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Abstract

Feature selection and extraction is a key operation in video analysis for achieving higher
level of abstraction. In this report, we introduce a general framework to extract a new
spatiotemporal feature that represents the directions in which a video is regular, i.e. the
pixel appearances change the least. Explicit modeling of these directions is very useful and
desired by many applications. We propose to model the directions of regular variations with
a 3D vector field, which is referred to as SPatiotemporal REgularity Flow (SPREF). SPREF
vectors are designed to have three cross-sectional parallel components Fx, Fy, and Ft for con-
venient use in different applications. They are estimated using all the frames simultaneously
by minimizing an energy functional formulated according to its definition. In this report, we
first introduce translational SPREF (T-SPREF) and then extend our framework to affine
SPREF (A-SPREF). Then we demonstrate the use of SPREF in a few applications, includ-
ing object removal, video inpainting, and video compression. The promising experimental
results prove the usefulness and versatility of this new framework.

1 Introduction

An important task of low level video analysis is to extract useful information from a video se-
quence. The purpose of the extraction is to convert the raw appearance values into meaningful
features in order to achieve higher level of abstraction. The choice of features in this process
depends on the nature of the problem at hand. In image and video processing, tasks such as
motion analysis, compression, and video inpainting usually require extracting the spatiotemporal
features of the data [1–3]. On the other hand, for other problems, such as key frame extraction,
scene segmentation, and database queries, even a simple histogram may sufficiently represent the
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data. Hence, the complexity of the features may range from simple color histograms, to eigen-
values and eigenvectors, optical flow vectors, wavelet coefficients, and so on, depending on the
complexity of the problem.

The regularity direction of a video is an important feature that can be useful in many video
processing applications. A video is determined to be regular along the directions, in which pixel
intensities change the least [4]. These directions depend on both the type of the motion and the
spatial structure of the scene. There is quite much previous work on spatiotemporal analysis of
image sequences in video analysis [5–7]. A large body of those works focused on motion analysis
in the spatiotemporal space. For instance, Heeger [8] proposed to estimate optical flow by using
Gabor filter-based spatiotemporal energy models to deal with the aperture problem [9]. Later,
Simoncelli and Adelson [10] revealed the equivalence of the filter-based spatiotemporal energy
models and the gradient based methods [11,12] for computing optical flow under some conditions.
They also proposed to compute probability distributions of optical flow using spatiotemporal
filters. Adelson and Bergen [13] started another research direction by showing that the edges
of objects moving in time create 3D surfaces. Many of the studies that followed used this fact,
where the edge maps of the images were first computed, contours from them were extracted in
each frame, and then the spatiotemporal surfaces that these contours swept were analyzed [14,15].
Allmen and Dyer [16] fitted quadratical patches to every point on the surface, and computed the
optical flow through this parameterization. Peng and Medioni [17] took spatiotemporal slices
of the data at each edge point, then searched for paths on these slices to find the direction of
motion at that point. Baker and Colles [18] developed a structure from motion framework using
the edges in a stereo image sequence. They fused the epipolar constraints with these points to
compute the 3D structure of the scene. However, these point based methods are sensitive to noise
and edges.

Due to the problems with edge detection and the increasing complexity of video sequences,
the more recent studies started using spatiotemporal tensors for particular applications. Ngo
et al. [19] used horizontal (xt) and vertical (yt) slices from the sequences to analyze the camera
motion. They used spatial tensors to find the patterns on each slice, and then computed a
histogram of these tensors to determine the motion type of the camera, i.e., pan/tilt, zoom,
static, etc. Laptev and Lindeberg [20] computed the spatiotemporal tensors of the data to find
the interesting points in time, where the spatiotemporal data changes significantly. They used
this approach successfully in event detection and classification. Niyogi and Adelson [21] used
horizontal spatiotemporal slices in gait detection. They searched for patterns of periodicity in
these slices that can only be caused by moving persons. These applications have demonstrated
the usefulness of spatiotemporal features in video processing. However, these spatiotemporal
features as well as the extraction methods are specific for those applications and hence short of
generality. It is difficult to apply them for other applications.

In this report, we propose a systematic approach for finding a new spatiotemporal feature, the
local regular directions, along which a spatiotemporal region is regular, i.e. the pixel appearances
vary the least. A good representation of the spatiotemporal regularity of a video can be useful
in several areas. For example, object removal can be performed by removing the unwanted
pixels along the regularity directions. Similarly, the target object can be easily tracked over a
video if the regularity directions are known. In video inpainting, where the goal is of filling the
spatiotemporal holes in a video without disturbing its temporal regularity, explicit modeling of
this regularity allows us to inpaint the videos conveniently. Regularity flow can also be used to
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improve the wavelet video compression [3,22,23]. If a video is compressed along the directions, in
which its entropy is minimum, the rate of compression increases. As we will present later, since
the overhead of storing the regularity flow is smaller than the gain in compression, it is quite
suitable for this application.

The proposed approach for regularity flow estimation does not rely on edge detection, hence
its success does not depend on the presence of strong edges in the scene. Instead it analyzes the
whole region, and tries to find the best directions that model the overall regularity of the region.
Even when the local gradient of a pixel is not significant, the global analysis of the region assigns
a well-defined direction to it. In our work, the directions of regularity are modeled with a 3D
vector field, called the SPatiotemporal REgularity Flow (SPREF) field. The strength of SPREF
lies in treating the data not as a sequence of 2D images but as a 3D volume, and processing
all of its information simultaneously. SPREF is designed to have three cross-sectional parallel
components in order to handle the regularities that depend on the motion and the scene structure,
which provides much flexibility to the applications.

In this report, we first introduce the translational SPREF (T-SPREF) with much simplified
computation. T-SPREF gives good estimation results when the directions of regularity of the
spatiotemporal region is a function of the flow propagation axis. In other words, when the motion
is translational, or when all the edges in the scene extend along the same direction in the absence
of motion, T-SPREF performs well. However, the precision of the translational flow model goes
down when the directions of regularity depend on multiple axes. This is the case, for example,
when the motion is zooming in/out or rotation, where the true flow is not only a function of time,
but also a function of spatial location. Similarly, when two edges extend in different directions
along the x or y axes, T-SPREF cannot find the correct directions of spatial regularity. In order
to deal with such cases, we introduce the affine SPREF (A-SPREF) model. The components of
A-SPREF still propagate along one major axis, respectively. However, each component is also a
function of the other axes.

