methods and an extensive
body of new research. Image registration continues to be a critical part
of almost all computer vision applications: tracking, modeling, pose
estimation, shape estimation, etc. Given the enormous increase in com-
putational speed and ten years of research, what have we learned about
this problem? What are the most successful approaches to image and
video registration problems?
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In 1992, it was possible to categorize most image registration problems
into four major groups based on whether the images to be registered
came from different sensors, different viewpoints, at different times, or
from a combination of a reference image or model and a newly acquired
image. We refer to these four types of registration problems as: multi-
modal, viewpoint, temporal, and template registration, respectively. In
addition, registration problems can also be usefully distinguished based
on the dimensionality of the data, for example, the registration of 2D to
2D, 2D to 3D, 3D model to video, or video to video. Today, we find that
researchers are able to tackle more difficult registration problems often
involving a combination of the four fundamental groups and at the same
time dealing with higher dimensional data.

Video registration problems generally fall into one of three categories:

1 Registration of video to reference imagery or 3D models. Examples
include geo-registration, i.e., registration of aerial video to refer-
ence imagery with high geodetic accuracy [2], registration of phys-
ical patient space or pre-operative 3D medical data with operative
video data (such as laparoscopy, laryngocoscopy, fluoroscopy, or
ultrasound) to assist in minimally invasive surgery or other image-
guided procedures [12], [26]. Other examples include urban model
building or mosaicking (see Category (3) below). Another inter-
esting instance is face sequence matching. In this application face
recognition is performed on a video sequence [23]. These problems
are all typically a form of template registration with high data di-
mensionality (templates are often 3D models, input is video). The
high dimensionality inevitably adds temporal and viewpoint issues
as well.

2 Video to video registration, i.e., finding a video clip in a longer
sequence. Examples include video copy detection [7], [1, 20], or
video content retrieval [30] and synchronizing multiple video cam-
eras [5, 15]. All of these problems involve temporal registration,
the former involves subtle sensor differences (i.e., different mod-
els/brands of video cameras) and the latter includes viewpoint reg-
istration. Another example is multi-modal fusion, i.e., two video
sensors of different modalities. However, the majority of current
research in this area is still image-based or image/video based.

3 Frame-to-frame registration such as camera motion estimation and
video enhancement. This category includes all manner of video
quality improvements and virtual visualizations. Quality improve-
ments include exposure compensation, lens distortion correction



231

[22, 9] and video stabilization [8, 14]. Virtual visualizations in-
clude the ability to superimpose computer-generated imagery on
dynamic scenes [6], the creation of mosaics [10, 18, 8, 22] and
3D model visualizations [25, 11]. Frame-to-frame registration pri-
marily involves viewpoint registration. Quality improvements add
additional sensor models (multimodal registration) while visual-
izations often require registration to a reference (i.e. template reg-
istration) and other assumptions about the 3D world. Some of the
methods that create mosaics, panoramas and 3D models, overlap
with the first category since they perform frame-to-frame regis-
tration but they do this concomitantly with creating a reference
frame/model.

2. Image/Video Registration Framework

In order to organize the extensive range of image registration meth-
ods, it is useful to establish the relationship between the variations in the
images and the type of registration technique, which can most appro-
priately be applied. Three major types of variations are distinguished.
The first type is the variations due to the differences in the acquisition,
which cause the images to be misaligned. To ’register’ images, typically a
spatial transformation is found which will remove these variations. The
class of transformations, which must be searched to find the optimal
transformation, is determined by knowledge about the variations of this
type. We call these variations, Type I. The transformation class deter-
mines the search space, which in turn, influences the general technique
that should be taken.

The second type of variations, Type II, is also due to differences in ac-
quisition, but are difficult to model, such as differences due to variations
in lighting, atmospheric conditions or differences in sensor responses.
This type usually affects intensity values, but they may also be spatial,
such as differences in perspective distortions due to different viewpoints.
Type I variations are distortions which are modeled, while Type II vari-
ations are those which it was not possible to model.

