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Abstract

This paper presents a target tracking framework for un-

structured crowded scenes. Unstructured crowded scenes

are defined as those scenes where the motion of a crowd

appears to be random with different participants moving in

different directions over time. This means each spatial loca-

tion in such scenes supports more than one, or multi-modal,

crowd behavior. The case of tracking in structured crowded

scenes, where the crowd moves coherently in a common di-

rection, and the direction of motion does not vary over time,

was previously handled in [1]. In this work, we propose

to model various crowd behavior (or motion) modalities

at different locations of the scene by employing Correlated

Topic Model (CTM) of [16]. In our construction, words

correspond to low level quantized motion features and top-

ics correspond to crowd behaviors. It is then assumed that

motion at each location in an unstructured crowd scene is

generated by a set of behavior proportions, where behav-

iors represent distributions over low-level motion features.

This way any one location in the scene may support multi-

ple crowd behavior modalities and can be used as prior in-

formation for tracking. Our approach enables us to model

a diverse set of unstructured crowd domains, which range

from cluttered time-lapse microscopy videos of cell popula-

tions in vitro, to footage of crowded sporting events.

1. Introduction

A crowded scene can be divided into two categories:

structured and unstructured. In a structured crowded scene,

the crowd moves coherently in a common direction, and

the direction of motion does not vary over time. That

is, each spatial location of the scene supports only one

dominant crowd behavior over the video. For instance, a

video of a marathon race represents a structured crowded

scene because all athletes run along the same path, thus

generating a crowd behavior which has a fixed direction

of motion/pattern at each location of the path. Other ex-

amples of structured crowded scenes include processions,

events involving queues of people, and traffic on a road (see

Figure1). In an unstructured crowded scene, the motion of

the crowd appears to be random, with different participants

moving in different directions at different times. That is, in

such scenes each spatial location supports more than one, or

multi-modal, crowd behavior. For instance, a video of peo-

ple walking on a zebra-crossing in opposite directions is an

example of an unstructured crowded scene because, broadly

speaking, at any point on the zebra crossing the probability

of observing a person moving from left to right is as likely

as observing a person walking from right to left (see Fig-

ure 2). Other examples of such scenes include exhibitions,

crowds in a sporting event, railway stations, airports, and

motion of biological cells (see Figure 1).

Recently Ali et al. [1] proposed an algorithm to track ob-

jects in structured crowded scenes. Their method is based

on the assumption that, in a given scene, all participants of

the crowd are behaving in a manner similar to the global

crowd behavior. Therefore, at any location in the scene,

there is only one direction of motion. This enabled them to

learn a higher level constraint or prior on the direction of

motion for tracking purposes using the novel construct of

‘floor fields.’ Given that floor fields could only be learned

when there is one dominant direction of motion, the results

were reported only on marathon videos. This is a major

shortcoming, as floor fields could not be learned for unstruc-

tured crowded scenes where each location in the scene sup-

ports multiple dominant crowd behaviors. We further ex-

plain this point with the aid of an example in which pedes-

trians are walking on a zebra-crossing (see Figure 2). In

the crossing, people walk in both directions and, therefore,

each spatial location supports two different dominant types

of motion over time which correspond to two different high

level crowd behaviors. This means the motion at each spa-

tial location of the zebra-crossing has a multi-modal repre-

sentation. This is evident from the two types of dominant

optical flow vectors for this scene that are shown in Fig.

2(c), and the two corresponding high level crowd behaviors

learned by our algorithm that are shown in Fig. 3. In this

figure, different slices are shown for different behaviors to

emphasize the fact that a single location in the scene can
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Figure 1. Several instances of structured and unstructured crowded scenes. (a) Structured, (b) Unstructured, (c) Structured, and (d) Un-

structured.

support to any number of crowd behaviors with different

probabilities.

Floor fields in the form proposed by Ali et al. [1] will not

be able handle this situation, and therefore, their tracking al-

gorithm is not directly applicable to unstructured crowded

scenes. Since such unstructured crowd activities (airports,

exhibition halls, and stadiums) are much more common

than structured crowd activities (marathons), it is important

to develop an algorithm capable of handling multi-modality

in crowd behaviors and for using it as a high-level direction

prior for tracking.