The organization of the rest of the report is as follows. We present the framework and
mathematical formulation of the SPREF in Section 2. The two types of SPREF, T-SPREF
and A-SPREF, are proposed. In Section 3, the relationship between SPREF and optical flow is
discussed. Next in Section 4, we demonstrate the applications where SPREF can be used, object
removal, video inpainting and video compression. We finally conclude with a discussion of the
SPREF framework in Section 5.

2 The Spatiotemporal Regularity Flow (SPREF)

SPREF (F) is a 3D vector field that shows the directions, along which an intensity I in a
spatiotemporal region Ω is regular, i.e., the pixel intensities in the region change the least. The
condition that the intensity should vary regularly in the flow direction can also be perceived as a
requirement to follow the directions, in which the sum of directional gradients is minimum. This
allows us to write the general flow energy function, for F as

E(F) =

∫

Ω

∣∣∣∣
∂(I ⋆ H)(x, y, t)

∂F(x, y, t)

∣∣∣∣
2

dxdydt, (1)
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where H is a regularizing filter, such as a Gaussian.

The particular definition of SPREF F depends on the flow model that is used. In this section,
we will introduce two types of SPREFs based on two different flow models: translational (T-
SPREF) and affine (A-SPREF). In the T-SPREF model, we choose one of the main coordinate
axes (x, y or t) to be the axis of flow propagation for simplicity. The magnitude of the flow
component along the propagation axis is taken as 1. The magnitudes of the remaining compo-
nents are determined by minimizing the flow energy function (1) according to the flow models,
which is only relevant to the propagation axis. Thus, the components of the SPREF along each
propagation direction are translational. The A-SPREF can be considered as a general extension
of the T-SPREF model, which also propagates along one major axis. However, each component
of the A-SPREF is a function of other axes as well. Therefore, the affine motion and/or complex
structure can be captured.

2.1 Translational (T-) SPREF

In the T-SPREF model, the flows are approximated by block translations orthogonal to the
directions of flow propagation. This results in planar (cross-sectional) parallelism in the SPREF,
which is defined as all the vectors on a plane being uniform (equal in magnitude and direction).
In our framework, a cross-sectional parallel flow field consists of the following three components:
xy-parallel (Ft), xt-parallel (Fy), and yt-parallel (Fx). In an xy-parallel flow, the vectors on the
xy plane of the flow field for a particular t are cross-sectional parallel. The planar parallelisms
are similarly defined for the xt and yt-parallelism, where the flow propagation axes are x and
y respectively. Modeling of SPREF using three cross-sectional parallel components is motivated
by the requirement of different applications. For example, in video compression, wavelet basis
can be warped along the flow directions to exploit the spatiotemporal redundancy in the video.
Depending on the video, this parallelism can be xy-parallel, xt-parallel or yt-parallel. Parallelism
is required to force the warped wavelet basis to be orthogonal. In addition, having three separate
components provides more flexibility to the scheme. The physical meaning of each component
can be easily exploited. For example, a moving object can be efficiently removed from a video
by using only the xy-parallel flow, which describes the motion regularity of the video. Similarly
in video inpainting, if the missing part undergoes global motion, the spatiotemporal hole can be
completed by using only the xy-parallel flow, which can greatly simplify the inpainting process.

Since the xy-parallel flow propagates in the temporal axis, it models the regularity that
depends on the motion in a spatiotemporal region Ω. The other two flow types, xt-parallel and
yt-parallel, can model the temporal regularity to some extent but they can also model the spatial
regularity of Ω when there is no motion. If the motion in Ω is global, its directions of regularity can
be modeled by a single xy-parallel SPREF. However, if there are different layers of motion, then
Ω needs to be segmented into smaller spatiotemporal regions (Ωi) until each region’s regularity
can be captured by a single SPREF. A similar segmentation is necessary for the static scenes,
where the scene regularity is too complex to be captured by a single xt or yt-parallel SPREF. To
do this, the video is first divided into group(s) of frames (gof). Then we partition each gof into
smaller subgroups of frames (subgof) using an oct-tree. This segmentation allows us to analyze
the regularity of the gof at multiple locations and various sizes. This step may or may not be
followed by merging the subgofs depending on the application. The quality of each SPREF is
determined by a metric, specific for the goal of the application.
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Figure 1: A synthetic sequence, where the global translational motion (u,v) is (-2,-2). The xy-
parallel SPREF directions (blue arrows) are projected on each frame.

(a) (b) (c)

Figure 2: (a) The 1st, 4th, and 8th frames of the sequence in Fig. 1 are shown in 3D. SPREF is
subsampled and its directions are shown with blue arrows. Along the SPREF curves, shown in
red, the appearance varies the least. (b) Side view of the cross-section of the sequence along the
flow curves. Notice that the flow curves extend along the direction of motion. (c) The front view
of the cross-sectional surface. Notice that the pixel appearances on the surface change the least
along the SPREF curves. Since the SPREF estimate is precise for this sequence, the pixel values
along the flow curves are actually constant.

All the three components of SPREFs can be formulated by discretizing the continuous flow
energy function (1), and tailoring it according to how F is defined. If the flow is xy-parallel, then
F is defined as Ft = (c′1(t), c

′

2(t), 1), which results in

E(Ft) =
∑

Ω

∣∣∣∣

(
I ⋆

∂H

∂x

)
c′1(t) +

(
I ⋆

∂H

∂y

)
c′2(t) + I ⋆

∂H

∂t

∣∣∣∣
2

. (2)

Notice that the formulation of Ft implies that the x and y components of the flow, (c′1(t), c
′

2(t)),
are functions of time only, which are constant for all the pixels in a given frame, i.e., xy cross-
section of Ω. Fig. 1 shows a synthetic clip where the motion in all frames is a translation by 2
pixels in both up and left directions. Fig. 2(a) shows the the 1st, 4th, and 8th frames, and the
estimated 3D SPREF field (blue arrows). The red curves are the curves of regular appearance,
which will be described later. Fig. 2(b) and (c) show a cross-section of the data along the curve
directions. On this cross-sectional surface, the pixel intensities vary the least along the flow
directions (in fact, they are constant in this example since the SPREF estimate is precise).