The third type of variations, Type III, arises from differences in the
images that are of interest such as object movements, growths (deforma-
tions) or other scene changes. Variations of the second and third type are
not directly removed by registration, but they make registration more
difficult since an exact match is no longer possible. In particular, it is
critical in some applications that variations of the third type are not
removed.
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Knowledge about the characteristics of each type of variation affects
the choice of (1) search space and search strategy, (2) feature space, and
(3) similarity measure that will make up the final technique. All regis-
tration techniques can be viewed as different combinations of these three
choices. This framework is useful for understanding the merits, limita-
tions and relationships between the wide variety of existing techniques
and for assisting in the selection of the most suitable technique for a
specific problem. Using this framework, it is possible to review the ex-
tensive body of literature in image and video registration and summarize
the capabilities and trends of the state-of-the-art in registration.

For specific fields, such as medical imaging, a specialized framework
similar to this, but more extensive, has been developed in order to or-
ganize the existing methods for the practitioner. As put forth by [17],
the framework for medical image registration, includes several categories
that help differentiate the various problem types. These include the data
dimensionality, the modality, the anatomical part, and whether the reg-
istration is between subjects, between two images of the same subject
or between an atlas and a subject. Also, specific to medical image regis-
tration, methods are distinguished based on whether they are extrinsic,
intrinsic or non-image based and by the level of user interaction required.
Extrinsic methods rely on artificial objects, such as markers, that are
attached to the patient. Historically, medical image registration has of-
ten relied on extrinsic methods but these are typically limited to cases
where rigid transformations are sufficient and provisions can be made
in the pre-acquisition stage. Non-image based methods refer to meth-
ods in which the coordinate spaces of the sensors are pre-calibrated to
each other. Intrinsic methods have become increasingly more prevalent.
An interesting aspect of intrinsic techniques is the natural breakdown of
methods into three categories: those that rely on landmarks or features,
surfaces, or raw intensity information.

By organizing the literature around this taxonomy it is possible to
determine the best method that is suitable for a specific application.
An even more specialized taxonomy was developed for computer-aided
surgery [12] and for digital subtraction in dental radiography [16]. Such
taxonomies enable someone to elegantly organize the extensive body of
work, which has been developed. It is useful not only for the user, but
also for the developer. In reviewing the literature, it is possible to narrow
the search directly to the relevant works, rather than being limited by
searching for key words and from a few related papers. Similarly, it is
easier to analyze the relationship between other methods.

Based on a survey of several recent papers and a categorization using
this framework of registration problems, it is possible to recognize sev-
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eral trends within the field of image and video registration. These trends
will be briefly described for each of the 3 major aspects of registration
problems: search space (transform class) and search strategy, feature
space, and similarity measures. At the same time, several of the ques-
tions posed at the Video Registration Workshop ’01 will be addressed.

3. Search Space and Strategy

As mentioned above, during the last ten years, researchers have started
to address problems with higher dimensional data, both 3D and video.
These problems combine the issues regarding images taken at different
times, from different sensors, from different viewpoints, and which are
aligned to reference models or atlas imagery. In medicine, there has
been a definite shift from extrinsic to intrinsic methods, from more user
interaction to less. In general, the class of transformations is more com-
plex; many sensor distortions and differences are currently modeled and
a wide body of literature now exists on fully non-rigid or elastic trans-
formations particularly for medical imaging [21, 27]. In video to video
registration, it is necessary to align image data both spatially and tem-
porally. The addition of temporal cues has been found to be a powerful
cue in aligning video [5].

