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Abstract In this paper, we propose a method for de-
tecting humans and vehicles in imagery taken from a
UAV. This is a challenging problem due to a limited

number of pixels on target, which makes it more dif-
ficult to distinguish objects from background clutter,
and results in much larger search space. We propose

a method for constraining the search based on a num-
ber of geometric constraints obtained from the meta-
data. Specifically, we obtain the orientation of ground

plane normal, the orientation of shadows cast by out
of plane objects in the scene, and the relationship be-
tween object heights and the size of their correspond-

ing shadows. We use the aforementioned information
in a geometry-based shadow, and ground-plane normal
blob detector, which provides an initial estimation for

locations of shadow casting out of plane (SCOOP) ob-
jects in the scene. These SCOOP candidate locations
are then classified as either human or clutter using a

combination of wavelet features and a Support Vec-
tor Machine. To detect vehicles, we similarly find po-
tential vehicle candidates by combining SCOOP and

inverted-SCOOP candidates and then classify them us-
ing wavelet features and SVM. Our method works on a
single frame, and unlike motion detection based meth-

ods, it bypasses the entire pipeline of registration, mo-
tion detection, and tracking. This method allows for
detection of stationary and slowly moving humans and
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vehicles while avoiding the search across the entire im-
age, allowing accurate and fast localization. We show
impressive results on sequences from VIVID and CLIF

datasets and provide comparative analysis.

Keywords human detection · vehicle detection ·
aerial surveillance · UAV · shadow · metadata

1 Introduction

Every year Unmanned Aerial Vehicles, or UAVs, are be-

coming more widespread in both military and civilian
applications, including surveillance, rescue, and recon-
naissance [36] [37] [26]. In the course of these operations

video data containing useful information is collected.
This information may be useful during the mission it-
self or may become useful at a later date. The ever-

increasing number of UAV missions equates to a back-
log of data which becomes quite large; thus requiring
too many man-hours to analyze manually. This calls

for automated video analysis tools whose capabilities
include registration [40], object detection [16], tracking
[37] [41], classification [38], and scene and event analysis

[8] [17]. In this paper, we will focus on detecting pedes-
trians and vehicles in UAV imagery. This,however, is a
challenge. Problems include smaller object sizes, vary-

ing orientations, motion blur, and camera motion.
One straightforward approach to this problem, is

to apply a state-of-the-art static frame detection al-

gorithm such as [9] [10] [18] [21] [29]. This approach,
however, runs into the problem of small object size,
which may make it impossible to construct a meaning-

ful model. Methods that perform parts detection ex-
plicitly, such as [10] [21] [7] [34] [31], will not be able
to construct meaningful models for individual parts at

resolutions of just 24x14. Bag-of-feature methods, such
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Fig. 1 On the left, a frame from one of the sequences, below
it are examples of humans present in the frame. The humans
are only around 24x14 pixels in size and are difficult to distin-
guish from the background. On the right, gradients belong-
ing to shadow labelled using techniques from [39]. Gradients
belonging to humans and large parts of background were in-
correctly labelled as gradient belonging to shadow.

as [18], also have difficulty constructing models because
only a small number of interest points can be found.

The objects are so small that even holistic methods
such as [32] [9] [33] [2] will have issues with extracting
sufficient discriminative information. Another issue in-

troduced by the small object size is the need to process
a very large number of windows across an entire image.
This obviously increases processing time and generates

many false positives, especially if the object model is
not sufficiently discriminative. The above problems can
be further compounded by motion blur and varied ori-

entation of objects within the scene.

These issues of size, performance, and speed have
prompted researchers working specifically on object de-

tection in aerial video to limit their search space using
the following constraints: motion [3] [38] [37], feature
points [22], multi-modal techniques [28] [12], semantic

constraints [8] [37], metadata derived scale constraints
[4], and 3D reconstruction [36].

The authors of [38] assume that only moving ob-
jects are of interest and adopt a standard aerial surveil-

lance pipeline. The authors compensate for global cam-
era motion before detecting moving objects. They then
classify each moving object as either a person or a vehi-

cle using a combination of histograms of oriented gra-
dients (HOG) and SVM proposed in [9]. Motion con-
straint can be a problem in the case of human detection;

since people are viewed from far away their motion is
subtle and difficult for the system to pick up. Of course
if people are stationary, then the system cannot detect

them at all. For vehicles, motion constraint may not be
a reliable cue either since targeted vehicles can remain
stationary, for example at an intersection, for a long

time.

Rudol and Doherty use an infrared camera in [28]
to constrain the search for humans that are sitting or

prone. They first threshold the infrared imagery to iso-

late areas of human body heat then projected those

areas to a color camera. Then they applied a cascaded
ADABOOST classifier to those areas to detect humans.
Unfortunately, this process requires mounting two cam-

eras on the UAV;in this case,reliable detection of body
heat requires expensive high-quality infra red cameras.

Gaszczak et. al. also use an infrared camera in [12]
both for human detection and vehicle heat-signature
confirmation. Initial human detections were found in

the infrared camera using cascaded ADABOOST and
then refined using a generative shape model. Initial ve-
hicle detections on the other hand, were obtained in EO

imagery using cascaded ADABOOST and then verified
by region-growing of hot spots in the IR camera.

Cascaded ADABOOST is also applied to EO im-
agery by Breckon et. al. [4] to detect vehicles. The ini-
tial detections obtained were then refined by using the

height and field of view of the UAV to filter out detec-
tions which did not conform to proper vehicle sizes.

Skokalski, and Breckon suggest a framework for de-
tecting salient objects in color aerial imagery [30]. Given

an input frame they extracted nine feature images in-
cluding a contrast map of the meanshift image and vari-
ous normalized color channels. Next, they applied edge-

detection and gradient operators to each then combined
them using AND and OR operators. The contrast map
is weighted by the inverse of the probability of belong-

ing to the global color distribution of the image. While
the method shows impressive results without relying on
metadata, it requires color information for most of its

features. Conversely, in grey-scale imagery with non-
uniform background it would lose most of it’s discrim-
inative ability.

We propose a very different approach. In this pa-
per, we explore the idea of constraining the search by

using shadows cast by humans and vehicles as a form
of saliency. Objects themselves are small and lack dis-
tinguishing features making them difficult to detect.

