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Abstract

In this paper, a novel object class detection method
based on 3D object modeling is presented. Instead of using
a complicated mechanism for relating multiple 2D training
views, the proposed method establishes spatial connections
between these views by mapping them directly to the surface
of 3D model. The 3D shape of an object is reconstructed by
using a homographic framework from a set of model views
around the object and is represented by a volume consisting
of binary slices. Features are computed in each 2D model
view and mapped to the 3D shape model using the same ho-
mographic framework. To generalize the model for object
class detection, features from supplemental views are also
considered. A codebook is constructed from all of these fea-
tures and then a 3D feature model is built. Given a 2D test
image, correspondences between the 3D feature model and
the testing view are identified by matching the detected fea-
tures. Based on the 3D locations of the corresponding fea-
tures, several hypotheses of viewing planes can be made.
The one with the highest confidence is then used to detect
the object using feature location matching. Performance
of the proposed method has been evaluated by using the
PASCAL VOC challenge dataset and promising results are
demonstrated.

1. Introduction
In recent years, the problem of object detection has re-

ceived considerable attention from both the computer vi-
sion and machine learning communities. The key challenge
of this problem is the ability to recognize any member in
a category of objects in spite of wide variations in visual
appearance due to geometrical transformations, change in
viewpoint, or illumination.
In this paper, a novel 3D feature model based object class

detection method is proposed to deal with these challenges.
The objective of this work is to detect the object given an
arbitrary 2D view using a general 3D feature model of the
class. In our work, the objects can be arbitrarily transformed

(with translation and rotation), and the viewing position and
orientation of the camera is arbitrary as well. In addition,
camera parameters are assumed to be unknown.
Object detection in such a setting has been considered a

very challenging problem due to various difficulties of ge-
ometrically modeling relevant 3D object shapes and the ef-
fects of perspective projection. In this paper, we exploit
a recently proposed 3D reconstruction method using ho-
mographic framework for 3D object shape reconstruction.
Given a set of 2D images of an object taken from differ-
ent viewpoints around the object with unknown camera pa-
rameters, which are called model views, the 3D shape of
this specific object can be reconstructed using the homo-
graphic framework proposed in [10]. In our work, 3D shape
is represented by a volume consisting of binary slices with
1 denoting the object and 0 for background. By using this
method, we can not only reconstruct 3D shapes for the ob-
jects to be detected, but also have access to the homogra-
phies between the 2D views and the 3D models, which are
then used to build the 3D feature model for object class de-
tection.
In the feature modeling phase of the proposed method,

SIFT features [12] are computed for each of the 2D model
views and mapped to the surface of the 3Dmodel. Since it is
difficult to accurately relate 2D coordinates to a 3D model
by projecting the 3D model to a 2D view (with unknown
camera parameters), we propose to use a homography trans-
formation based algorithm. Since the homographies have
been obtained during the 3D shape reconstruction process,
the projection of a 3D model can be easily computed by in-
tegrating the transformations of slices from the model to a
particular view, as opposed to directly projecting the entire
model by estimation of the projection matrix. To generalize
the model for object class detection, images of other objects
of the class are used as supplemental views. Features from
these views are mapped to the 3D model in the same way as
for those model views. A codebook is constructed from all
of these features and then a 3D feature model is built. The
3D feature model thus combines the 3D shape information
and appearance features for robust object class detection.



Given a new 2D test image, correspondences between
the 3D feature model and this testing view are identified by
matching feature. Based on the 3D locations of the cor-
responding features, several hypotheses of viewing planes
can be made. For each hypothesis, the feature points are
projected to the viewing plane and aligned with the features
in the 2D testing view. A confidence is assigned to each
hypothesis and the one with the highest confidence is then
used to produce the object detection result.
The rest of the paper is organized as follows. Section 2

provides a brief review of related work. A summary of the
3D shape model construction method is presented in Sec-
tion 3. The 3D feature model and our object class detection
approach are presented in Sections 4 and 5, respectively.
Section 6 provides the detection results, and finally, Sec-
tion 7 concludes the work.