In other words, researchers are addressing problems in which more
and more of the variations between images are modeled. Several of
the distortions previously categorized as Type II, are now categorized
as Type I. For example, [22] models lens distortion as well as 2D/3D
view transformations in the creation of mosaic images. In my own work
in multi-modal medical image registration, specific sensor relationships
were modeled (such as radiographic film characteristics, the process of
x-ray projection, and partial volume effects in computed tomography) in
order to optimally compare the pixel values from different medical sen-
sors [3]. Blask et al. register aerial imagery to a 3D elevation model in a
two stage process: initially correspondence between images is computed
using local correlation patches, but the final registration is based on
the correction of an elaborate sensor model whose parameters are phys-
ically measured [2]. [6] has explored the registration of fully dynamic
scenes (such as crowds of people or scenes of water) by modeling the
time series variation of individual pixels. Registration methods have be-
come increasingly more accurate as they model more of the distortions
between images and more precisely capture the relationships between
images.

One of the key ways to efficiently find complex transforms with a
large number of parameters is to implement a progressive complexity
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strategy. This strategy entails dividing the optimization process into
a sequence of steps with increasing complexity. For example, in the
creation of an image mosaic [22], initially a 2D translation is computed
for each image. Using this transform to re-align the images, a 2D affine
transform is then found for each image. Finally, the affine parameters
are used as an initial estimate in order to compute a projective transform
with an added global lens distortion correction transform for each image.
This technique improves the speed and convergence to local minima by
providing a good initial estimate for each stage.

4. Feature Space

Since more and more of the variations between images are modeled,
high-level feature extraction has become less relevant. This has been
clearly evident in the algorithms developed more recently. More than
ever, registration is implemented using raw pixel intensity. When it is
possible to use pixel-based information, registration methods are more
powerful. According to [17], in medical imaging, methods that use full
image content are gradually setting the standard for registration accu-
racy.

There are two major exceptions to this phenomenon. First of all,
when speed is an issue, feature based methods are often necessary. In
medical imaging applications such as radiotherapy treatment or intra-
operative procedures, feature-based methods are more frequently en-
countered. These tend to extract surface information in order to effi-
ciently align meaningful anatomic structures. In a survey of head track-
ing methods (for human computer interaction) [28] examines the trade-
off between accuracy and speed for feature vs. template-based tracking
methods. Although head tracking also involves segmentation, it is ba-
sically a frame-to-frame registration problem. Indeed, most tracking
applications are a special case of registration.

The other rationale for extracting features occurs when it is not possi-
ble to model all the distortions between images, i.e., distortions of Type
II or III. Features can be used to accurately localize positions that are
more likely to be accurate. A common example occurs in wide baseline
stereo. Registration techniques are used to fit a small number of param-
eters but the three dimensional structure of the objects in the scene is
not known. An excellent way to handle this problem is to find the set
of corresponding features. Finding such descriptors has been systemat-
ically developed over the past five years - descriptors that are invariant
to affine and photometric transformations in order to achieve viewpoint
invariance [24].
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5. Similarity Measures

Similarity measures are used to evaluate the similarity between im-
ages. These measures depend on the choice of feature space. For raw
intensity, the measure might be the sum of the absolute intensity dif-
ferences or most commonly, the cross-correlation. For images in which
color information is significant, histogram intersections are sometimes
computed. For landmark/feature point, edge or surface based techniques
the measure typically involves the minimal Euclidean distance between
the points/edges/surfaces. Notice that for these types of features, sim-
ilarity measures compute the spatial distance while for raw intensity or
other pixel/voxel information, the measure deals with the scalar data
such as intensity, color, or other physical properties.

As registration methods have become more sophisticated, transforma-
tion classes have become more complex. This has eliminated a great deal
of uncorrected distortions (Type II) and decreased the need for feature
extraction. The resulting voxel-property based registration methods rely
on cross-correlation or related similarity measures. Cross-correlation has
become the standard procedure because it can be efficiently computed
and is the optimal measure if the remaining distortions are white noise.
On the other hand, cross-correlation has its limitations. Global maxi-
mization is a difficult problem since many local minima exist. This is
exacerbated by interpolation, which is necessary to find transformations
at sub-voxel precision.