If the flow is yt-parallel, then F is formulated as Fx = (1, c′2(x), c
′

3(x)). As the definition of
yt-parallelism implies, the flow vector, (c′2(x), c

′

3(x)), is the same on a yt cross section at a given
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(a) (b)

Figure 3: The first frames of two sequences with no motion, whose SPREFs are xt (a) and yt (b)
parallel. Since the sample sequences are static, the temporal component of the flow is zero, and
SPREF shows the spatial directions of regularity of the frames (blue arrows) . The flow curves,
shown in red, follow these directions. Notice that, due to cross-sectional parallelism, the flow
directions of xt (yt) parallel SPREF are uniform for a given column (row) in all frames.

x. This definition results in the following flow energy function:

E(Fx) =
∑

Ω

∣∣∣∣I ⋆
∂H

∂x
+

(
I ⋆

∂H

∂y

)
c′2(x) +

(
I ⋆

∂H

∂t

)
c′3(x)

∣∣∣∣
2

. (3)

Fig. 3(b) shows Fx for a static sequence, where the flow directions (red arrows) capture the
directions of regularity of the frames, and the curves show the paths of regular variation.

For the xt-parallel flow, F is specified as Fy = (c′1(y), 1, c
′

3(y)), which means that the flow
directions in the xt cross section of the SPREF, (c′1(y), c

′

3(y)), are uniform. The expansion of
general equation (1) with this definition results in the following:

E(Fy) =
∑

Ω

∣∣∣∣

(
I ⋆

∂H

∂x

)
c′1(y) + I ⋆

∂H

∂y
+

(
I ⋆

∂H

∂t

)
c′3(y)

∣∣∣∣
2

. (4)

Fig. 3(a) shows another static sequence, where the directions of regularity of the scene are
captured by Fy. Similar arguments for the flow directions and the curves apply here.

The equations (2), (3) and (4) can directly be solved for the flow directions, c′m[u], (m = 1, 2, 3),
using spatio-temporal derivatives: I ⋆ ∂H

∂x
, I ⋆ ∂H

∂y
, I ⋆ ∂H

∂t
. However, we approximate the flow

directions with splines and solve these equations for the spline parameters. Since spline can be
used to represent the flow directions in several frames, fewer parameters are needed with splines.
Moreover, since splines are smooth, we obtain a better approximation of flow directions, which
is not sensitive to noisy flow direction in a particular frame. We use the translated box spline
functions of the first degree, b(u), for the approximation of the flow directions, which result in:

c′m(u) =
∑

n

αm
n b(2

−lu− n) =
∑

n

αm
n b

l
n(u), (5)
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where αn (n = 1, . . . , 2l) is the nth spline coefficient, u is the index of the SPREF component
(u = x, y or t), l = 1, . . . , k is a scale factor, and 2k is the width of Ω in the axis of parallelism.
The spline function used in our experiments is defined as

b(z) =

{
1 − |z|, if |z| < 1,
0, otherwise.

(6)

The coefficients αn can be solved by quadratic minimization of the energy functions (2), (3) or
(4), the choice depending on the parallelism type. The open form of the solution is given in
Appendix A.

Knowing only the directions of the regularity of Ω does not provide sufficient information
most of the time. In many applications we need to know the actual 3D curves, on which Ω is
regular. A SPREF curve, c[u], is an integral curve, whose tangents are parallel to the SPREF
directions. The coordinates of a SPREF curve in the discrete domain are computed according to
the equation,

c(u) =
u∑

z=1

c′(z), u ∈ {x, y, t}. (7)

The orthogonality of the flow directions in our SPREF model results in one-to-one mapping
of all points in the spatiotemporal region along the flow curves. Moreover, due to this attribute
if a spatiotemporal region has a mixture of points with weak and strong gradients, then the
directions of regularity of the weak-gradient points can still be defined based on the ones with
strong gradients. The SPREF curves for different types are shown in red in Figs. 2 and 3. The
curve for an xy-parallel SPREF is the set of points (x + c1(t), y + c2(t), t) for a constant (x, y)
and a varying t. For an xt-parallel SPREF, the curve coordinates are (x + c1(y), y, t + c3(y))
for constant (x, t) and varying y. Finally, for a yt-parallel SPREF, the set of curve points is
(x, y + c2(x), t + c3(x)) for constant (y, t) and varying x. All curve coordinates are defined only
inside the support of Ω.

2.2 Affine (A-) SPREF

The T-SPREF gives good results when the directions of regularity of the spatiotemporal region
is a function of the flow propagation axis. In other words, when the motion is translational,
or in the absence of motion when all the edges in the scene extend along the same direction,
T-SPREF performs well. However, the precision of the translational flow model goes down when
the directions of regularity depend on multiple axes. This is the case, for example, when the
motion is zooming in/out or rotation, where the true flow is not only a function of time, but
also a function of spatial location. Similarly, in the absence of motion, when two edges extend
in different directions along the x or y axes, T-SPREF cannot find the correct directions of
regularity. For such cases, we change the flow model from translational to affine, where the flow
still propagates along one major axis, however, it is a function of all the axes.

Since the flow vector field F is defined according to the affine model, the general flow energy
function (1) is expanded accordingly. When the propagation axis is t, F is defined as Ft =
(c′1(x, y, t), c

′

2(x, y, t), 1), and formulated by

E(F) =
∑

Ω

∣∣∣∣

(
F ⋆

∂H

∂x

)
c′1(x, y, t) +

(
F ⋆

∂H

∂y

)
c′2(x, y, t) + F ⋆

∂H

∂t

∣∣∣∣
2

, (8)
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Figure 4: (a) A synthetic sequence from the Lena image where Lena’s eye is zoomed in successive
frames. (b) T-SPREF approximation to the underlying directions of regularity, shown with blue
flow vectors superimposed on the images. Since zooming in is approximated by translations, the
approximation is not successful. (c) A-SPREF approximation of the directions of regularity. The
flow vectors are clearly more precise than T-SPREF.

where
[
c′1(x, y, t)
c′2(x, y, t)

]
=

[
a11(t) a12(t) a13(t)
a21(t) a22(t) a23(t)

]


x
y
1



 . (9)

Just like in T-SPREF, the flow parameters aij(t) can be obtained by directly solving the flow
energy function (8). However, since we want to achieve a global solution that uses all the in-
formation in the spatiotemporal region Ω, we approximate these parameters by splines. Hence,
aij(t) is expanded as:

aij(t) =
∑

n

αij
n b(2

−lt− n) =
∑

n

αij
n b

l
n(t). (10)

The solution of (8) for the spline parameters is given in Appendix B.

Fig. 4 (a) shows a synthetic sequence generated from the Lena image, where her eye is zoomed
in successive frames. The directions of regularity obtained by an xy-parallel T-SPREF is shown
in Fig. 4(b), where it can clearly be seen that the translational approximation cannot estimate
the underlying motion. On the other hand, since A-SPREF can handle this type of motion, the
estimated flow vectors in Fig. 4(c) reveal the true directions of regularity for the image sequence.