To overcome the problem of tracking in unstructured

crowded scenes, we develop a tracking algorithm that uses

Correlated Topic Model (CTM) [16] to capture different

overlapping and non-overlapping crowd behaviors in the

scene. In our construction, words correspond to low level

quantized motion features and topics correspond to crowd

behaviors. We used CTM as it provides an elegant way

to handle multi-modality of crowd behavior as each loca-

tion can have a certain probability of belonging to certain

crowd behavior (or topic). In addition, it models interac-

tions among topics (or crowd behaviors) which is also de-

sirable, as explained later, for the types of scene that we

are handling. Note that, we will use terms ’crowd behav-

ior’, ’behavior’ and ’topic’ interchangeably throughout the

paper.

For illustration and understanding purposes we show

(a) (b)

Figure 2. (Frames from a video showing pedestrians crossing the

road, and the corresponding optical flow vectors generated by the

motion of the crowd. Different colors of optical flow vectors rep-

resent two dominant motions of the crowd in this scene. The cor-

responding two crowd behaviors learned from these optical flow

vectors are shown in Fig. 3.

Crowd Behavior 1

Crowd Behavior  2

Figure 3. The top two crowd behaviors corresponding to a cross-

walk scene capture the multiple behavior modes of pedestrians

walking from opposing sides of the street. Behavior 1 captures the

dynamics of pedestrians which walk towards the rightmost end of

the crosswalk, whereas behavior 2 captures the typical movement

of pedestrians which walk towards the leftmost end of the street.

crowd behaviors learned for a typical busy crosswalk sce-

nario in Figure 2. Our model is able to capture different

behavior modalities at specific locations in the scene. This

can be observed in Figure 3, where we overlay the two most

common crowd behaviors learned by our framework. By

observing the colors (which represent directions of motion)

in each of the crowd behaviors, it can be seen that one of the

behaviors corresponds to pedestrians which walk towards

the rightmost end of the crosswalk, whereas the other be-

havior corresponds to pedestrians walking in the opposing

direction.

Also note that, in Figure 3 learned crowd behaviors are

not spatially mutually exclusive. Therefore, multiple behav-

iors can occur at different spatial locations in the scene with

certain probabilities. Each of these behaviors can then be in-

corporated as high level information which can aid tracking

individuals in this class of scenes. The main contributions

of our work are: 1) Extending the idea of using high-level

knowledge for tracking in crowds by learning representa-

tions of unstructured and multi-modal crowd behavior; 2)

Using CTM to solve an existing problem in a crowd track-

ing framework.



2. Related Work

Tracking is one of the highly researched areas in the field

of computer vision. Most tracking algorithms proposed

over the years focus on the general problem of tracking,

without specifically addressing the challenges of a crowded

scene. In this section, we review the tracking methodolo-

gies that are specifically designed for crowded situations.

The readers interested in a detailed review of the state of

the art in tracking are referred to a recent survey by Yilmaz

et al. [7].

An interesting body of work tries to track sparse crowds

of ants [4] and people [8], hockey players [6], crowds of

densely packed people [5, 11, 12], a dense flock of bats

[2], and biological cells [3]. In their work, Brostow et al.

[8] tracked and clustered feature points over time and used

them to generate a separate trajectory for each individual.

In [4], Khan et al. employed a Markov chain Monte Carlo

based particle filter to deal with interactions among targets

in a crowded scenario. They used the intuitive notion that in

a crowded situation the behaviors of targets are influenced

by the proximity and/or behavior of other targets. Cai et al.

[6] proposed a mutli-target tracking algorithm for tracking

hockey players in a video. In [11, 12], Lin et al. advocated a

different paradigm for tracking groups of people by treating

them as a near-regular texture (NRT). Recently, Betke et al.

[2] proposed an algorithm to track a dense crowd of bats in

thermal imagery. They combined multiple techniques such

as multi-target track initiation, recursive Bayesian tracking,

clutter modeling, event analysis, and multiple hypotheses

filtering for this purpose. Tracking of multiple interacting

and crowded objects has been attempted in the area of bio-

logical cell tracking as well. For instance, Li et al. [3] have

recently developed an algorithm for tracking thousands of

cells in phase contrast time-lapse microscopy images. An-

other approach for tracking in crowded scenes using selec-

tive visual attention is proposed by Yang et al. [13]. Most

tracking algorithms described so far only use low-level im-

age information for tracking purposes. Surprisingly, little

has been done in exploiting high-level cues for human de-

tection and tracking in complex crowded situations. One

of the few works on this topic is that of Antonini et al.