2. Related Work
As the approaches for recognizing an object class from

some particular viewpoint or detecting a specific object
from an arbitrary view are advancing toward maturity [3,
9, 11], solutions to the problem of object class detection
using multiple views are still relatively far behind. Object
detection can be considered even more difficult than clas-
sification, since it is expected to provide accurate location
and size of the object.
Researchers in computer vision have studied the problem

of multi-view object class detection resulting successful ap-
proaches following twomajor directions. One path attempts
to use increasing number of local features by applying mul-
tiple feature detectors simultaneously [1, 6, 13, 14, 15]. It
has been shown that the recognition performance can be
benefited by providing more feature support. However, the
spatial connections of the features in each view and/or be-
tween different views have not been pursued in these works.
These connections can be crucial in object class detection
tasks. Recently, much attention has been drawn to the sec-
ond direction related to multiple views for object class de-
tection [5, 7, 8]. The early methods apply several single-
view detectors independently and combine their responses
via some arbitration logic. Features are shared among the
different single-view detectors to limit the computational
overload. Most recently, Thomas et al. [16] developed a
single integrated multi-view detector that accumulates evi-
dence from different training views. Their work combines
a multi-view specific object recognition system [9], and the
Implicit Shape Model for object class detection [11], where
single-view codebooks are strongly connected by the ex-
change of information via sophisticated activation links be-
tween each other.
In this paper, we present a unified method to relate mul-

tiple 2D views based on 3D object modeling. The main
contribution of our work is an efficient object detection sys-

tem capable of recognizing and localizing objects from the
same class under different viewing conditions. Thus, 3D lo-
cations of the features are considered during detection and
better accuracy is obtained.

3. Construction of 3D Shape Model
A recently proposed homographic framework was em-

ployed in our work to construct 3D models from multiple
2D views [10]. A summary of the 3D reconstruction algo-
rithm is provided as follows.

3.1. View Warping and Intersection

Let Ii denote the foreground likelihood map (where each
pixel value is the likelihood of that pixel being a foreground)
in the ith view of total M views. Considering a reference
plane, πr, in the scene with homographyHπr,i from the ith
view to πr, warping Ii to πr gives the warped foreground
likelihood map:

Îi,r = [Hπr,i]Ii. (1)

The visual hull intersection on πr (AND-fusion of the
shadow regions) is achieved by multiplying these warped
foreground likelihood maps:

θr =
MY
i=1

Îi,r, (2)

where θr is the grid of the object occupancy likelihoods
plane πr. Each value in θr gives the likelihood of this grid
location being inside the body of the object, indeed, repre-
senting a slice of the object cut out by plane πr. It should be
noted that due to the multiplication step in (2), the locations
outside the visual hull intersection region will be penalized,
thus, having a much lower occupancy likelihood.

3.2. Construction in Parallel Planes

The grid of the object occupancy likelihood can be com-
puted at an arbitrary number of planes in the scene with dif-
ferent heights, each giving a slice of the object. Naturally
this does not apply to planes that do not pass through the
object’s body, since visual hull intersection on these planes
will be empty, therefore a separate check is not necessary.
Let vx, vy, and vz denote the vanishing points for theX,

Y , and Z directions, respectively, and l be the normalized
vanishing line of reference plane in the XY Z coordinate
space. The reference plane to the image view homography
can be represented as

Ĥref = [vx vy l] . (3)

Supposing that another plane π has a translation of z along
the reference direction Z from the reference plane, it is easy



(a) Volume projection (b) Plane transformation

Figure 1. Illustration of equivalence of 3D to 2D projection and
plane transformation using homographies. (a) A 2D view of a
3D volume V is generated by projecting the volume on a image
plane. (b) The same view can be obtained by integrating the trans-
formation of each slice in the volume to the image plane using
homographies.

to show that the homography of plane π to the image view
can be computed by

Ĥπ = [vx vy αzvz + l] = Ĥref + [I|αzvz] , (4)

where α is a scaling factor. The image to plane homography
Hπ is obtained by inverting Ĥπ.
Starting with a reference plane in the scene (typically the

ground plane), visual hull intersection is performed on suc-
cessively parallel planes in the up direction along the body
of the object. The occupancy grids θi are stacked up to cre-
ate a three dimensional data structure Θ = [θ1; θ2; . . . θM ].
Θ represents a discrete sampling of a continuous occupancy
space encapsulating the object shape. Object structure is
then segmented out from Θ by dividing the space into the
object and background regions using the geodesic active
contour method [2]. By using the above homography based
framework, 3D models for different objects can be con-
structed.