When the flow propagation axis is x or y, the flow components Fx and Fy are computed,
respectively. For the former case, we have Fx = (1, c′2(x, y, t), c

′

3(x, y, t)) and

[
c′2(x, y, t)
c′3(x, y, t)

]
=

[
a21(x) a22(x) a23(x)
a31(x) a32(x) a33(x)

]


t
y
1



 . (11)
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(a)

   

(b)

Figure 5: (a) (Left) The first frame of a static sequence, sampled from another location of the Lena
image. Notice that there are two different edge orientations (vertical and oblique) in the sample.
(Middle) The xt-parallel T-SPREF approximation of the directions of regularity superimposed on
the first frame of the sequence. Notice that the oblique orientation dominates the final estimate,
resulting in a poor estimate for the vertical orientation. (Right) The A-SPREF approximation
of the directions of regularity, where the flow propagates along y axis. With the affine model,
the vectors estimate both orientations correctly. (b) (Left) An eagle image, from which we used
a small patch (bounded with a red box) to create another static sequence. Notice that the
orientation of each feather is different. (Middle) The yt-parallel T-SPREF approximation of the
directions of regularity superimposed on the first frame. The translational model chooses to fit
all the directions to the middle feather, since its orientation is halfway between the top and the
bottom feathers. (Right) The A-SPREF approximation of the directions of regularity, where the
flow propagates along x axis. Here it can be clearly seen that the vectors have been adjusted to
fit all orientations separately.

Similarly, we have Fy = (c′1(x, y, t), 1, c
′

3(x, y, t)) and the parameters are

[
c′1(x, y, t)
c′3(x, y, t)

]
=

[
a11(y) a12(y) a13(y)
a31(y) a32(y) a33(y)

]


x
t
1



 . (12)

Fig. 5(a) shows the first frame of a static sequence from the Lena image. In this sequence there are
two different edge orientations. With the flow propagating along the y axis, xt-parallel T-SPREF
tries to find the optimal orientation that can minimize the flow energy (middle image). A-SPREF
on the other hand can handle multiple orientations (right image). Hence, its estimation is more
precise than that of the T-SPREF. In Fig. 5(b), the first image shows an eagle, where we sampled
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a patch (marked with a red bounding box) to create another static sequence. With the flow
propagation axis chosen as x, the middle image shows the yt-parallel T-SPREF approximation
of the directions of regularity. Notice that there are three different orientations of the feathers
in the patch. T-SPREF tries to find the optimal direction that can approximate all the three
simultaneously. A-SPREF, on the other hand, can approximate the three directions separately.
Therefore, the affine model can estimate the local geometry of the spatiotemporal region much
better, as shown in the last image in this figure.

After finding the flow directions, the next step in A-SPREF is computation of the flow curves.
Different from T-SPREF, here the curves are computed by propagating the affine parameters
along the propagation axis. Since the flow model is not translational, summing up the parameters
is not an option. Let’s assume that the axis of propagation is t. The flow (c′1(x, y, t), c

′

2(x, y, t), 1)
only maps the pixels in frames t to t + 1. To compute the flow curves, however, one needs to
map the pixels in one frame to all the others, with a new set of parameters. Given two sets of
affine parameters estimated according to (10): At→t+1 = {a1, a2, . . . , a6}t→t+1 and At+1→t+2 =

{b1, b2, . . . , b6}t+1→t+2, the propagate operation G produces the new parameter set Ât→t+2 =
{â1, â2, . . . , â6}t→t+2 = G(At→t+1, At+1→t+2) as follows:

â1 = a1 + b1 ∗ (1 + a1) + b2 ∗ a4, â2 = a2 + b2 ∗ (1 + a5) + b1 ∗ a2,

â3 = b3 + a3 ∗ (1 + b1) + b2 ∗ a6, â4 = a4 + b4 ∗ (1 + a1) + b5 ∗ a4, (13)

â5 = a5 + b5 ∗ (1 + a5) + b4 ∗ a2, â6 = b6 + a6 ∗ (1 + b5) + b4 ∗ a3.

With the propagate operation G in mind, the new parameters that will be used to compute the
flow curves are written as follows:

Â0→t+1 = G
(
Â0→t, At→t+1

)
, (14)

where Â0→1 = A0→1.

After the new set of parameters are computed, the flow curve coordinates that they imply are
stored in coordinate grids, which are given as (â11(t)x+ â12(t)y+ â13(t), â21(t)x+ â22(t)y+ â23(t))
for the SPREF propagating along axis t. When the flow propagation axis is x or y, the same
algorithm can be applied after doing the necessary change of variables. In fact, Fig. 6 shows
these types of curves on static sequences that we showed in Fig. 5. The images on the left of Fig.
6 show the T-SPREF curves, while the ones on the right side show the A-SPREF curves. Notice
that these images are challenging for T-SPREF to approximate, however A-SPREF can nicely
produce curves that follow all the edges in the scene.

2.3 Modeling Nonuniform Regularities

Extending the SPREF framework to model the whole video is a must in many video applications.
SPREF is designed to compute the local directions of regularity of a spatiotemporal region, and
the whole video can be considered as a local region only when it undergoes global motion, or when
there is no motion and the spatial structure of the scene is simple. However, usually this is not the
case; the videos often are mixtures of regions with both local and global motion. Also, the scenes
are usually highly textured, which hurts the xt and yt-parallel SPREF approximations. In such
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(a)

    

(b)

Figure 6: (a) (Left) The T-SPREF curves superimposed on the first frame of the clip in Fig.
5(a). Notice that the curve can neither follow the oblique edge, nor the vertical one. The solution
is an approximate curve that extends between the two edges. (Right) The A-SPREF curve for
the same image. This time the orientation of both edges are estimated correctly and the curves
extend along both. (b) (Left) The T-SPREF curves for the second clip in Fig. 5(b). Notice that
the curve extends nicely along the middle feather, however this curve clearly is not the best for
the top and the bottom ones. (Right) The A-SPREF curves for the same image. This time the
curves extend along all edges, which is most visible when one looks at the top feather.

cases, the video needs to be segmented into smaller spatiotemporal regions until the regularity
of each region is uniform. Then the SPREF can be computed. To do this, the video is first
divided into group(s) of frames (gof) and then each gof is partitioned into smaller subgroups of
frames (subgof) using an oct-tree, as shown in Fig. 7 This segmentation allows us to analyze
the regularity of the gof at multiple locations and various sizes. This step may or may not be
followed by merging the subgofs depending on the application. The quality of each SPREF is
determined by a metric, specific for the goal of the application. For instance, the metric can be
the flow error for inpainting applications, or the total bit cost for compression applications.