However, if an object casts a shadow, it provides an
additional source of gradient information that can be
exploited. In addition, the relationship between the ob-

ject and its shadow serves as an additional que as to the
location of the object. This allows us to construct a de-
tection method that works on a single grayscale frame

obtained from an EO sensor, avoiding motion detection,
registration, and tracking.

Relying on shadows may seem like an overly strin-
gent requirement, however in the case of motion detec-
tion and tracking, the shadows would have to be ex-

plicitly processed anyways since their presence causes
a number of problems. It is difficult to localize humans
within moving blobs since their shadows are part of the

moving blobs. Shadows also make the blobs more simi-
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Fig. 2 Overall pipeline of our system. First, we use metadata to derive geometric constraints. Second, we find normal and
shadow blobs in the image. Third, we combine blobs using geometric constraints into SCOOP candidates. Fourth, we combine
blobs using geometric constraints into inverted SCOOP candidates. Fifth, we combine SCOOP and inverted SCOOP into
vehicle candidates. Finally, each SCOOP candidate we extract wavelet features and classify it as human or clutter; from every
vehicle candidate we extract wavelet features and classify it as human or clutter.

lar to each other making it more difficult for the tracker
to differentiate them when they overlap. See Figure 18

for examples of these failures. Hence, there is a lot of
work on detecting, and removing shadows from moving
objects in a surveillance scenario for both people [20]

[6] [1] [24], and vehicles [14] [19] [35] [15] [42] (See [25]
for a survey of these approaches). Our primary focus
is not to remove shadows from moving blobs, though

our method can be applicable, rather to use shadow for
human and vehicle detection in static imagery.

Our approach is to constrain the search by assuming
that humans are upright shadow casting objects and ve-
hicles are box-like shadow casting objects. We use low

level computer vision techniques based on a set of ge-
ometric scene constraints derived from the metadata
of the UAV platform. Specifically, we use the projec-
tion of the ground-plane normal to find blobs normal

to the ground-plane. These blobs give us an initial set of
potential out-of-plane object candidates. Similarly, we
use the projection of shadow orientation to obtain a set

of potential shadow candidates. We then obtain a re-
fined set of what we call Shadow Casting Out Of Plane
(SCOOP) candidates. SCOOP candidates are pairs of

shadow and normal blobs that are of correct geometric
configuration and relative size. Once the refined set of
candidates has been obtained, we extract wavelet fea-

tures from each SCOOP candidate and classify it as
either human or clutter using a Support Vector Ma-
chine (SVM). In addition to obtaining regular SCOOP

candidates we can also obtain inverted SCOOP candi-
dates, where we reverse assumed directions of normal
and shadow. We then combine SCOOP and inverted

SCOOP candidates into vehicle candidates, which we
then classify as vehicle or clutter.

In absence of metadata, a single image shadow de-
tector (such as [11] [39] [23]) can be used to find the
shadows in the image. For this purpose we extend the

geometry detection method to work as a novel shadow
detection method described in section 6. We found that
standard shadow detection methods such as [39] and

[11] perform poorly on real data (see Figure 1). These

methods are based on obtaining illumination invariant,
or shadow-less images, and comparing edges between

these and original images. Since humans and their shad-
ows look similar in our data, the shadow-less images
would remove parts of shadows, humans, and strong

background gradients.

The main contribution of this paper is a novel method
for detecting shadows in UAV imagery, and using those
shadows to obtain candidate SCOOP objects to aid the

detection of humans and vehicles. Our method has the
following assumptions and operational requirements.

First, we assume that objects in the scene are cast-
ing a shadow. If the weather prevents the casting of

shadow, then human detection can still proceed, where
only the blobs related to the ground-plane normal are
used as a constraint at a cost of degraded performance.

In the case of vehicles, the detection can still proceed as
if the shadow was there, but will also result in degraded
performance.

Second, we assume that humans are sufficiently up-

right for their shadow to be visible. The human can be
standing, or sitting down, but not lying on the ground.

Third, we use metadata associated with the UAV
imagery in order to determine the shadow orientation

in the world. We also use it to find the orientation of
ground-plane normal and shadow in the imagery, as well
as their relative size. Errors in the metadata result in in-

correct orientations in the image. However, the SCOOP
detection method has approximately +10◦−10◦ robust-
ness to errors in orientation. If metadata is not available

we provide a method to determine the shadow orien-
tation automatically assuming that the ground-plane
normal is fixed.

Fourth, we make a planar scene assumption when

we determine the orientation of the shadow in the world
and when we project it into the image. When the scene
is not planar, this assumption has an effect equiva-

lent to incorrect metadata, where the shadow’s orien-
tation and/or length in the image is not correct. How-
ever, since our method is resistant to orientation errors,

its performance will degrade gradually as the surface
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Fig. 3 (a) Orthorectified frame from one of the sequences.
The vertical direction is aligned with the world north direc-
tion N. The sun vector S is defined by azimuth angle α be-
tween the north vector and the vector pointing to the sun.
(b) is the original frame showing the projected sun vector
S′, the projected normal vector z′, and the ratio between the
projected normal and shadow lengths 2.284.

roughness increases. Note that if a Digital Elevation

Map (DEM) is available, we do not have to make this
assumption. Rather, we can explicitly compute different
shadow orientations for different surfaces in the scene

and regions of the image. The automated orientation
detection method requires two shadow casting objects
to be present on a plane in order to find the correct

shadow orientation for that plane.

2 Ground-Plane Normal and Shadow
Constraints

In this section we describe how metadata of the UAV
can be used to define a set of constraints in the world,

as well as how we can project those constraints into the
image space.

2.1 Metadata

The imagery obtained from the UAV has the following
metadata associated with most of the frames. It has

a set of aircraft parameters latitude, longitude, altitude,
which define the position of the aircraft in the world, as
well as pitch, yaw, roll which define the orientation of

the aircraft within the world. Metadata also contains
a set of camera parameters scan, elevation, and twist
which define the rotation of the camera with respect to

the aircraft, as well as focal length, and time. We use
this information to derive a set of world constraints and
then project them into the original image.

2.2 World Constraints

The shadow is generally considered to be a nuisance in

object detection and surveillance scenarios. However,

in the case of aerial human and vehicle detection, the

shadow information augments the lack of visual infor-
mation from the object, especially in the cases when
the aerial camera is almost directly overhead. For hu-

man detection we define three world constraints:

– The person is standing upright.