For monomodal registration, the correlation coefficient is frequently
used, often a Laplacian pyramid to improve matching efficiency and
insensitivity to lighting variation. For multimodal problems other mea-
sures are needed. A particularly well-suited measure for the general
multi-modal registration problem is based on statistical correlation or
mutual information (sometimes called relative entropy)[29, 19]. With
this measure, the statistical relationship is maximized, i.e., the partic-
ular correspondence of image intensities between the two modalities is
not presupposed but the proper transformation will maximize the degree
of dependence between image intensities. This is useful if there is no a
priori information regarding the correspondence. On the other hand,
the relationship between sensor intensities is not always global and may
depend on resolution [13].

6. Conclusions

The need to register images and videos is as prevalent today as ever
before. Applications in surveillance, copy detection, human computer
interaction, content retrieval, inspection, enhanced visualizations, and
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medical imaging are only a few of the many examples in which registra-
tion plays an important role. Over the last 10 years, the most obvious
improvement in registration methods is their ability to deal with higher
dimensional data including 3D to 3D, video to video, and 3D to video. In
addition, methods today model more of the distortions between images,
including sensor distortions, nonrigid deformations, and large viewpoint
variations. The use of more sophisticated models has decreased the need
for complex feature extraction and methods that rely on spatial similar-
ity measures. The most successful methods, i.e. the most accurate, use
voxel properties and often solve for transformations with many param-
eters. This is often efficiently optimized using a progressively complex
transformation strategy.

Registration methods can be conveniently categorized using a simple
framework which describes the problem type, search space and strategy,
feature space and similarity measure. For specific applications, it is use-
ful to organize methods by additional characteristics. These frameworks
can be very helpful for comparing and systematically evaluating meth-
ods, selecting methods that are most suitable for specific problems, and
sharing methodologies across domains.
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1. Introduction

Digital video is increasingly becoming a form of data and information
that can be viewed, exchanged, manipulated, abstracted, archived and
retrieved. In digital form, video becomes a source of information about
the world independent of the observer, in contrast with traditional ana-
log video whose lines and frames carry meaning only through viewing.
The information content in videos consists of three forms: spatial ge-
ometry and locations, temporal trajectories and events, and appearance
of objects and scenes. All the three forms of information are poten-
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tially extractable from videos through the exploitation of the temporal
aspect of videos as opposed to static still imagery. Temporal exploita-
tion of videos can assist in exposing the spatial and temporal coherence
of scene surfaces and objects and in turn can lead to the extraction of
geometry, trajectory and appearance attributes. Video registration is an
important tool in the spatio-temporal exploitation of digital video. Key
advances in algorithms for video registration and sustained increase in
the computational prowess of standard and custom platforms has taken
video registration into the realm of real world applications as a single
most deployed computer vision technology. This paper highlights the
key challenges in video registration and how overcoming some of these
has impacted the real world.

2. A Framework for Video Registration

Video registration is the process of aligning ensembles of pixels over
multiple time instants with the goal of exposing and representing the
underlying spatio-temporal behavior of scenes and objects. Algorithms
and applications for video registration can be categorized based on how
they represent and extract the following three entities.

1 Models of motion or transformation and structure between video
frames.

2 Domains of validity of the transformations, that is, surface and
object masks or shapes.

3 Models of appearance of surfaces and objects.

Representation of videos in terms of these categories is generically called
a layered representation. I will show that issues in most video registration
algorithms and applications can be understood in terms of a layered
representation.

3. Global Frame-to-frame Registration

When a single model of motion and optionally structure is applicable
between frames of video, globally consistent registration can be done. In
this case, the goal is to align video frames without extracting individual
object hypothesis. A number of applications employ such global regis-
tration, e.g. mosaics, ego-motion estimation, stereo disparity estimation
etc. The models of motion and structure can vary from global paramet-
ric, to global-plus-local parametric to purely local parametric [3]. I will
use some of these applications to answer the question:
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Figure 1.1. Left: Spherical mosaic computed iteratively using frame-to-frame align-
ment, topology inference and global consistency. Right: A schematic showing the
idea of 1D manifold mosaicing by creating piecewise linear pipe mosaics. (Image

courtesy Shmuel Peleg.)