With the defined metric, a gof can be divided into subgofs to minimize the metric, such that
the directions of regularity of each subgof is estimated as closely as possible by its corresponding
SPREF. The challenge here is to find the optimal segmentation of the gof ’s support, V , into Vis,
(V =

⋃
i Vi), so that the overall cost is minimized. A general metric is used here to illustrate the
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Figure 7: A sample oct-tree segmentation of a group of frames (gof). The segments can be
divided recursively to achieve the minimum overall cost.

segmentation process, which is defined as

D + λN =
∑

i

Di + λNi, (15)

where
Di =

∑

x

∑

y

∑

t

(Ii,original(x, y, t) − Ii,reconstructed(x, y, t))
2, (16)

is the sum of squared reconstruction error of Ii. Ni denotes the number of the SPREF parameters,
and λ is a Lagrange multiplier. The objective here is to find a segmentation to minimize the cost
in (15) by dividing a gof into minimal number of subgofs where the regularity can be represented
using uniform SPREF.

In order to achieve this segmentation, we initially partition the gof into rectangular prisms
(cuboids) using an oct-tree data structure, as shown in Fig. 7. The width of each dimension
of a cuboid is 2kj , where j ∈ {1, 2, 3} denotes the particular dimension and k denotes the level.
The number of SPREF coefficients (Ni) of a subgof also indicates whether a certain type of
spatiotemporal regularity flow exists or not. Ni = 0 means that there is no flow defined for the
subgof. This can be the case, where the sequence is isotropic, i.e. all the pixels have the same
value, or the pixel intensities in the frames are totally random. The minimization of the total
cost in Eqn. (15) starts with computing the cost, (Di + λNi), for each cuboid in the oct-tree,
which can only be minimum for one of the four flow hypotheses, including the no-flow case.
When computing the cost of the SPREFs for a certain parallelism, the optimal scale parameter
l (1 6 l ≤ k) in Eqn. (5) is found by trying all possible values of l, and selecting the one that
results in the smallest cost.

The optimal segmentation of V is found by using a split/merge algorithm starting from the
leaf nodes (the smallest cuboids) of the oct-tree. At each level, eight child nodes are merged into
a single node if their cumulative cost is greater than the cost of the parent, otherwise they stay
split. This merging constraint can be formulated as:

Di + λNi <

8∑

q=1

Di,q + λNi,q. (17)
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where Di,q is a child of the node Di. The split-merge algorithm is applied until the top of the
tree is reached, which concludes the optimal segmentation of the gof in terms of the number of
SPREF coefficients and the reconstruction error.

3 SPREF vs Optical Flow

The fundamental difference between SPREF and optical flow is that the SPREF captures both the
spatial and temporal regularity information simultaneously, while optical flow only cares about
motion information in the temporal direction. When motion exists in the video, the SPREF along
the t direction, i.e. xy-parallel SPREF, is similar to the optical flow. However, it carries similar
but not necessarily the same information as the optical flow. The true optical flow (u(x, y), v(x, y))
yields the directions of highest regularity between two frames as a function of the pixels’ spatial
locations. Its estimation requires minimizing the brightness constancy equation,

fxu+ fyv + ft = 0. (18)

Hence, it is not well-defined if computed over regions where the spatiotemporal gradients are
insignificant. The xy-parallel SPREF equation (2) also has the same structure as the brightness
constancy equation (18), however, our spline-based formulation allows us to minimize it over mul-
tiple frames not pairwise but simultaneously. Splines were previously used in motion estimation
by Szeliski and Coughlan [24], where they spatially fitted a 2D spline to the optical flow. They
also claimed that this approach could be extended to multiple frames if the motion is linear. The
xy-parallel SPREF differs from this work in that it fits a spline to the motion temporally in the
whole volume, which makes it a more powerful over multiple frames.

SPREF assigns all pixels a certain direction of regularity even when only some of them have
significant spatiotemporal gradients. The optical flow, on the other hand, usually lacks orthog-
onality. Hence, it cannot be used to construct flow curves that are guaranteed to go through
all pixels. Even though some optical flow estimation method can be extended to using multiple
frames, the estimated optical flow remains to be pairwise. That is, no matter how many frames
are used, they only estimate the optical flow between neighboring frames. On the other hand,
the SPREF curve gives the global regularity direction of the whole volume.

For the xy-parallel T-SPREF, we formulate u and v, i.e. c′1 and c′2, as functions of time only,
which models the motion as a block in each frame, and results in an orthogonal flow field. If the
motion in a spatiotemporal region is globally translational, then xy-parallel SPREF converges to
the optical flow. Otherwise, it tries to estimate the underlying motion as close as possible. If the
estimation is poor, then data can be segmented as explained in the previous section, and a closer
estimate of motion can be achieved. A comparison of the two models is given in Fig. 8. The top
row shows a mini clip sampled from the Alex sequence. The directions of regularity for this clip
are computed by block motion and SPREF, separately. The bottom row shows the flow curves
computed using (a) block motion, and (b) SPREF. The spatiotemporal data is sliced along the
flow curves as in Fig. 2.(c). Notice that the pixels along the SPREF curves are smoother due to
incorporation of all frames in the solution.
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(a) (b)

Figure 8: (Top) A mini clip from the Alex sequence. (Bottom) The directions of regularity
obtained by (a) block motion and (b) xy-parallel SPREF. Notice that when the sequence is sliced
along the directions of regularity, the resulting surface is smoother along the flow curves when
SPREF is used.

4 Applications

In this section, the applications of SPREF in object removal, video inpainting, and video com-
pression are demonstrated. The results obtained using SPREF are also compared with other
state-of-the-art approaches for performance evaluation. Note that SPREF is a general frame-
work. Here we just demonstrate a few example applications. The use of SPREF is certainly not
limited to the applications shown here.

4.1 Object Removal

Object removal is to remove a target object from the video [25]. In many video applications,
this is one of the key techniques for video processing. For example, some common digital special
effects are composition of graphic objects, removal of unnecessary objects, and insertion of virtual
objects in a video sequence. Unfortunately, manual selection of the object from each frame is
normally required to remove the object. The procedure is labor intensive and therefore time
consuming. However, by using the SPREF, the amount of manual work can be significantly
decreased.

Our SPREF based object removal algorithm is presented as Algorithm 1. The basic idea is
to remove the moving object by following the xy-parallel SPREF curve. In our approach, the
manual selection is only required for the first and the last frames of the GOF. The object in the
other frames can then be removed automatically by using the xy-parallel SPREF.