– The person is casting a shadow.
– There is a geometric relationship between person’s

height and the length of their shadow (see Figure

4).

For vehicle detection, the constraints are:

– The vehicle is a box-like object.
– There is a geometric relationship between the bound-

aries of the vehicle and the boundaries of its shadow.

Given the latitude, longitude, and time of day, we

use the algorithm described in [27] to obtain the posi-
tion of the sun relative to the observer on the ground.
It is defined by the azimuth angle α (from the north

direction) and the zenith angle γ (from the vertical di-
rection). Assuming that the height of the person in the
world is k we find the length of the shadow as

l =
k

tan(γ − π/2)
, (1)

where γ is the zenith angle of the sun. Using the az-
imuth angle α we find the groundplane projection of
the vector pointing to the sun and scale it with the

length of the shadow S = ⟨l cos(α), l sin(α), 0⟩.

2.3 Image Constraints

Before we can use our world constraints for human de-

tection, we have to transform them from the world coor-
dinates to the image coordinates. To do this we use the
metadata to obtain the projective homography trans-

formation that relates image coordinates to the ground
plane coordinates. For an excellent review of the con-
cepts used in this section see [13].

We start by converting the spherical latitude and
longitude coordinates of the aircraft to the planar Uni-
versal Transverse Mercator coordinates of our world

Xw = east and and Yw = north. Next, we construct
a sensor model that transforms any image point p′ =
(xi, yi) to the corresponding world point p = (Xw, Yw, Zw).

We do this by constructing the following sensor trans-
form

Π1 = T a
ZwT

e
XwT

n
Y wR

y
ZwR

p
XwR

r
Y wR

s
ZaR

e
XaR

t
Y a. (2)

Matrices T a
Zw, T

e
Xw, and Tn

Y w are translations for air-
craft position in the world: altitude, east, and north re-

spectively. Matrices Ry
Zw, R

p
Xw, and R

r
Y w are rotations
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Fig. 4 On the left, the sensor model Π1 maps points in camera coordinates into world coordinates (since the transformation
between image and camera coordinates is trivial we do not show it in the image).X corresponds to East direction, Y to North,
Z to vertical direction. Vector S is pointing from an observer towards the sun along the ground. It is defined in terms of α -
azimuth angle between northern direction and the sun. Zenith angle γ is between vertical direction and the sun. The height
of a human is k and the length of the shadow is l. We place the image plane into the world, and raytrace through it to find
the world coordinates of the image points (we project from the image plane to the ground plane). We compute a homography
H1 between image points and their corresponding world coordinates on groundplane. Right, illustrates how we obtain the
projection of the groundplane normal in the original image. Using a lowered sensor model Π2 we obtain another homography
H2, which maps points in camera coordinates to a plane above the ground plane. Mapping a world point pc1 using H1, and
H2, gives two image points p′

c1 and p′
c2. Vector from p′

c1 to p′
c2 is the projection of the normal vector.

for the aircraft: yaw, pitch and roll respectively. Ma-
trices Rs

Za, R
e
Xa and Rt

Y a are rotation transforms for
camera: scan, elevation, and tilt, respectively.

We transform 2D image coordinates p′ = (xi, yi)

into 3D camera coordinates p̂′ = (xi, yi,−f), where f
is the focal length of the camera. Next, we apply the
sensor transform from equation 2 and raytrace to the

ground plane (see Figure 4 (a))

p = RayTrace(Π1p̂
′). (3)

Ray tracing requires geometric information about
the environment, such as the world height at each point.
This information can be obtained from the digital ele-

vation map of the area - DEM. In our case, we assume
the scene to be planar and project the points to the
ground plane at zero altitude Zw = 0.

For any set of image points p′ = (xi, yi), ray trac-

ing gives a corresponding set of ground plane points
p = (Xw, Yw, 0). Since we are assuming that only one
plane exists in the scene, we only need correspondences

of four image corners. We then compute a homography,
H1, between the two sets of points, such that p = H1p

′.
Homography, H1, will orthorectify the original frame

and align it with the North Direction (see Figure 3 (a)).
Orthorectification removes perspective distortion from
the image and allows for the measurement of world an-

gles in the image. We use the inverse of the homography,

H−1
1 , to project the shadow vector defined in world co-

ordinates into the image coordinates (see Figure 3 (b)).

S′ = SH−1
1 . (4)

Next, we obtain the projected ground plane normal (re-

fer to Figure 4 (b)). We generate a second sensor model,

Π2 = (T a
Zw − [I|k])T e

XwT
n
Y wR

y
ZwR

p
XwR

r
Y wR

s
ZaR

e
XaR

t
Y a,

(5)

where we lower the camera along the normal direction
Zw, by k, which is the assumed height of the person.

Using the above sensor model Π2, we obtain a sec-
ond homography H2 using the same process that was
used for obtaining H1. We now have two homographies:

H1 maps the points from the image to the ground plane,
and H2 maps the points from the image to a virtual
plane parallel to the ground plane that is exactly k units

above the ground plane. We select the center point of
the image p′

c1 = (xc, yc), and obtain its ground plane
coordinates pc1 = H1p

′
c. Then we map it back to the

original image using H2, p
′
c2 = H−1

2 pc. The projected

normal is then given by

Z′ = p′c2 − p′c1. (6)

We compute the ratio between the projected shadow
length and the projected height of the person as

η =
|S′|
|Z′|

. (7)
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Fig. 5 The pipeline of utilizing image constraints to obtain an initial set of human and normal blobs, by applying a series of
oriented filters to the original image.

3 Human Detection

Now that the world constraints have been projected
into the image, we can avoid searching over the entire

frame and instead search the space of potential object
candidates. We define the search space as a set of pairs
of blobs oriented in the direction of shadow and di-

rection of normal. These combinations of normal and
shadow blobs represent a set of shadow casting out of
plane (SCOOP) candidates which can belong to hu-

mans, vehicles, or background. In the case of human
detection, a single SCOOP candidate makes for a suffi-
cient human candidate. Since vehicles are more complex

objects, we have to use the combination of a SCOOP
and an inverted SCOOP in order to obtain a vehicle
candidate.