What has been accomplished in video frame-to-frame
registration in the context of mosaics and panoramas,
and what are the new challenges ?

Frame-to-frame video registration for mosaics and panoramas is largely
considered a solved problem. There are some novel aspects of mosaic
creation that have been highlighted in the ”2D mosaicing” work of [10]
and manifold mosaicing work of [9]. The 2D mosaicing work highlights
how frame-to-frame registration can be used in an iterative algorithm
to infer the spatial arrangement of frames (2D topology) as well as to
create local constraints that can be combined to create a globally con-
sistent mosaic. Fig. 1.1(left) shows an example of a spherical mosaic
created from a video of about 600 frames using frame-to-frame align-
ment, topology inference and global consistency. A novel concept based
on frame-to-frame video alignment was introduced by Rousso et al. [9]
in the form of universal pipeline mosaics or 1D manifold mosaics. A
schematic of the idea is shown on the right panel in Fig. 1.1.

Frame-to-frame alignment in video frames typically does not have to
cope up with large appearance changes. However, alignment between
multi-modal sensors, for example visible and IR, requires matching al-
gorithms that can deal with large appearance changes in addition to
solving for global geometric transformations. Recent work has combined
global geometric alignment with correlation based iterative matching
and invariant feature representations. This answers the following ques-
tion raised by the panel organizers:
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Figure 1.2. Left: Correlation based 2D affine parametric alignment between an IR
frame and a visible spectrum video frame, shown as split window. The top half shows
the IR frame and the bottom half shows the visible frame. (Image courtesy Michal

Irani.) Right: Correlation based direct computation of depth using an underwater
video of Greek amphoras on the ocean floor from a Roman shipwreck [7].

Does correlation still play an important role in regis-
tration? Has any thing new happened in correlation
during the last 50 years?

Correlation plays an important role in registration in situations where
there may be large appearance changes between frames. Irani and Anan-
dan [5] proposed a novel role for correlation in image registration and
presented correlation based alignment of multi-modal images in an iter-
ative parameter estimation algorithm. They used oriented energy pyra-
mids as input features over which iterative correlation based alignment is
done. Fig. 1.2(left) shows an example of alignment of a video image with
and IR image that are related through a 2D affine transformation. The
idea of correlation based parametric alignment was extended to align-
ment using 3D rigid motion model and local depth by Mandelbaum et
al. [7]. An example of 3D reconstruction based on correlation and video
alignment of an ancient Greek shipwreck on the ocean floor is shown
in the right panel of Fig. 1.2. The underwater videos used to create
the shape have strong appearance changes due to the use of a ”miner’s
lamp” illumination for video capture.

Video Alignment with 3D/Stereo Constraints

One of the important applications of image and video alignment is
in the computation of 3D depth maps from rigid motion and stereo
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constraints. The key problems in depth estimation are: (i) obtaining
depth maps with sharp depth discontinuities, (ii) reliable estimation in
textureless regions, (iii) recovering depth of thin structures, and (iv)
reasonable estimation for unmatched areas. The past few years have
seen progress in all these problems [4, 15]. However, dealing with all the
problems within a single algorithm with a real-time implementation is
still an outstanding challenge. Furthermore, in the context of dynamic
synchronized multi-camera capture for virtualized reality [8], high qual-
ity dynamic depth estimation is still in its infancy [16, 14]. In virtualized
reality and image based rendering applications, instead of the absolute
accuracy of the depth map, a measure of performance is the quality and
speed of generation of novel views [12]. Dynamic depth extraction needs
to exploit both 3D spatial and temporal constraints in video alignment.