Fig. 9 shows an example of object removal using the SPREF based method. The objective
there is to remove the airplane from the video. SPREF was computed from the original video
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Figure 9: An example of object removal. The first row shows the original video frames containing
an airplane. In the first and the last frames, the airplane is manually removed. It is then
automatically removed from other frames according to the SPREF computed from the original
sequence.

Algorithm 1 Object Removal

Input: A group of frames (GOF)
Compute the xy-Parallel SPREF Ft.
Compute the SPREF curves.
Remove the target object from the first and the last frames of the GOF.
for Pixels in the other frames do

if The first and last pixels along the curves have been removed then

Remove the pixel.
end if

end for

sequence. The airplane in the 1st and the 8th frames is erased manually. As shown in Fig. 9,
the airplane in the other 6 frames is then removed successfully, although the background is also
moving. Compared to the way of manual selection in each frame, the amount of manual work
has been reduced by 75%.

4.2 Video Inpainting

When an object is removed from a video, it leaves a spatiotemporal hole behind. Video inpainting
is filling this hole naturally, while preserving the video’s temporal regularity. In previous studies,
this regularity has been preserved implicitly by various techniques, such as motion layer mosaic-
ing [25, 26], and hole filling with small spatiotemporal patches that do not disturb the temporal
regularity [27–29]. The patches in the latter methods need to be searched in the huge spatiotem-
poral space of the video. However, these techniques can be avoided by using SPREF since the
regularity of a spatiotemporal region is modeled explicitly. In this section, we first explain how
to inpaint a group of frames gof , when the motion of the pixels surrounding the spatiotemporal
hole can be modeled by a single SPREF. Next, we extend this solution to the cases, where the
hole may lie on the motion boundaries of the frames. We present an algorithm based on the
segmentation of the video for this purpose.
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Figure 10: The statue is artificially removed from the mid-frames, then inpainted back by our
algorithm, as shown in Fig. 12.

        

Figure 11: The frames from the selected subsequence used for computing the flow. The SPREF
directions are superimposed on their respective frames.

4.2.1 Inpainting with Single SPREF

When a group of frames that undergo global motion contain a spatiotemporal hole, we can assume
that the directions of regularity of the hole is the same as that of the pixels surrounding it. Fig.
10 shows a clip from the Statue sequence, where the statue is removed from frames in the middle.
Since the video undergoes a global translational motion, the hole can be inpainted using only the
xy-parallel T-SPREF component. Although the sequence is damaged by the removal of the statue,
its SPREF can still be computed from the undamaged pixels. In order to do this, a subgroup of
frames (subgof) that fully contains this spatiotemporal hole is automatically selected, and then
SPREF energy function (2) is solved to find the xy-parallel flow directions. These directions,
along which the subgof varies the least, are converted to a set of coordinates by computing the
SPREF curves.

Fig. 11 shows the selected subgof , and its SPREF vectors superimposed on each frame.
Note that the flow directions are parallel in each frame, due to the constraint of xy-parallelism.
The flow directions reveal certain coordinates, represented by SPREF curves, along which the
subgof varies the least. These curves constitute the most important part of our video inpainting
algorithm. Since the pixel appearances on a flow curve vary smoothly, we can safely assume that
the appearances of the damaged pixels can not deviate too much from those of the undamaged
ones. Hence, we fit a spline to the known pixel intensities on the flow curve, and interpolate the
missing appearance values from this spline. Note that we allow no damaged pixels at the subgof
boundaries to guarantee avoiding any extrapolations that may result in extremely high or low
intensity values in this case.

Fig. 12 shows the results of our inpainting algorithm, where we inpaint the Statue back in the
intermediate frames successfully, and show the original ones for comparison. The best number of
spline parameters, l in flow approximation equation (5), is selected as the one that minimizes the
error energy function (2).
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Figure 12: The results of the SPREF-based video inpainting: (1st Row) The inpainted frames.
(2nd Row) The original frames.

Figure 13: First row: clip of the original walking human sequence. Second row: sequence after
removing the sign board.

4.2.2 Moving Object Inpainting

Inpainting using a single SPREF in previous section works well as long as the motion of the
group of frames (gof) are well-approximated. However, this may not always be the case. In
many natural video sequences, we need to inpaint the hole left by removing a static object, which
partly occludes another moving object. In such cases, the single SPREF inpainting algorithm
does not work and a more sophisticated method is needed.

The first row of Fig. 13 shows a clip from the walking human sequence in which a man is
partly occluded by a sign board. In the second row, the sign board is removed and we need to
inpaint the hole marked by red. In this example, the spatiotemporal hole is on the boundary
of the background and the walking human. The background is static while the man is moving
forward. Since there exist multiple directions of regularities due to multiple layers of motion, a
single SPREF is not able to handle it. The solution lies in segmenting the gof , which is described
in Section 2.3. The segmentation creates many subgofs so that each subgof contains a unique
SPREF. When computing the SPREF for the subgofs, three cases are considered. In the first
case where there is no hole region in the current subgof, the SPREF can be computed directly. In
the second case where part of the subgof is hole region, the SPREF is computed according to the
non-hole part. In the last case where the subgof is totally composed by hole region, the SPREF
is estimated by interpolating SPREFs of neighboring subgofs.

Then we perform the inpainting along the flow curves with interpolation and/or extrapolation.
During inpainting, there are two questions to be answered. First, since only one of the three
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SPREF components will be used for inpainting, which one should be used? Second, as mentioned
earlier, the same region of a spatiotemporal hole may be contained by more than one subgofs
(oct-tree nodes). As only one of these nested subgofs can result in the visually most plausible
inpainting, which one should be selected? The answers to the questions lie in the quality of the
inpainted video. The one which obtains the best video inpainting result will be selected. The
inpainting results depends on the goodness of the SPREF, which is measured by the amount of
flow errors in energy functions (2)–(4) of T-SPREF and similarly for A-SPREF. Thus, for each
subgof segment, the SPREF component with minimum cost is assigned to it. Then the inpainting
is done by using the segment with the minimum flow error from those containing the region of
interest. The overall video inpainting algorithm is summarized as follows.