3.1 Detecting Shadow and Normal Blobs

The first step of human detection is to detect blobs that
potentially belong to out of plane objects, and blobs

belonging to shadows. To do so, we use the image pro-
jection of the world constraints derived in the previ-
ous section: the projected orientation of the normal to

the ground plane Z′, the projected orientation of the
shadow S′, and the ratio between the projected height
of the person, and projected shadow length η (see Fig-

ure 5). This image contains gradients oriented in many
different directions, therefore we employ directed fil-
ters to enhance gradients oriented in the directions of

interest while suppressing gradients oriented in other
directions.

Given a frame I, we compute gradients oriented in

the direction of the shadow by applying a 2D Gaussian
derivative filter,

G(x, y) = cos(θ)2xe−
x2+y2

σ2 + sin(θ)2ye−
x2+y2

σ2 , (8)

and take the absolute values of its responses. In the

above equation θ is the angle between the vector of

interest and the x axis. To further suppress gradients

not oriented in the direction of the shadow vector we
perform structural erosion along a line in the direction
of the shadow orientation

|∇IS′ | = erode(∇I,S′). (9)

We obtain |∇IZ′ | using the same process. Next, we

smooth the resulting gradient images with an ellipti-
cal averaging filter whose major axis is oriented along
the direction of interest:

IBS′ = |∇IS′ | ∗GS′ , (10)

where BS′ is an elliptical averaging filter, whose major

axis is oriented along the shadow vector direction. This
process fills in the blobs. We obtain IB

Z′ usingGZ′ . Next,
we apply an adaptive threshold to each pixel to obtain

shadow and normal blob maps

MS′ =

{
1 if IB

S′ > t ·mean(IG
S′)

0 otherwise.
(11)

See Figure 6 for resulting blob maps overlaid on the
original image. We obtain MZ′ using the same method.

From the binary blob maps we obtain a set of shadow
and object blobs using connected components. Notice
from Figure 6 that a number of false shadow and object

blobs were initially detected. In the next section, we de-
scribe how to remove those false positives by combining
normal and shadow blobs into SCOOP candidates.

3.2 Exploiting Object Shadow Relationship to
generate SCOOP candidates

The initial application of the constraints does not take
into account the relationship between the normal blobs

and their shadows, hence generating many false posi-
tives. Our next step is to relate the shadow and nor-
mal blob maps. We obtain a set of SCOOP candidates

and remove shadow-normal configurations that do not
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Fig. 6 On the left, a shadow blob map MS′ (shown in red)
and normal blob map MZ′ (shown in green) overlayed on the
original image. There are false detections at the bottom of
the image. On the right, refined blob maps after each normal
blob was related to its corresponding shadow blob. The false
detection at the bottom are now gone.

satisfy the image geometry which we derived from the
metadata. We search every shadow blob, trying to pair

it up with a potential object blob. If the shadow blob
fails to match any object blobs, it is removed. If an ob-
ject blob never gets assigned to a shadow blob it is also

removed.

Given a shadow blob, M i
S′ , we search in an area

around the blob for a potential object blob M j
Z′ . We

allow for a single shadow blob to be assigned to multiple

normal blobs, but not vice versa since the second case is
rarely observed. The search area is determined by major
axis lengths of M i

S′ and M
j
Z′ . For any object candidate

blob, M j
Z′ that falls within the search area, we ensure

that it is in the proper geometric configuration relative
to the shadow blob (see Figure 7) as follows. We make

two line segments, li, and lj , each defined by two points
as follows li = {ci, ci + QS′} and lj = {cj , cj − QZ′}.
Where ci and cj are centroids of shadow and object

candidate blobs, respectively, and Q is a large number.
If the two line segments intersect, then the two blobs
exhibit correct object shadow configuration.

We also check to see if the lengths of the major axes
of M i

S′ and M j
Z′ conform to the projected ratio con-

straint η. If they do then we accept the configuration.

Depending on the orientation of the camera in the
scene, it is possible for the person and shadow gradients
to have the same orientation. In that case the shadow

and normal blobs will merge. The amount of merging
depends on the similarity of orientations S′ and Z′.
Hence, we accept the shadow object pair if

M i
S′ ∩M j

Z′

M i
S′ ∪M j

Z′

> q(1− abs(S′ · Z′)), (12)

where q was determined empirically. For these cases,
the centroid of the object candidate blob is not on the
person. Therefore, for these cases we perform localiza-

tion where we obtain a new centroid by moving along

(b)(a)

Fig. 7 (a) A valid configuration of normal and shadow blobs
results in an intersection of the rays and is kept as a SCOOP
candidate. (b) An invalid configuration of blobs results in the
divergence of the rays and is removed from the set of SCOOP
candidates.

the shadow vector S′ as follows

c̃ = c+
m

2
(1− 1

η
)

S′

∥S′∥
, (13)

where m is the length of the major axis of shadow blob
M i

S′ .

3.3 Obtaining Human Candidates

The outlined procedures generate the final set of SCOOP

candidates KZ′

S′ = {kZ′

S′1, ...,k
Z′

S′n}, where each candi-

date kZ′

S′ = {M i
S′ ,M

j
Z′} is a pair of normal and shadow

blobs that were detected at normal orientation Z′ and
shadow orientation S′. Since a single SCOOP candidate
is sufficient to capture a human in low resolution aerial

video, KZ′

S′ is the set of human candidates where we
classify each normal blob MZ′ as human or clutter.

3.4 Classifying Human Candidates

The final step of human detection is to classify each
SCOOP candidate kZ′

S′ as either human or clutter. For
this purpose, we compute the centroid of the normal

blob M i
Z′ of each remaining SCOOP candidate, and

extract a w × h chip around that centroid. We then
extract wavelet features from each chip and apply a

Support Vector Machine (SVM) classifier (see Figure
8). We use the Daubechies 2 wavelet filter, where the
low-pass (L) and high-pass (H) filters for a 1-D signal

are defined as

ϕ1(x) =
√
2

3∑
k=0

ckϕ0(2x− k), (14)

ψ1(x) =
√
2

3∑
k=0

(−1)k+1c3−kϕ0(2x− k), (15)

where ϕ0 is either row or column of the original im-

age and c = (
(1+

√
(3))

4
√

(2)
,
(3+

√
(3))

4
√

(2)
,
(3−

√
(3))

4
√

(2)
,
(1−

√
(3))

4
√

(2)
),
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Fig. 8 Object candidate classification pipeline. Four wavelet
filters (LL, LH, HL, HH) produce scaled version of original
image as well as gradient like features in horizontal vertical
and diagonal directions. The resulting outputs are vectorized,
normalized, and concatenated to form a feature vector. These
feature vectors are classified using SVM.

are the Daubechies 2 wavelet coefficients. In the case
2D signals, such as images, the 1D filters are first ap-

plied along x, and then y directions. This produces four
outputs: LL, LH, HL, HH. Where LL is a scaled ver-
sion of the original image and LH, HL, and HH, corre-

spond to gradient like features along horizontal, vertical
and diagonal directions. We used only one level, since
adding more did not improve the performance. We vec-

torize the resulting outputs, normalize their values to
be in the [0, 1] range, and concatenate them into a sin-
gle feature-vector. We train a Support Vector Machine

[5] on the resulting feature set using the RBF kernel.
We use 2099 positive and 2217 negative examples w×h
pixels in size.