[14], which used discrete choice models (DCM) [15] as mo-

tion priors to predict human motion patterns and fused this

model in a visual tracker for improved performance. The

other work that used high-level motion priors for tracking is

by Ali et al. [1] which we already described in the previous

section.

In contrast to above mentioned body of work, our

method addresses the problem of tracking in high density

crowds by learning high level direction priors for unstruc-

tured crowded scenes. To the best of our knowledge, this

has not been attempted before.

3. Unstructured Crowded Scene Model

In this work, our goal is to develop a framework for mod-

eling the dynamics of crowded and complex scenes. In gen-

eral, an effective crowded scene model will need to be ca-

pable of both capturing the correlation amongst different

patterns of behavior as well as allowing for the multi-modal

nature of crowded scenes over time. The importance of cor-

relation among themes can be explained as follows. At an

intersection of roads, the presence of pedestrians walking

from one end of the crosswalk to the other will likely coin-

cide with a crowd behavior which corresponds to pedestri-

ans crossing from the opposite side of the crosswalk. That

is these two behaviors are correlated. On the other hand,

in the presence of a behavior which corresponds to vehi-

cle traffic, it is not likely that we will observe pedestrians

walking across the scene.

In this work, we model the given crowd scene using Cor-

related Topic Model (CTM) which is adopted from the text

processing literature. CTM offers an elegant framework

within which multi-modality of crowd behaviors and corre-

lations among them can be handled. Another benefit of us-

ing topic Models like CTM is that they enables us to bypass

the need for object detection within this class of crowded

scenes in favor of direct processing on low level flow vec-

tors and at the same time allow us to connect these low level

features with high level crowd behaviors. It is pertinent to

mention here that we are interested in capturing the interre-

lationships between different behaviors in the scene as well,

therefore it may not be appropriate to rely on topic models

based on Latent Dirichlet Allocation (LDA) [17] to model

scene dynamics [20]. This is due to the fact that these mod-

els assume a near independence of topics (or behaviors). On

the other hand, CTM addresses this limitation by introduc-

ing a logistic normal prior of topics instead of the Dirichlet

prior and by using the covariance matrix of the variables

in the logistic normal model to capture correlations among

topics (or crowd behaviors).

The elements of CTM and their conditional dependen-

cies are depicted in the graphical model shown in Figure 4.

In this figure, shaded variables represent the observed vari-

ables (motion words), while the unshaded variables repre-

sent the latent variables. Edges encode the conditional de-

pendencies of the generative process. In the following sec-

tion we detail the terminology of this graphical model and

describe how it enables us to capture the multi-modal nature

of a crowded scene.

3.1. Notation and Terminology Overview

In this section, we explain various terminologies and

demonstrate the mapping between original CTM model and

our scenario. The only observable random variable that

we consider is the low-level motion feature x, which cor-
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Figure 4. Graphical model used for modeling various crowd behaviors

and correlation between them.

responds to a quantized optical flow vector and location.

A video is represented by N such low-level visual features

(motion words) X = {x1, x2, . . . , xN} where xn is the nth

motion word in the sequence, defined by a displacement and

location in the scene (u, v, x, y). The number of words in

the ith video is represented by NI . The crowd behavior

β is a distribution over the vocabulary of motion words of

size V . It represents a point on a V − 1 simplex. A model

with K crowd behaviors is represented by a matrix β of size

K × V , where the ith row represents a distribution of the

ith crowd behavior over the vocabulary. Each motion word

x is associated with a crowd behavior z drawn from one of

the K crowd behaviors. The behavior assignment zi,n is

associated with the nth motion word and ith sequence.

In our model, the notion of document is generated by di-

viding each video sequence is into short clips (documents),

and then each clip is associated with a set of crowd behavior

proportions θi, which represents a point on K − 1 simplex.