The Role of Pose Data & Features in Video Align-
ment

Precise alignment of current video data of a locale with stored ref-
erence imagery (called geo-registration for alignment to geo-imagery)
has key applications in change detection, targeting and visualization.
Typically the reference imagery also consists of digital elevation maps
(DEMs) and video platforms provide approximate pose information in
terms of Engineering Support Data (ESD) and telemetry. However, the
error in video to reference alignment can be as high as 200-500m. with
dead reckoning using the pose data. Therefore, the challenge is to use
image based alignment techniques to improve the alignment accuracy
to the sub-meter range. Since typically the video and reference imagery
differ tremendously in their appearances, use of multi-resolution features
for coarse matching is important. Furthermore, fine scale alignment in-
volves aligning not each individual frame of video independently to the
reference, but using video frame-to-frame constraints over a window for
bundle-of-frame alignment. Tremendous progress towards a robust real-
time system for this problem has been reported in [18]. A sample result
from the system is shown in Fig. 1.3. A challenging problem in geo-
registration is that of coarse indexing when the pose data may not be
available or may be inaccurate by 1000’s of pixels. Promising work in
this direction has been presented in [11]. Coarse indexing and fine align-
ment in geo-registration become especially challenging when the video
platforms use highly zoomed cameras with fractional fields of view to
capture high resolution data from large distances.
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Figure 1.3. A video of snow cover aligned with reference imagery with foliage and
large terrain variation.

4. Estimation of Object & Surface Masks

The second important ingredient of video registration problems is the
need to extract object and surface masks in the process of registration.
Many applications would benefit from the extraction of precise object
masks. Shape coding in MPEG4, and rotoscoping in entertainment ap-
plications are two examples. Furthermore, robust tracking of multiple
objects in clutter requires representation and extraction of objects in
videos. Although much progress has been made in the representation
and extraction of objects from videos, demands on precision still require
more work. Wang & Adelson [17] introduced representation and extrac-
tion of object and surface layers from video. The machinery provided by
mixture models and the Expectation-Maximization (EM) algorithm pro-
vides a nice computational framework for solving the parametric layer
estimation problem [1]. Initial work on extending layer representations
to 3D layers with plane plus parallax is presented in [2].

5. Models of Object Appearance & Shape

Video registration can be employed to extract a complete represen-
tation of objects : their motion, appearance and shape. A number of
applications require such a complete representation. Object tracking is
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one capability that can be used to create partial or complete representa-
tions of objects for applications in security and surveillance, biometrics
and indexing. Numerous research efforts have been devoted to the prob-
lem of tracking and video based object extraction. I will highlight works
in which all the three ingredients of an object representation have been
used. An extension of extraction of object layers for dynamic tracking
in aerial video surveillance was presented in [13]. This work combined
simple 2D shape models with 2D motion and appearance model as 2D
layers that are tracked as a complete state over time. In [6], a simpli-
fied 3D human body model was combined with learned appearances of
foreground and background to perform multi-object tracking within a
Bayesian particle filtering framework.

When tracking is posed as the maintenance of identity of an object
through clutter and in the presence of other objects, it becomes a prob-
lem of video registration in which a complete object representation needs
to be employed. A complete object and background representation be-
comes necessary if real-world situations need to be handled, for instance,
multiple objects crossing each other, objects coming to a stop and then
moving again, similar objects moving alongside each other etc.

6. Successes & the Future

A number of real world commercial applications deploy video regis-
tration as a core piece of technology. It may not be an overstatement
to say that video registration is the single most deployed computer vi-
sion technology. Princeton Video Imaging (PVI) uses pattern indexing
and registration to locate patches in the video where electronic adver-
tisements are inserted in broadcast video. Video mosaicing has been
commercialized by a number of companies: Live Picture, VideoBrush
(now IPIX), RealVIZ to name a few. MatchMove is another technol-
ogy that uses video registration for establishing correspondences as a
step towards solution of camera poses. This technology is being widely
commercialized by companies like RealVIZ, 2D3 and Synapix. The US
military has funded work on video geo-registration and the promise of
recent results may bring it to the status of a deployed technology soon.