Note that if focal length data is available, then the
chip size could be selected automatically based on the
magnitude and orientation of the projected normal |Z′|.
Additionally, if perspective distortion in the imagery is
fairly strong, we would have to assume different sizes of
humans and shadows for different regions of the image,

which would require a minor change in the geometric
part of the method. The change would include comput-
ing multiple shadow and normal vector magnitudes for

different regions of the image. Since there is little per-
spective distortion in VIVID, no drastic zoom changes
within a video, and the focal length information pro-

vided is not correct, we kept w × h constant over the
entire video. We selected w × h to be 24× 14 equal to
the size of images in the training set.

4 Vehicle Detection

Since vehicles are larger, and more complex objects

than humans (at typical aerial surveillance resolutions),
a single SCOOP candidate is too simple to serve as
a vehicle candidate. While the vehicle does generate

a SCOOP (see Figure 9 (b)), the normal blob of the

(a) (b) (c) (d)

Fig. 9 (a) All shadow and normal blobs obtained using
method described in section 3.1. (b) SCOOP candidate de-
tected using the method described in section 3.2 at nor-
mal orientation Z′ and shadow orientation S′ . (c) inverted
SCOOP candidate that was detected at normal orientation
−Z′ and shadow orientation −S′. (d) A car candidate assem-
bled from a SCOOP and an inverted-SCOOP. candidates.

SCOOP (shown in green) captures only a small part
of the vehicle without giving a clear idea of the size of
the vehicle or the location of its centroid. This makes it

difficult to localize the vehicle for actual classification.
Additionally, if our goal is to minimize the number of
classifications that we want to perform, then treating

every SCOOP candidate as a potential vehicle is less
than optimal since SCOOPs can be generated by hu-
mans, poles, or simply background gradients. As can

be seen in Figure 9 (a), a vehicle will have at least two
shadow and two normal blobs associated with it. There-
fore, rather than using a single SCOOP (one shadow

and one normal blob) in order to obtain vehicle candi-
dates we fuse two shadow and two normal blobs in the
following manner.

4.1 Obtaining Vehicle Candidates

In addition to obtaining a set of SCOOP candidates
KZ′

S′ as described in section 3.2, we use the exact same
process in obtaining a set of inverse-SCOOP candidates

K−Z′

−S′ , where we negate the direction of the normal Z′

and the direction of the shadow S′. Next, we combine
the regular and inverted-SCOOP candidates.

For every scoop candidate kZ′

S′ = {M i
S′ ,M

j
Z′}, we

search for the closest inverted SCOOP candidate k−Z′

−S′ =

{Mk
−S′ ,Mk

−Z′}. The distance between the candidates is
defined as the Euclidian distance between the points
e1 and e2 (see Figure 10 (a)). Where e1 is a point on

shadow blobM i
S′ , of SCOOP candidate kZ′

S′ that is clos-
est to the corresponding normal blob M j

Z′ , and e2 is a

point on shadow blob Mk
−S′ of inverse-SCOOP candi-

date k−Z′

−S′ , that is furthest from its corresponding nor-
mal blob M l

−Z′ . Since we want the SCOOP candidates
to enclose the car, we impose an additional constraint

that the orientation of the vector between the centroids
of the shadow blobsM j

Z′ andMk
−S′ must be at least 30◦

different from the orientation of the shadow blobs. Since

this gives better localization and excludes a large part
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(a) (b)

1
e

2
e

Fig. 10 (a) The distance computation between the SCOOP
and inverted SCOOP candidates. The distance is computed
between points e1 and e2. (b) The orientation constraint be-
tween the SCOOP and inverted SCOOP candidates that must
be satisfied for their configuration to be considered a valid car
candidate.

of the shadow, a vehicle candidate is represented by a
bounding box that encompasses both the SCOOP and

the centroid of the shadow blob of the inverse SCOOP.
A single vehicle may have multiple SCOOP pairs

detected on it. Distractions like specular reflections or

decals can create multiple SCOOP and inverse-SCOOP
candidates for a single vehicle. Therefore, as a final pro-
cessing step we merge bounding boxes that have more

that 50% overlap given by the following formula

A ∩B
min(A,B)

, (16)

whereA andB are areas of two vehicle candidate bound-
ing boxes. Dividing by the minimum of the two areas
makes it easier to merge boxes. In cases where a small

bounding box is enclosed within a larger one, it will be
merged. We perform the merge procedure recursively
until no additional bounding boxes can be merged.

4.2 Classifying Vehicle Candidates

As with humans, the final stage of vehicle detection is
classifying each vehicle candidate as either vehicle or

clutter. Since vehicle candidates encompass the entire
object, we simply extract the region within the candi-
date’s bounding box and resize it to 40 × 40. Next we

extract Daubechies 2 wavelet coefficients and classify
them using SVM. The vehicle training set consisted of
1900 positive and 1889 negative examples. We included

vehicles at different orientations in the positive set.

5 Handling Multiple Scales

Scale information is required at two stages of our method.
First, it is needed at the candidate detection stage for
setting the parameters of the various image processing

masks from pipeline 5 as well as proximity settings in

Fig. 11 Car candidates for different orientations of the ve-
hicle. Shadow Casting Out Of Plane (SCOOP) object candi-
dates are green, while inverted Shadow Casting Out Of Plane
(invSCOOP) object candidates are blue.

the refinement stage. Second, it is needed at the clas-

sification stage for extracting chips of correct sizes. If
metadata is available, detailed, and accurate, then the
scale can be trivially extracted from it. If metadata is

not available, then different scales can be handled as
follows. First, we apply the candidate detector at an
assumed scale and obtain a set of candidates. The size

of the candidates obtained determines then determines
the scale for the classification stage. We perform this
process for several scales and then select the scale for

which the classifier gave maximum confidence. The in-
crements in scale of the candidate detection method can
be coarse, because as we show in figure 26, the candi-

date detector method is robust to error in scale from
0.5× to 2× of the original image.