θi represents the probability with which motion words are

drawn from each behavior. It is obtained by mapping the be-

havior probability vector π to a simplex as θ = exp(π)∑
i
exp(πi)

,

and thus obtaining a multinomial parameter.

3.2. Generative Process

Our model assumes that the N motion words from a

video sequence (short clip) i arise from the following gen-

erative process:

• Randomly draw a k−dimensional vector π ∽ p(π |
Σ, µ) that determines the distribution of intermedi-

ate spatio-temporal crowd behaviors. Here, π is a

parametrization of the multinomial distribution (π =
log( θi

θK
)) that captures the covariance among these be-

haviors, while µ and Σ are the mean and covariance of

the normal distribution.

• For each motion word xn in the sequence

– Choose a behavior zn ∽ Mult( exp(π)∑
i exp(πi)

). zn

is a K-dimensional unit vector where zk
n = 1

indicates that the kth behavior is selected.

– Choose a low-level motion feature xn ∽ p(xn |
zn, β), where β is distribution over the vocabu-

lary of motion words.

In order to perform parameter estimation for our model,

we use a collection of training video sequences and adopted

the variational expectation maximization (EM) algorithm

proposed in [16]. We refer reader to this reference for fur-

ther details on the parameter estimation algorithm.

4. Tracking Framework

In this section we describe implementation details of var-

ious steps involved in our tracking framework.

4.1. Scene Codebook

Given a video of a specific scene, we uniformly divide it

along the temporal domain into non-overlapping short clips.

In our framework, each of these video clips is treated as a

document. For each clip in our dataset, we compute optical

flow as our low-level features. All moving pixels in each

video sequence are quantized according to a codebook in

the following manner: Each moving pixel has two features

which correspond to its position and its direction of motion

respectively. Position is quantized by dividing a scene into

a grid with cells which are 10 × 10 pixels in size. The mo-

tion of a moving pixel is quantized into four directions of

motion. Therefore, for a scene which is digitized to a size

of 320 × 240 the size of the codebook is 32 × 24 × 4, and

thus each detected moving pixel is assigned to a word from

the codebook based on rough position and motion direction.

The size of the codebook depends on the granularity

of the spatial and motion direction quantization, a choice

which represents a balance between the descriptive capa-

bility and complexity of the model. We found that increas-

ing the size of the codebook resulted in diminishing returns.

Therefore, for all of our experiments we maintain the quan-

tization described above.

In the next section we describe how we formulate track-

ing in complex scenes by incorporating the high-level in-

formation about a scene, which is captured by estimating

parameters of CTM described previously.

4.2. Formulation

Let the observed measurements of m objects in the scene

at time instance i be given by Ω = {ω1
i , ω

2
i , ..., ωm

i }, and let

the predicted states of the previously observed s objects be

given by Θ = {θ1
i , θ

2
i , ..., θm

i }. In the proposed work, the

analysis is performed on a feature space which consists of

a pair of 2-D locations of the centroid of object before and

after transition, and time taken to execute the transition.

For each object observed at time instance i−1, we obtain

the next tracker position as a weighted mean of the next

observation and the tracker prediction by incorporating the

learned high-level scene dynamics as weights. Specifically,

the state of the tracker at time instance i given all previous

tracks is given by:



j=i∑
p(xωk

j
|Σ, µ, β)ωk

i + p(xθk
l
|Σ, µ, β)θk

l (1)

where xωk
j

corresponds to motion word of the displacement

which commences at the location given by the tracker at

i − 1 and the current observation (ωk
j ). Similarly, xk

θl
is

the codebook entry (motion word) that corresponds to the

displacement vector from the previous tracker position to

the current tracker prediction (θk
l ).

This approach results in the assignment of larger weights

for tracks which are made up of transitions which are more

likely given the learned crowd behaviors. The first term in

equation 1 weights the displacements of the observations

based on the learned crowd behaviors, whereas the second

term weights the displacements predicted by the tracker.

These weights help establish correspondences such that the

probability of an object’s track is maximized based on the

typical behavior modalities observed in the scene.

4.3. Experiments and Results

4.3.1 Datasets

In this work our data consists of crowded and complex

video sequences which contain many interactions amongst

agents. We explore different crowd domains, which range

from cluttered time-lapse microscopy videos of cell popu-

lations in vitro to footage of crowded sporting events. In

each of these domains objects move in complex patterns,

such that any one location in the scene may host multiple

modalities of motion direction at different times throughout

the scene.