Algorithm 2 Video Inpainting

Divide the gof into smaller subgofs according to the segmentation algorithm in Section 2.3.
Compute the SPREF of each subgof .
for each leaf node (smallest subgofs) in the oct-tree do

Find all its parents up to the root node.
Compute the flow error of the leaf node using their SPREFs and the leaf node’s own SPREF.
Assign the SPREF component with the minimum flow error to the segment.
Find the node whose SPREF results in the minimum flow error.
Fill the hole in the leaf node using that node’s interpolation results.

end for

The spatiotemporal hole in the walking human sequence is then inpainted using the above
method. For comparison, we implemented the video inpainting method proposed by Wexler et
al. [29] and applied to the same video sequence. The inpainting results are shown in Fig. 14. The
method in [29] repairs the video by searching the missing part blindly in global spatiotemporal
space, which is very time consuming. With a typical hole size, repairing 10 frames normally
takes about 2 hours in a PC with 2GHz CPU, while our method requires only 30 minutes.
Furthermore, since each pixel is processed independently and the color value associated with the
pixel is obtained by computing the weighting average of the matched patches, the inpainting
result sometimes may not be meaningful, although the color of the recovered pixels are consistent
with those of their surroundings (see figures (d)-(f) in the third row of Fig. 14). The authors
proposed to incorporate some video tracking techniques to increase the weights of the “correct”
patches. However, the video tracking itself is a complex problem and the general solution does
not exist. On the contrary, our video inpainting algorithm is based on the computed SPREFs,
which provide the regularity directions. Therefore, once the SPREF is available, the missing parts
of the video can be easily recovered by interpolation. In addition, the basic unit of inpainting is
subgof with unique SPREF, which facilitates the integrity of the video (see figures (a)-(c) in the
third row of Fig. 14). Since the walking direction of the man in the sequence is not parallel to
the camera image plane, which causes complicated motion beyond the scope of the T-SPREF,
the A-SPREF is used in this experiment.
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(a) (b) (c) (d) (e) (f)

Figure 14: Results of walking human sequence inpainting. First row: inpainting results of our
algorithm based on the A-SPREF. Second row: inpainting results of our implementation of [29].
Third row: Zoomed view of the inpainted human in the sequence, (a)-(c) the results of our
algorithm and (d)-(f) the results of the method in [29].

4.3 Video Compression

According to the information theory, lower entropy results in higher compression ratio. Thus, if
a spatiotemporal region Ω is filtered along the directions of regularity, where entropy is lower,
better compression can be obtained. Since SPREF indicates the directions of regularity, it is a
very suitable tool to increase the efficiency of the compression. Moreover, its compactness due to
the spline representation has a low compression overhead.

In video compression, wavelet based coding techniques have been widely used for their ex-
cellent performance. In standard wavelet video coding, the wavelet coefficients are obtained by
consecutive filtering and downsampling of a gof Ω along the horizontal (x), vertical (y), and
temporal (t) dimensions. The filters used are a pair of high-pass ψ and low-pass φ filters [30].
A 3D wavelet basis can be constructed by filtering all dimensions with all possible combinations
of these filters. The compression is performed by thresholding, followed by the quantization
of the wavelet coefficients, so that only the significantly large coefficients have non-zero quan-
tized values. In recent studies, the motion-related regularity of the video has been exploited
using motion-compensated (MC) wavelets [31–34]. However, since the motion models used in
these studies, i.e., block motion [35]/cube motion [36], deformable meshes [37], and dense flow
fields [38], are computed for pairs of frames, the model parameters contain temporal redundancy.
Moreover, none of the studies in MC wavelets exploit the spatial regularity of the scene, which is
another strength of SPREF.

SPREF based video compression can be possible by warping the 3D wavelet basis along the
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Figure 15: The results for a gof of the Flower Garden sequence (∆ = 20). (1st Row) (Left and
Right) The original frames with the optimal segmentation. (Middle) The 3rd frame zoomed-in
for details. Since the tree moves very fast, as seen in the original frames, it sweeps a wide region
in time, resulting in the segmentation of the subgofs in these regions. (2nd Row) SPREF of
the subgof marked with red, superimposed on the sub-frames. (3rd Row) The same flow from
oblique, top and side views.

flow directions. For this purpose, a warping operator, W, is defined so that the filtering can be
performed on the flow curves. Alternatively, if we warp region Ω instead of the basis itself, and
define the standard wavelet basis in the warped domain, then transforming this basis back to the
original domain produces the orthogonal warped wavelet basis. After this step, the compression
can be improved further by converting the warped wavelet basis into a bandelet basis, which was
introduced by Pennec and Mallat [22]. This step involves taking more advantage of the regularity
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Figure 16: The bit-rate vs PSNR plots of Akiyo and Foreman. Both SPREF-based compression
and LIMAT framework are shown in the results.

of the data by replacing the low-pass filters, {φ(t)}j , with high-pass filters, {ψ(t)}r, at lower
resolutions (r > j). This change of basis results in less number of significant coefficients, and it
can be performed for other components of SPREFs similarly.

The cost of compression for a given SPREF is approximated by D+λN as we defined earlier.
For a given SPREF component, say xy-parallel T-SPREF, the energy function (2) can have as
many solutions as the spline parameters. The one that minimizes the compression cost is chosen
as the correct solution. The choice of λ as a function of the quantization step size ∆ can be
computed by minimizing the compression cost with respect to ∆. This minimization results in
the definition of λ as λ = 3∆2/4γ0.

The efficiency of the compression depends on the closeness of the approximation of the reg-
ularity. Hence, we propose a split/merge algorithm, based on the segmentation described in
Section 2.3, for better approximation. This algorithm eventually splits the regions with different
regularity characteristics, and merges the similar ones in order to reduce the overhead of storing
the SPREF parameters. Fig. 15 shows the results of our segmentation algorithm on a gof from
the Flower sequence. After segmentation is performed, the steps of our algorithm go as follows.

Algorithm 3 Video Compression

Segment region Ω into smaller subregions Ωi.
for subregion Ωi do

Compress it using xy, xt and yt-parallel SPREFs separately.
Compute the compression costs.
Select the flow direction with lowest cost for compression.

end for

Run a bottom-up split-merge algorithm on the oct-tree.

We show the results of our SPREF based bandelet video compression scheme on some standard
video sequences, i.e., Akiyo, Foreman and Mobile. All sequences are at QCIF resolution. We also
compare the results of our algorithm with those of the Lifting-based invertible motion adaptive
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Figure 17: The PSNR plot of the Mobile sequence.

transform (LIMAT) framework of Secker and Taubman in [33], a motion-compensated wavelet
video compression technique, for performance evaluation. In our experiments, we used Daubechies
7-9 filters, and decomposed the data in two levels using the lifting scheme for both bandelets
and wavelets. In the bandelet decomposition, the size of the smallest subgof in the oct-tree is
16×16×8. The motion parameters are quantized with a step size of 1/8. When the frame size is
not an integer multiple of the spatial size of our largest subgof (64× 64), as in QCIF (176× 144)
frames, the oct-tree segmentation uses non-cuboid subgof s near the image boundaries.