6 Constraints without Metadata

Having all of the metadata provides a set of strict con-
straints for a variety of camera angles and times of day.
However, there may be cases when the metadata is ei-

ther unavailable or is incorrect. In such cases it is ac-
ceptable to sacrifice generality and computation time
to obtain a looser set of constraints that still perform

well. If we assume that humans are vertical in the im-
age and ignore the ratio between the size of humans
and their shadows, we can determine the orientation of

the shadow in the image by exploiting the relationship
between out of plane objects and their their shadows.

When SCOOP objects are present in the scene the

shadows they cast will be at similar orientations. There-
fore, SCOOP objects will be consistently detected in the
shadow orientation range of about −10◦ to +10◦ of the

actual orientation. If we assume that the scene is mostly
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Fig. 12 Method for finding optimal shadow orientation for
a given image in the absence of metadata. Top row shows hu-
man candidate responses obtained for different shadow orien-
tations. A human candidate is then described by a vector of
orientations for which it was detected and a binary overlap
vector. Optimal orientation θ̂ is the average of longest com-
mon consecutive non-overlapping subsequence of orientations
among all human candidates.

planar, then the orientation range will be consistent

across all SCOOP objects in the scene. We apply the
SCOOP detector at all orientations of the shadow, then
search for the longest range of orientations consistent

across multiple SCOOP objects. This corresponds to
the longest common consecutive subsequence (LCCS)
among orientation ranges of all potential SCOOP ob-

jects detected in the scene. Hence we need at least two
SCOOP objects on the plane. If the scene is not planar,
shadow orientation ranges for some SCOOP objects will

exhibit a shift. This shift will simply shorten the length
of the LCCS, though a reasonable orientation allow-
ing for SCOOP detection will still be found. Multiple

planes, each with drastically different orientations, will
correspond to multiple LCCSs which can be found if
two or more SCOOP objects are present on each plane.

The details of this method are as follows.

We quantize the search space of shadow angle θ be-
tween 0 and 2π in increments of d (we used π/36 in
our experiments). Keeping the normal orientation fixed,

and ignoring shadow-to-normal ratio, we find all hu-
man candidates in image I for every orientation θ using
techniques described in sections 3 and 3.2 (see Figure

12). We track the candidates across different θ. Sim-
ilar angles θ will detect the same human candidates.
Therefore, each human candidate Ci has a set Θi for

which it was detected, and a set Oi which is a binary
vector, where each element corresponds to whether the
shadow and human blobs overlapped. The set of orien-

tations for which it was detected due to overlap is Θo
i ,

and the set of orientations for which it was detected
without overlap is Θō

i (see Figure 12). We remove any

candidate which has been detected over less than p ori-
entations, since a human is always detected as a candi-
date if shadow and normal orientations are similar and

the resulting blobs overlap according to equation 12 (as

in 12 (b) & (f)). Here p depends on quantization; we

found that it should encompass at least 70◦.
We now find the optimal shadow orientation θ̂ by

treating each Θō
i as a sequence and then finding the

longest common consecutive subsequence β among all
Θō. We favor subsequences that are shared among the
most SCOOP candidates. Subsequence β must span at

least 20◦ but no more than 40◦. Finally, the optimal
orientation θ̂ = mean(β). If we cannot find such a sub-
sequence then there are either no shadows, or the ori-

entation of the shadow is the same as the orientation of
the normal, so we set θ̂ to our assumed normal. Figure
13 shows an example frame for which human candi-

dates were detected using the automatically estimated
shadow orientation. There is a 10◦ difference between
the estimated orientation and the orientation derived

from the metadata. This is the same frame as in Figure
6, qualitative examination of the shadow blobs indicates
that the estimated orientation is more accurate than the
one derived from the metadata, however the computa-

tion time of obtaining it is much larger. In practice, the
angle can be estimated in the initial frame and then
predicted in subsequent frames using a Kalman filter.

In order for clutter to affect the method, the clutter
has to adhere to two major constraints. First, the clut-
ter has to contain structures which are consistent with

shadow casting out of plane objects at orientations dif-
ferent from the true orientation that we are looking
for. Second, the orientation of the shadow component

of these structures would have to be consistent among
the different structures in order to allow for the LCCS
to be detected among them. If such structures do exist

in the image, then rather than requiring at least 2 true
shadow casting out of plane objects, we would require
N + 1 where N is the number of consistent confuser

structures in the image. Note that we do not require
the presence of humans in the scene, inanimate shadow
casting objects serve the same purpose. In figure 28 we

show the result of automated shadow orientation esti-
mation for the cluttered balloon data image. In panel
(a) we show SCOOP candidates detected for one of

the incorrect orientations, however more SCOOP can-
didates were detected around the correct orientation
shown in panel (b). The larger number of true con-

sistent SCOOP objects dominated the inconsistent po-
tential confusers, and allowed the method to find the
correct shadow orientation in the image.

7 Results

In this section we present both quantitative and qual-
itative results of human and vehicle detection on the

VIVID and CLIF datasets. These results are compared
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Fig. 13 Refined human candidate blobs for an automati-
cally estimated shadow orientation of 35◦ without metadata.
Corresponding metadata derived value of θ for this frame is
46.7◦. Blobs that were detected using metadata can be seen
in Fig. 6 (b).

against motion constrained detection, Harris corner con-
strained detection, and an unconstrained full frame search.

7.1 Human Detection

We evaluated our detection methods on three sequences

from the DARPA VIVID3 and two sequences from the
APHill dataset and compared the detections against
manually obtained groundtruth. The image sizes for the

two datasets are 640x480 and 720x480 respectively. The
table in Figure 15 shows the number of frames and the
number of people in each sequence for the VIVID 3

dataset. We removed the frames where people congre-
gated into groups.