4.3.2 Tracking Human Crowds

A first round of experiments was geared towards assessing

the performance of the proposed crowd model in improving

tracking in the presence of large crowds of humans. The

first scene we considered can be seen in Figure 8-a. It con-

sists of a crowded baseball bleachers scene in which fans

move in complex patterns across the frame. By inspect-

ing the top behaviors which are learned from the model,

we observe that fans typically move in bidirectional aisles

which either move up and down the bleachers or laterally

across the aisles. Therefore, most locations in the scene host

different behavior modes throughout different times in the

scene. Unlike models which assume that participants of the

crowd behave in a consistent global manner, here we learn

the complex patterns of motion and incorporate this high-

level information directly into our tracking framework.

A set of trajectories generated by our tracking algorithm

is shown in Figure 8-b. Quantitative analysis of the track-

ing was performed by generating ground-truth trajectories

for 60 fans, which were selected randomly from the set of

(a)

(b)

(c)

(d)

Figure 5. Tracking humans in unstructured crowded scenes. (a) The

learned behavior modes for a crowded student union scene. (b) A sub-

set of the tracks generated by our framework. (c) The learned behavior

modes for a tailgating scene. (d) Tracking results.

all moving fans. The ground-truth was generated by manu-

ally tracking the centroid of each selected fan. The average

tracking error obtained using the proposed model was 35

pixels, whereas an average error of 57 pixels was observed

when tracking using a Kalman tracker (Figure 6-a).

The second scene we consider is a crowded student

union. As can be seen in Figure 5-a, there are multiple pat-

terns of behavior observed over time. We observe a collec-

tion of patterns which correspond to students entering and

exiting the building through the same entrance. We also see

multiple modes of behavior in the center of the scene, where

students avoid stepping over the university logo (which is



blurred in the image). It can also be seen that the frame-

work learns the different patterns of behavior observed at

the winding stairwell, in which people ascend and descend

at any given moment throughout the video sequence. A sub-

set of the tracks generated by our framework can also be

seen in Figure 5-b. We manually annotated 50 tracks and

used them to compute mean tracking errors (in pixels) of

the automatic tracking, which was found to be 17 pixels on

average (Figure 6-b).

Another set of experiments in tracking human crowds

was centered around a crowded football tailgating event

which is depicted in Figure 5-c. In this scene we see how the

learned behavior modes correspond to the unmarked lanes

of pedestrian traffic across the lawn as well as the struc-

tured lanes of vehicle traffic. The ability to learn multiple

modes of behavior is particularly important in regions of the

scene that typically contain multiple patterns of motion as

opposed to a single global behavior. This is the case within

the lawn area of this scene, where there are no marked paths,

and therefore fans tend to walk in more than one pattern.

The quantitative analysis of the tailgating scene was based

on 80 trajectories which were manually ground-truthed. At

each frame we compare ground-truth centroids with the cur-

rent tracks generated by our framework. Over the 1040

frames we report a mean tracking error of 39 pixels (Fig-

ure 6-c).

4.3.3 Tracking Cell Populations

A second round of experiments focused on automated track-

ing of crowded cell populations in vitro recorded using

phase-contrast time-lapse microscopy. In these experiments

we utilized three video sequences of human MG-63 os-

teosarcoma cells recorded by an 8-bit CCD camera on a

Zeiss IM35 microscope. The sequences last for 43.5 hours

with a frame interval of 15 minutes, corresponding to 180

frames/sequence. The frame dimensions are 400×400 pix-

els with a resolution of 3.9 µm/pixel at 5:1 magnification.

As can be seen in Figure 9-b, cells in these videos move

in complex patterns throughout the scene, such that at any

given location in the scene different behaviors are observed

over time. Further complicating the tracking process is the

large number of cells per video. The cell population in each

of the sequences is in the range of 350-750 cells per frame.

Finally, the appearance of individual cells within video se-

quences contains very little intra-class variation, proving it

difficult to rely on appearance as a means of tracking.