A number of challenges in algorithms and applications for video reg-
istration lie ahead. With the increased need for deployable security and
surveillance technologies, it is expected that advances will be required
and will happen in a number of areas requiring various aspects of video
registration: (i) robust tracking in crowded scenarios, (ii) increasing res-
olution of faces and human forms from low quality security videos, (iii)
high quality capture of biometric features (faces, irises etc.) at a dis-
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tance, etc. A challenging problem that could combine online tracking
and offline access is that of object indexing based on video. Robust
tracking and model acquisition in real-time can be used to populate an
online database. The stored models can be used later to match against
new objects and to provide indexing capabilities.

On the algorithmic side, high quality extraction of depth and 3D mod-
els of objects remains a challenge. This is especially true of applications
requiring high quality rendering from models and textures acquired from
dynamic imagery. As video cameras and multi-camera systems become
more prevalent, real-time systems for dynamic model extraction and ren-
dering will be required. Currently without such a real-time capability,
some of the deployed systems (EyeVision and Kewazinga in sports broad-
cast applications) have to live with systems with numerous cameras and
relatively low resolution and quality output.
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1. Introduction

Video registration today plays an important role in a number of appli-
cations. These include motion estimation for video compression, mosaic
creation and change detection for consumer photography and surveil-
lance, and the visual overlay of advertizing and positional information
(e.g., 1st down markers) onto live video. These applications are all pos-
sible because of fundamental breakthroughs in video registration made
over the last decade.

However, many other applications await the solution of even more
complex problems. These problems include:

the creation of seamless mosaics that compensate for exposure dif-
ferences and foreground object movement;

pixel-accurate correspondence algorithms that correctly account
for (semi-)occluded regions and textureless regions;

dealing with transparent and specular motion as separate layers;

dealing with non-rigid and repetitive motions.

In the following sections, I describe in more detail these open problems
and some potential solutions.

251



252

a) (b)

(c)

Figure 1.1. Mosaics: (a) early photomosaics; (b–c) before and after de-ghosting.

2. Mosaics: dealing with ghosts

The automatic construction of mosaics has progressed rapidly over the
past decade. Early photomosaics were created by photogrammetrists us-
ing manual techniques (Figure 1.1a), and the later using computers [16].
Fully automated techniques for scene stabilization, video summarization,
change detection, and object insertion were developed at Sarnoff labs in
the 1990s [10, 11].

Automated mosaic construction for consumer applications began in
earnest with the introduction of Apple’s QuickTime VR (QTVR) [8], and
was later extended to handle arbitrary camera motion using perspective
and rotational motion models [22, 20]. A good survey on panoramic
mosaicing techniques can be found in [2].

One of the open problems in mosaic construction is how to deal with
moving objects and with parallax induced by non-rotational camera mo-
tion, both of which may result in “ghost” images. When the moving
objects are small and the image sequence is dense, median filtering can
be used succesfully [11]. If the scene is static, the parallax can often be
computed using stereo matching techniques and then removed [15].

When only a small amount of overlap exists, the ghosts can be elimi-
nated by carefully cutting image seams at locations of least error [17, 9].
However, when a large number of overlaps exist, the strategy of find-
ing pairwise optimal seams does not work. We have recently developed
a technique that finds all potential ghosted regions (by measuring the
local variance in the contributing pixels at each location), and then de-
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(a) (b)

(c) (d)

Figure 1.2. Accurate stereo correspondence: (a) sample image from sequence (cour-
tesy U. Tsukuba); (b) typical 5× 5 window-based correspondence; (c) using spatially
and temporally shiftable windows; (d) after applying graph-cut optimization. Note
how the motion boundaries are much more accurate.

cides which of the regions to keep and which to throw away [26]. Our
decision algorithm is based on a weighted vertex cover, which ensures
that at most one image can contribute to any potentially ghosted region.
Our algorithm also compensates for exposure differences using a local
spline-based exposure compensation mechanism. A result of using our
algorithm can be seen in Figure 1.1.