4. 3D Feature Model Description and Training
In the proposed method, not only the 3D shape of the tar-

get object is exploited, but also the appearance features. We
relate the features with the 3D model to construct a feature
model for object class detection.

4.1. Attaching 2D Features to 3D Model

The features used in our work are computed using the
SIFT feature detector [12]. Feature vectors are computed
for all of the training images. In order to efficiently relate
the features computed from different views and different
objects, all the detected features are attached to the 3D sur-
face of the previously built model. By using the 3D feature
model, we avoid storing all the 2D training views, thus there
is no need to build complicated connections between the
views. The spatial relationship between the feature points
from different views are readily available, which can be eas-
ily retrieved when matched feature points are found.

The features computed in 2D images are attached to the
3D model by using the novel homographic framework. In-
stead of directly finding the 3D location of each 2D fea-
ture, we map the 3D points from the model’s surface to the
2D views, and find the corresponding features. Our method
does not require the estimation of a projection matrix from
3D model to a 2D image plane, which is a non-trivial prob-
lem. In our work, the problem is successfully solved by
transforming the model to various image planes using ho-
mography. Since the homographies between the model and
the image planes have already been obtained during the con-
struction of the 3D model, we are able to map the 3D points
to 2D planes using homography transformation.
In our work, a 3D shape is represented by a binary vol-

ume V , which consists of K slices Sj , j ∈ [1,K]. As
shown in Fig. 1(b), each slice of the object is transformed to
a 2D image plane by using the corresponding homography
Ĥ in (4). The transformed slice accounts for a small patch
of the object projection. Integrating all theseK patches to-
gether, the whole projection of 3D object in the 2D image
plane can be produced. In this way, we obtain the model
projection by using a series of simple homography transfor-
mations and the hard problem of estimating the projection
matrix of a 3D model to a 2D view is avoided.
In our method, the 3D shapes are represented using bi-

nary volumes with a stack of slices along the reference di-
rection. Thus, the surface points can be easily obtained by
applying edge detection techniques. After transforming the
surface points to 2D planes, feature vectors computed in 2D
can be related to the 3D points according to their locations.
That is the way a 3D feature model is built.

4.2. Beyond the Model Views

The training images in our work come from two sources.
One set of images is taken around a specific object of the
target class to reconstruct it in 3D as shown in Fig. 2.
These images are called model views, which provide multi-
ple views of the object but are limited to the specific object.
To generalize the model for recognizing other objects in the
same class, another set of training images is obtained by
using Google image search. Images of objects in the same
class with different appearances and postures are selected.
These images are denoted as the supplemental views.
Since the homographies between the supplemental im-

ages and the 3D model are unknown, features computed
from the supplemental images cannot be directly attached
to the feature model. Instead, we utilize the model views
as bridges to connect the supplemental images to the model
as illustrated in Fig. 2. For each supplemental image, the
model view, which has the most similar viewpoint is speci-
fied. The supplemental images are deformed to their speci-
fied view by using an affine transformation alignment. Then
we can assume that each supplemental image will have the



Figure 2. Construction of 3D feature model for motorbikes. 3D shape model of motorbike (at center) is constructed using the model views
(images on the inner circle) taken around the object from different viewpoints. Supplemental images (outer circle) of different motorbikes
are obtained by using Google’s image search. The supplemental images are aligned with the model views for feature mapping. Feature
vectors are computed from all the training images and then attached to the 3D model surface by using the homography transformation.

same homography as the model’s corresponding view. The
2D features computed from all of the supplemental train-
ing images can now be correctly attached to the 3D model
surface using the same method as discussed for the model
views. A codebook is constructed by combining all the
mapped features with their 3D locations.