Given that each cell population video sequence contains

different motion dynamics, each video is considered to be a

separate scene. Therefore, we learn the probabilistic crowd

model described in Section 3 for each video and perform

tracking in batch mode on the same sequence.

In order to assess the effectiveness of the proposed ap-

proach, we compare tracking results obtained using our

tracking framework with tracks obtained using a Kalman

tracker. We also assess the effectiveness of explicitly

capturing the correlation amongst behaviors by replacing

the logistic normal distribution in our probabilistic crowd

model with a Dirichlet distribution, therefore resembling

the popular Latent Dirichlet Allocation (LDA)[17].
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Figure 7. (a) The mean distances between the manually and the automati-

cally tracked trajectories. (b) The percentages of cells successfully tracked.

In a first set of experiments on this dataset our tracking

process was compared to that achieved by a human opera-

tor. This comparison was based on 120 cell trajectories for

which manual tracks are available as groundtruth. For each

cell trajectory we computed the average distance (in pixels)

at each time step between the manually annotated cell lo-

cations and those computed by the algorithm. Figure 7-a

shows the distribution of these distances (means and stan-

dard errors computed on the trajectories analyzed) accord-

ing to time. It can be observed that a slight and progressive

increase in distance occurs as the experiment progresses in

time and probably results from error accumulation. The

final mean distance obtained using the proposed method

was 14.67, considerably less than the one obtained using

the Kalman tracker and the LDA-based probabilistic crowd

model. In fact, the mean error is near to the average radius

of cells during mitosis, indicating that the location errors are

small compared to the size of the cells. Figure 7-b displays

the percentages of cells successfully tracked by the algo-

rithm according to time. Although we observed that some-

times the algorithm loses and then recovers a cell, to sim-
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Figure 6. Comparison of the tracking error of our method against the Kalman tracker for the baseball sequence (a), crowded student union sequence (b),

and the tailgating sequence (c).

(a) (b)

Figure 8. Distribution of low-level motion features of the top four behaviors of a scene (a). The model captures the typical scene dynamics, i.e. aisles of

traffic and walkways (b). We incorporate high-level scene information to improve tracking.

Table 1. Cell Tracking Accuracy Comparison

Sequence Li et al[18] Our method

A 86.4% 84.2%

B 91.2% 89.0%

C 88.2% 79.1%

plify this evaluation a cell was considered definitively “lost”

by the tracking algorithm the first time that the distance be-

tween the groundtruth and automatic centroid locations ex-

ceeded a given threshold value (in our experiments we used

30 pixels). As expected, the percentages of lost cells in-

creased with time. However, there is a significant difference

in the final percentage of valid tracks between the proposed

tracking framework and the comparison methods. This sig-

nificant difference in performance can be attributed to the

way in which the proposed model is capturing both the cor-

relation amongst local motion as well as the multi-modality

of displacements at different locations in the scene. As can

be seen in Figure 7, the probabilistic crowd model is able

to capture the multi-modality of local displacements in the

scene. The top behaviors in the scene cover typical behavior

of cells. Any given location in the scene may be included in

different behaviors, each of which may capture a displace-

ment mode of cells, a task which cannot be accomplished

with crowd models which assume that all participants be-

have in a manner similar to a global crowd behavior.

A possible explanation for these “crowd behavior” pat-

terns that have been learned for the MG-63 osteosarcoma

cells can be found in Wang et al’s work [19], in which they

find that the character of cell motility is different in Sar-

coma and chondrosarcoma cells. In the former, cells move

over each other, and the direction of motility is not linear as

has been learned in our model. Instead, according to [19] it

appears that this class of cell motility is guided by collagen

fibers in association with vessels.

Finally, for this dataset we compare our cell tracking re-



(a) (b)

Figure 9. (a) The top behaviors learned by the model. Each distribution over behaviors may capture different cell motion modalities for a given location in

the scene. (b) Tracking results for the first thirty frames.

sults with the current state-of-the-art [18], a domain-specific

tracking method which incorporates cell detection as well

as cell division recognition to perform tracking in this spe-

cific domain. As can be seen in Table 1 (where we depict

the percentage of valid tracks for each video in the dataset),

despite the fact that we do not exploit domain-specific infor-

mation (i.e cell and mitosis detection), our general approach

is comparable to the best results on this dataset.