We used the following evaluation criteriaRecall (True
detection rate) vs. False Positives Per Frame (FPPF).
Recall is defined as TP

TP+FN , where FN is number of

false negatives in the frame and TP is the number of
true positives. To evaluate the accuracy of the geometry-
based human candidate detector method, we require

the centroid of the object candidate blob to be within
w pixels of the centroid blob, where w is 15. We did not
use the PASCAL measure of 50% bounding box overlap,

since in our dataset the humans are much smaller and
make up a smaller percentage of the scene. In the IN-
RIA set introduced in [9], an individual human makes

up 6% of the image, in our case the human makes up
about 0.1%. Under these circumstances, small local-
ization errors result in a large area overlap difference.

Hence, the centroid distance measure is more meaning-
ful for aerial data.

Figure 14 compares ROC curves for the following

methods: our geometry based method with and without
the use of object-shadow relationship refinement and
centroid localization, our geometry method augmented

with temporal information, conventional full frame de-
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Fig. 14 SVM confidence ROC curves on VIVID3 sequences.
Our Geometry method based on classifying SCOOP candi-
dates is shown in red. Orange curves are for our geometry
based method without the use of object-shadow relationship
refinement or centroid localization.Magenta curves are for our
geometry based method augmented with temporal informa-
tion. A standard full frame detector (HOG) is shown in blue.
Green shows results obtained from classifying blobs obtained
through registration, motion detection, and tracking, similar
to [38]. Black curves are for our modified implementation of
[22] which uses Harris corner tracks.

Sequence1 Sequence2 Sequence3
Frames 1191 1006 823

Total People 4892 2000 3098

Fig. 15 This table provides details on the VIVID sequences
that were used for quantitative evaluation of the human de-
tection methods.

tection method (we used HOG detection binaries pro-
vided by the authors), and standard motion detection

pipeline of registration, detection, and tracking.

Figure 23 Qualitative detection results. Conventional
full frame detection is not only time consuming (our

MATLAB implementation takes several hours per 640x480
frame), but it also generates many false positives. By
contrast, preprocessing the image using the proposed

geometric constraints to obtain human candidates is
not only much faster (0.72 seconds per frame), but gives
far better results. Geometric constraints with the use of

shadow based refinement and centroid localization pro-
vide the best performance. However, even without these
additional steps the geometric constraint based only on

the projection of the normal still gives superior results
to full frame and motion constrained detection.

Motion based detection suffers from problems dis-
cussed in Section 1 and shown in Figure 18. Which is
why the green ROC curve in Figure 14 is very short.

We implemented a part of the method found in [22],
where instead of using the OT-Mach filter, we used
our wavelet SVM combination for classification. This

ROC curve is shown in black. We suspect that the poor
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Fig. 16 SVM confidence ROC curves for human detection on
APHill sequences. Our Geometry method based on classifying
SCOOP candidates is shown in red. A standard full frame
detector (HOG) is shown in blue.

Sequence1 Sequence2
Frames 285 331

Total People 419 772

Fig. 17 This table provides details on the APHill sequences
that were used for quantitative evaluation of the human de-
tection methods.

performance is due to the large number of initial can-
didates, since multiple corners are likely to occur on

man-made background objects, their shadows, and air-
field markings.

By contrast, when proper initialization and localiza-
tion is provided, temporal information is a convenient

way of improving performance. This is illustrated by
the magenta curve in Figure 14. In this case, detections
obtained by refined geometric constraints (red curve)

are tracked in a homography-constrained global coor-
dinate system. Objects that persisted for less than 5
frames are discarded. Classification is performed using

wavelets and SVM: if 20% of the track is classified as
human, then the entire track is labelled as human. The
above technique further suppresses false positives, how-

ever the maximum detection rate is slightly reduced
since we probably removed incidents of short human
tracks.

Similar conclusions can be drawn from the APHill

data, the ROC for which are shown in figure 16. The ge-
ometry based method achieves far fewer false positives
then than full frame detection.

7.2 Vehicle Detection

We performed quantitative evaluation of vehicle detec-

tion on the entire frame range of the same VIVID3

(a) (b) (c)

Fig. 18 Qualitative comparison of motion detection (top
row) and our geometry based method (bottom row). (a) Hu-
man is stationary and was not detected by the motion detec-
tor. (b) Moving blob includes shadow, the centroid of blob
is not on the person. (c) Two moving blobs were merged by
the tracker because of shadow overlap, centroid is not on ei-
ther person. By contrast our method correctly detected and
localized the human candidate (green).

sequences used in the quantitative evaluation of hu-
man detection, as well as the same sequences used in

the APHill evaluation. Figure 20 shows the number of
frames and vehicles contained within each sequence in
VIVID, while figure 22 shows the same for the APHill

dataset. In order to determine true detections, we used
the 33% bounding box overlap criteria from [16]. Fig-
ure 19 shows the Recall vs FPPF ROC curves of the

same 6 detection methods described in 7.1, with a few
slight differences specific to vehicle detection. In the
geometry method enhanced with temporal information

(the magenta curve), we removed tracks of lengths less
than ten. In the case of geometry method without using
the SCOOP concept (the orange curve), we represented

vehicle candidates as pairs of normal blobs instead of
classifying each blob individually. In the Harris corner
constrained method (the black curve), we did not track

and classify individual Harris corners. Because a single
vehicle will have multiple corners belonging to it, we
clustered the locations of the corners using MeanShift

then tracked and classified the resulting clusters.

At this resolution, the vehicles are much larger than

humans and have a sufficient amount of interesting visi-
ble features. Therefore, as can be seen in Figure 19, the
performance of all detection methods is much better

than in the human case. Another thing to note, is that
the relative performance of some of the methods is now
different. Full frame detection receives very large per-

formance gain, since the classifier can construct a good
object model at this resolution. The gains from con-
straining the search using SCOOP candidates is mod-

erate, though the speed advantage is still there.

Another drastic difference is the performance of mo-

tion detection based method (green curve). It is actu-
ally better than the geometry method without utilizing
temporal information (red curve). This is because the

camera observes the scene persistently allowing for a
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Fig. 19 SVM confidence ROC curves VIVID3 sequences.
Our Geometry method based on combining multiple SCOOP
candidates is shown in red. Orange curves are for our geome-
try based method without the use of object-shadow relation-
ship refinement or centroid localization.Magenta curves are
for our geometry based method augmented with temporal in-
formation. A standard full frame detector (HOG) is shown
in blue. Green shows results obtained from classifying blobs
obtained through registration, motion detection, and track-
ing, similar to [38]. Black curves are for classifying tracks of
clusters of Harris corners.