5. Object Class Detection

Given a new test image, our objective is to detect objects
belonging to the same class in this image by using the learnt
3D feature model M . Each entry of M consists of a code
and its 3D locations {c, l3c}. Let F denote the SIFT features
computed from the input image, which is composed by the
feature descriptor and its 2D location in the image {f, l2f}.
Object On is detected by matching the features F to the 3D
feature modelM .
In our work, feature matching is achieved in three

phases. In the first phase, we match the features by com-
paring all the input features to the codebook entries in Eu-
clidean space. However, not all the matched codebook en-

tries in 3D are visible at the same time from a particular
viewpoint. So, in the second phase, matched codes in 3D
are projected to viewing planes and hypotheses of view-
points are made by selecting viewing planes with the largest
number of visible points projected. In the third phase, for
each hypothesis, the projected points are compared to 2D
matched feature points using both feature descriptors and
locations. This is done by iteratively estimating the affine
transformation between the feature point sets and remov-
ing the outliers with large distance between corresponding
points. Outliers belonging to the background can be re-
jected during this matching process. The object location and
bounding box is then determined according to the 2D loca-
tions of the final matched feature points. The confidence of
detection is given by the degree of match.

6. Experimental Results

The proposed method has been tested on two object
classes: motorbikes and horses. For the motorbikes, we
took 23 model views around a motorbike and obtained 45



Figure 3. Detection of motorbikes and horses using the proposed approach. The ground truth is shown in green and red boxes display our
detected results.

supplemental views by using Google’s image search. Some
training images of the motorbikes and the 3D shape model
are shown in Fig. 2. For the horses, 18 model views were
taken and 51 supplemental views were obtained.
To measure the performance of our 3D feature model

based object class detection technique, we have evaluated
the method on the PASCAL VOC Challenge 2006 test
dataset [4], which has become a standard testing dataset for
objective evaluation of object classification and detection
algorithms. The dataset is very challenging due to the large
variability in the scale and poses, the extensive clutter, and
poor imaging conditions. Some successful detection results
are shown in Fig. 3. The green box indicates the ground
truth, while our results are shown in red boxes.
For quantitative evaluation, we adopt the same evalua-

tion criteria used in PASCAL VOC challenge, so that our
results can be directly comparable with [8, 16, 4]. By using
this criteria, a detection is considered correct, if the area of
overlap between the predicted bounding boxBp and ground
truth bounding box Bgt exceeds 50% using the formula

area(Bp ∩Bgt)

area(Bp ∪Bgt)
> 0.5. (5)

The average precision (AP) and precision-recall (PR) curve
can then be computed for performance evaluation.
Fig. 4(a) shows the PR curves of our approach and the

methods in [8, 16] for motorbike detection. The curve of our
approach shows a substantial improvement over the preci-
sion compared to the method in [8], which is also indicated
by the AP value (0.182). Although our performance is lower
than that of [16], considering the smaller training image set
used in our experiments, this can be regarded as satisfactory.
Fig. 4(b) shows the performance curves for horse detection.
While there is no result reported in the VOC challenge using
researchers’ own training dataset for this task, we compared
our result to those using the provided training dataset. Our
approach performs better than the reported methods and ob-
tained AP value of 0.144. It is noted that the absolute per-
formance level is lower than that of motorbike detection,
which might be caused by the non-rigid body deformation
of horses.

7. Conclusion
In this paper, we have proposed a novel multi-view

generic object class detection method based on 3D object



Figure 4. The PR curves for (a) motorbike detection and (b) horse detection using our 3D feature model based approach. The curves
reported in [4] on the same test dataset are also included for comparison.

shape and appearance modeling. The proposed method
builds a 3D feature model for establishing spatial connec-
tions between different image views by mapping appear-
ance features to the surfaces of a 3D shape. Through a novel
homographic framework, our method exploits the relation-
ship between multiple 2D views in a more unified man-
ner. Experimental evaluation of the proposed method sug-
gests collaborative information in the 2D training images
can be represented in a more unified way through a 3D fea-
ture model of the object. We have also revealed that both
appearance and shape can be salient properties to assist in
object detection. Performance of the proposed method has
been evaluated using the PASCAL VOC challenge dataset
and promising results have been demonstrated. In our future
work, we plan to extend our method by taking supplemental
views in a more automated fashion. So, more supplemen-
tal views can be easily incorporated to improve the perfor-
mance. We will also test the method on objects classes with
more complex shapes and appearances.
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