5. Conclusion

We have presented a framework for tracking individual
targets in high density unstructured crowded scenes, a class
of crowded scenes where the motion of the crowd at any
given location is multi-modal over time. To this end we
adopted the Correlated Topic Model (CTM) in which each
scene is associated with a set of behavior proportions, where
behaviors represent distributions over low-level motion fea-
tures. Unlike some existing formulations, our model is ca-
pable of capturing both the correlation amongst different
patterns of behavior as well as allowing for the multi-modal
nature of unstructured crowded scenes. In order to test our
approach we performed experiments on a range of unstruc-
tured crowd domains, from cluttered time-lapse microscopy
videos of cell populations in vitro to videos of sporting
events. In each of these domains we found that explicitly
modeling the interrelationships between different behaviors
in the scene allowed us to improve tracking predictions.

References

[1] S. Ali and M. Shah, Floor Fields for Tracking in High Density

Crowd Scenes, ECCV, 2008.

[2] M. Betke et al., Tracking Large Variable Numbers of Objects

in Clutter, IEEE CVPR, 2007.

[3] K. Li and T. Kanade, Cell Population Tracking and Lin-

eage Construction Using Multiple-Model Dynamics Filters

and Spatiotemporal Optimization, International Workshop on

Microscopic Image Analysis with Applications in Biology,

2007.

[4] Z.Khan et al., An MCMC-based Particle Filter for Tracking

Multiple Interacting Targets, ECCV, 2004.

[5] G. Gennari and G. D. Hager, Probablistic Data Association

Methods in Visual Tracking of Groups, IEEE CVPR, 2004.

[6] Y.Cai et al., Robust Visual Tracking of Multiple Targets,

ECCV, 2006.

[7] A. Yilmaz et al., Object Tracking: A Survey, ACM Journal of

Computing Surveys, Vol. 38, No. 4, 2006.

[8] G. Brostow and R. Cipolla, Unsupervised Bayesian Detection

of Independent Motion in Crowds, IEEE CVPR, 2006.

[9] T. Zhao and R. Nevatia, Bayesian Human Segmentation in

Crowded Situations, IEEE CVPR, 2003.

[10] T. Zhao and R. Nevatia, Tracking Multiple Humans in

Crowded Environment, IEEE CVPR, 2004.

[11] W. Lin et al., Tracking Dynamic Near-regular Textures un-

der Occlusion and Rapid Movements, European Conference

on Computer Vision (ECCV), 2006.

[12] W. Lin et al., A Lattice-based MRF Model for Dynamic Near-

regular Texture Tracking, IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence (TPAMI), Vol. 29, No. 5, 2007.

[13] M. Yang, J. Yuan, and Y. Wu, Spatial Selection for Atten-

tional Visual Tracking, IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2007.

[14] G. Antonini, S. V. Martinez, M. Bierlaire, and J. P. Thiran,

Behavioral Priors for Detection and Tracking of Pedestrians

in Video Sequences, International Journal of Computer Vision

(IJCV), Vol. 69, No. 2, 2006.

[15] M. Ben-Akiva and M. Bierlaire, Discrete Choice Methods

and Their Applications to Short-term Travel Decisions, In

Handbook of Transportation Science, pp.534, R.Hall(ed.),

Kluwer, 1999.

[16] Blei, D.M. and Lafferty, J.D. A Correlated Topic Model of

Science, Annals of Applied Statistics, Vol. 1, No.1, 2007.

[17] D. Blei et al., Latent dirichlet allocation, The Journal of Ma-

chine Learning Research, Vol. 3, 2003.

[18] Li, K. and Chen, M. and Kanade, T. and Miller, E.D. and

Weiss, L.E. and Campbell, P.G. Cell population tracking and

lineage construction with spatiotemporal context, Medical

Image Analysis, 2008.

[19] W. Wang et al., Single cell behavior in metastatic pri- mary

mammary tumors correlated with gene expression patterns re-

vealed by molecular profiling. Cancer Research, 62(21), 2002.

[20] X. Wang, K. Ma, G. Ng, and W. Grimson. Trajectory anal-

ysis and semantic region modeling using a nonparametric

Bayesian model. In CVPR, 2008.