Sequence1 Sequence2 Sequence3
Frames 1812 1785 1813

Total Vehicles 1719 1742 2019

Fig. 20 This table provides the details for the 3 VIVID se-
quences used for quantitative vehicle detection evaluation

good background model to be constructed. Addition-
ally, unlike humans, the vehicles are always moving
fairly quickly in these sequences. This allows the back-

ground subtraction to detect them with ease. Another
issue is that unlike in the case of humans, the shadows
cast by the vehicle do not severely distort the motion

blob creating localization problems at the classification
stage and the ground-truth comparison stage.

Detection based on grouping of normal blobs with-

out utilizing the SCOOP concept (orange curves) is not
very meaningful. This is because it essentially repre-
sents the vehicle as two neighboring parallel gradients,

ignoring the box-like nature of the object.

Finally, representing shadow casting vehicles as clus-
ters of Harris corners is rather challenging, since mul-

tiple Harris corners are detected on the vehicle and its
shadow. These corners have to be clustered to estimate
the location of the vehicle. The relative location and

quantity of these corners differs with changes in ori-
entation of the vehicle, and corners from background
and neighboring objects can become part of the cluster

as the vehicle moves through the scene. This, of course,
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Fig. 21 SVM confidence ROC curves for vehicle detection on
APHill sequences. Our Geometry method based on classifying
SCOOP candidates is shown in red. A standard full frame
detector (HOG) is shown in blue.

Sequence1 Sequence2
Frames 285 331

Total Vehicles 336 849

Fig. 22 This table provides details on the APHill sequences
that were used for quantitative evaluation of the vehicle de-
tection methods.

causes localization problems, not unlike those of motion
detection in the human case.

Qualitative evaluation (see Figure 27) was performed
on segments of the CLIF 2007 dataset. Here the reso-
lution is smaller than in VIVID and there are more

confusers. In this case, full frame detection once again
starts to perform poorly and there is a clear gain from
using SCOOP candidates to constrain the search. In the

case of CLIF, the camera is very close to nadir, making
the normals very short and in the case of vehicles al-
most non existent. However, our method can still find

the candidates. Additionally, if the vehicle is oriented
with the orientation of the shadow, the actual presence
of the shadow is not even necessary to be able to de-

tect it as a candidate, since the primitive blobs will be
detected on the sides of the vehicle. Whether a vehi-
cle can be correctly detected as a candidate while it is

at a 45◦ angle relative to shadow’s orientation depends
on whether the resolution is high enough to be able to
detect the primitive shadow blobs on the corner of the

vehicle.

8 Conclusions

We proposed a novel method for detecting humans and
vehicles in aerial imagery. This method works on a sin-
gle image and is is based on constraining the search

space of the image by detecting Shadow Casting Out Of
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Plane (SCOOP) object candidates. Our method takes

advantage of the metadata information provided by the
UAV platform to derive a set of geometric constraints,
and to project them into the imagery. In cases where

metadata is not available, we proposed a method for
estimating the constraints directly from image data.
The constraints were then used to obtain candidate

out-of-plane objects which were then classified as ei-
ther human or non-human. For vehicles we combined
multiple SCOOP candidates to obtain a vehicle candi-

date. In the case of humans, we evaluated the method
on challenging data from the VIVID 3&2 as well as
APHill datasets, and obtained results superior to both

full frame search, motion constrained detection, and
Harris track constrained detection. In the case of vehicle
detection, we performed evaluation on the VIVID3 and

CLIF datasets obtaining superior results. The purpose
of the method is to augment the performance of any full
frame classifier but could also be used for shadow detec-
tion and removal in the case of background subtraction

based surveillance.
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Fig. 23 Qualitative detection results on VIVID 3, VIVID 2 and some of our own data. Columns labelled (Full Frame) show
the result of full frame search (HOG) applied to entire frame (human detections are shown in red). Columns labelled (Geom
Constrained) show the results of our geometry constraint based method. Human candidates that were discarded by the wavelet
classifier as clutter are shown in magenta, candidates that were classified as human are shown in black.
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Fig. 24 Metadata derived geometric constraints for images from the CLIF 2007 dataset (a), and the VIVID dataset (b).
Yellow arrow, is the vector S′ pointing towards the sun. Blue arrow is a vector pointing in the direction of the shadow (reverse
of sun direction). Green arrow is the vector Z′ pointing in the direction of the normal. The shadow to normal ratio is shown
as red text. Note that in the first image the camera is close to NADIR, hence the shadow to normal ratio is very high.

(a) (b) (c) (d)

Fig. 25 The candidate refinement process. (a) All of the shadow and normal blobs that were obtained using the method
described in Section 3.1. (b) The set KZ′

S′ of refined SCOOP candidates. Note that a lot nonsense shadow and normal blobs

(circled in black) were removed from areas of strong gradient. (c) The set K−Z′

−S′ of refined inverse scoop blobs. Finally, (d)
show vehicle candidates obtained by combining SCOOP and inverse SCOOP.

2x 1.5x 1x 0.67x

0.5x 0.44x 0.4x 0.33x

Fig. 26 Human and car candidates detected at different image scales. Green blobs are normal blobs associated with SCOOP
candidates, textclorblueblue blobs are normal blobs associated with invSCOOP candidates. We used the same settings at all
stages of the candidate detection method, however we resized the image prior to the application of the processing pipeline by
the amount shown at the bottom of each image, and then resized the results to the same size for display purposes.
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(a) (b)

Fig. 27 (a) shows vehicle detection results for geometrically constrained method on the CLIF 2007 dataset. Candidates that
were classified as vehicles are shown in blue, candidates that were discarded by the classifier are shown in magenta. (b) Show
results for full frame detection in red. Full frame detection has generated a lot more false positives. Note that there are two
vehicles that our method misses because their shadows are obscured by the shadow cast by the bridge full frame detector
misses only one of those vehicles.

(a) (b)

Fig. 28 Refined SCOOP detections output by automated shadow orientation estimation method for (a): one of the incorrect
sun directions which were discarded by our method, and (b): the final sun direction which was selected by our method. Green
blobs belong to the normal blobs, red blobs belong to the shadow blobs. The yellow arrow indicates the direction of the sun
for which the SCOOPs were detected.
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