While these results are encouraging, there is more work to be done.
For consumer-level stitching, fully automated techniques that can deal
with little overlap and arbitrary image ordering need to be developed.
As well, better de-ghosting that can “guess” which objects to keep and
which to leave (e.g., not to leave in two copies of a given person) would
be useful.

3. Correspondence: occlusions and un-textured
regions

Correspondence algorithms are at the heart of motion estimation,
optic flow, and stereo matching algorithms. A tremendous amount of
work has been done in making these algorithms efficient and accurate
[3, 1, 18]. However, most algorithms still have trouble in regions that
are partially occluded and in textureless regions.
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(a) (b)

(c)

Figure 1.3. Transparent motion recovery: (a) sample image from sequence (courtesy
Michael Black); (b–c) recovered transparent layers.

Many different methods have been developed to deal with occlusions.
Robust matching can sometimes help [5]. Dynamic programming, which
is usually restricted to stereo matching with a horizotal epipolar geom-
etry, can explicitly deal with occlusions [6]. When multiple images are
available (e.g., in video streams), using spatially and temporally shifted
windows can do a good job near discontinuities [14].

For untextured regions, using global optimization such as dynamic
programming [6] or Markov Random Fields [7] can effectively set tex-
tureless regions to the same motion/disparity, although the DP algo-
rithms only do so one scanline at a time. Another approach that shows
much promise is to use color image segmentation in conjunction with
stereo [25]. Figure 1.2 shows the results of traditional window-based
stereo matching, along with our shiftable window algorithm, followed by
a graph-cut MRF minimization. You can see how the overall reconstruc-
tion and especially the depth discontinuities are much more accurate
using our approach.

While these recent approaches show promise, obtaining accurate cor-
respondences near discontinuities and in textureless regions remains a
challenging problem.
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(a) (b)

(c) (d)

Figure 1.4. Video Texture synthesis examples: (a) waving flag, (b) waterfall, (c) tree
with balloons, and (d) fish tank.

4. Transparent motion and mixed pixels

As we start applying video registration to more realistic and com-
plex visual scenes, we need to deal with transparent and specular mo-
tion. These kinds of mixed-up multiple motions often occur because of
reflections in windows or off other glossy surfaces. While several ap-
proaches have been developed to estimate the motions in such regions
(e.g., [12, 4, 13], relatively little work has been done on recovering the
actual images (layers) contributing to the final image. The approach
we developed recently relies on dominant motion estimation followed by
a least squared regression to estimate the component layers [23] (Fig-
ure 1.3). Currently, we are extending the approach to include per-pixel
disparity and motion estimates.

A related problem that occurs at object boundaries is the presence of
mixed pixels, which are colored with mixtures of foreground and back-
ground colors. While blue-screen matting techniques commonly extract
the true colors and fractional opacities of such boundary pixels [21], most
stereo correspondence and motion estimation algorithms do not (but see
[24] for some preliminary work). In future work, we plan to study how
our transparent motion model could be extended to reliably estimate
fractional opacities and foreground/background colors at mixed pixels.
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5. Non-rigid motion

The last open problem in video registration I would like to highlight is
dealing with non-rigid motion. While flow techniques can sometimes es-
timate the motion in complex situations such as waterfalls, waving trees,
and flames (Figure 1.4), the quality of the analysis is inadeqate if video
synthesis is the goal. In recent work, we have developed an approach
that synthesizes novel sequences with minimal explicit correspondence
or motion analysis [19]. Inspired by texture synthesis approaches that
copy portions of texture patches into a novel image, we paste together
randomly selected subsequences of the original video and use a simple
form of flow-based automated morphing to smooth over visual discon-
tinuities. Even more recent approaches to this problem have used local
statistical analysis techniques to describe such motions and to synthesize
realistic video textures.

Video textures are just one example of a larger class of techniques
that I call video-based rendering [19], in which source video footage is
used to create synthetic animations that preserve a photorealistic look
and feel. As video registration techniques continue to improve, we can
expect to see more creative uses of video analysis and synthesis, which
will power a new generation of important video applications.
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