We give a comparison of the SPREF-based compression and wavelet video compression at
various bit-rates in Fig. 16. The improvement as a result of the directional decomposition and
bandeletization in SPREF-based compression can be clearly observed in these plots. In these
experiments, T-SPREF is used since the motion in these sequence is basically translational.

Fig. 17 shows the compression results using LIMAT and our algorithm based on T-SPREF
and A-SPREF. It is noted that the A-SPREF based algorithm performs best, while LIMAT
outperforms T-SPREF in this case. The reason is that the motion in the Mobile sequence consists
of many non-rigid components such as global zooming out, the swinging toy, and the rotating
ball. As we have discussed in Section 2.2, the T-SPREF is not able to approximate non-rigid
motion of the objects well. The inaccurate estimation of the directions of regularity degrades
the compression performance. The mesh model used in LIMAT can model some of these non-
translational motion types better than SPREF. Hence, LIMAT performs marginally better than
SPREF in this particular example. However, the non-rigid motion can be well approximated by
A-SPREF and the video compression algorithm based on A-SPREF consequently performs much
better than the other two.

5 CONCLUSION

We presented a new general framework called SPREF that shows the local directions, along which
a spatiotemporal region changes the least. SPREF is a 3D vector field that approximates these
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directions with splines. In terms of an image sequence, using splines allows us to incorporate all
frames in the solution, which results in a better estimation. The directions of regularity depend
on the motion content and the spatial structure of the region. All these cases are handled by
three components of SPREF. If the motion in the spatiotemporal region has multiple layers, or
if the structure of a static scene is complex, single SPREF is unable to model the directions of
regularity. In such cases, the region can be recursively partitioned into smaller subregions using
an oct-tree, which have less spatial complexity or less number of motion layers. Then SPREF
can be separately computed for each subregion, and these regions can be merged later, or used
as it is, depending on the application.

We have shown successful use of SPREF in three popular applications: object removal, video
inpainting, and wavelet based video compression. In the first application, a moving object with
dynamic background is erased from the video by following the SPREF curve. The amount of
manual work has been greatly decreased. In the second application, we inpaint the missing
pixels by interpolating them from the observed ones along SPREF curves. The advantages of
our method are demonstrated by comparing the results to those of state-of-the-art method. In
video compression, we exploit the fact that the data on SPREF curves has smaller entropy. So,
we warp the 3D wavelet basis along these curves, and decompose the videos along the directions,
which entropy is smaller. Our compression results indicate a significant improvement over the
traditional wavelet video compression.

A Solving the T-SPREF Equation

In this section we will show how to solve the energy function (2) by quadratic minimization over
the spline parameters, A = [α1, . . . , αl1 , β1, . . . , βl2 ], where αi (i = 1, . . . , l1) and βi (i = 1, . . . , l2)
are the spline parameters for c′1(t) and c′2(t), respectively. Let fu(x, y, t), fv(x, y, t) and fτ (x, y, t)
denote the spatiotemporal gradients at the point (x, y, t) ∈ Ω and Bl

t = [bl1(t) . . . b
l
l(t)]

T represent
the values of the spline points i = 1, . . . , l at the time t. When being minimized and rearranged
based on these variables, Eqn. (2) takes the following form:

(A)[1×(l1+l2)]

[
(S1)[l1×l1] (S3)[l1×l2]

(S2)[l2×l1] (S4)[l2×l2]

]
+
[
(S5)[1×l1] (S6)[1×l2]

]
= 0, (19)

where the column vectors of matrix Si (i = 1, . . . , 6), are defined as follows

S1(j) =
∑

t

bl1j (t)

(
∑

x,y

f2
u

)
Bl1

t , S2(j) =
∑

t

bl1j (t)

(
∑

x,y

fufv

)
Bl2

t ,

S3(j) =
∑

t

bl2j (t)

(
∑

x,y

fufv

)
Bl1

t , S4(j) =
∑

t

bl2j (t)

(
∑

x,y

f2
v

)
Bl2

t ,

S5(j) =
∑

t

bl1j (t)

(
∑

x,y

fufτ

)
, S6(j) =

∑

t

bl2j (t)

(
∑

x,y

fvfτ

)
.

(20)

The spline parameters A can then be easily computed by solving Eqn. (19).

By doing a simple necessary change of variables in these equations, we can have the functions
for computing yt-parallel and xt-parallel SPREFs. Or a simpler method is rotating the whole
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region so that the desired propagation axis is aligned with t, and the directly applying the above
equations for computation.

B Solving the A-SPREF Equation

The A-SPREF parameters are solved in a fashion similar to T-SPREF, by minimizing the same
flow energy function (2) by quadratic minimization over the spline parameters. One can fit a
spline to all affine parameters separately. However, since this will increase the search space, we
assign one spline per flow component. In case of temporal propagation axis of size N, this means
that for the flow c′i(x, y, t), aij(t) =

∑
n α

ij
n b(2

−lt − n) for j = 1, 2, 3. The spline parameters to
find for a temporal flow propagation axis are:

A = [α11
1 ...α

11
l1
, α12

1 ...α
12
l1
, α13

1 ...α
13
l1
, α21

1 ...α
21
l2
, α22

1 ...α
22
l2
, α23

1 ...α
23
l2

],

where l1 and l2 are the number of control points for each spline. When minimized and rearranged
according to these variables, Eqn. (8) takes the same form as Eqn. (19). However, extension of
the terms :

(A)[l1+l2] ∗ ((B)3[l1+l2]×6N ∗ (M)6N×3[l1+l2]) + (N)1×3[l1+l2] = 0. (21)

In this equation, B is the matrix of all splines. Before defining this matrix, we will define a matrix
C that stores all possible values of a spline b with li control points: Cli [t, n] = b(2−lit−n). With
this definition, next we define B:

B =





Cl1 0 0 0 0 0
0 Cl1 0 0 0 0
0 0 Cl1 0 0 0
0 0 0 Cl2 0 0
0 0 0 0 Cl2 0
0 0 0 0 0 Cl2




.

We will build the matrix M , using these (1 ×N)small matrices S1 to S6, defined as:

S1[n] =
∑

x,y,t=n

[ x2f2
x xyf2

x xf2
x x2fxfy xyfxfy xfxfy ]T ,

S2[n] =
∑

x,y,t=n

[ xyf2
x yyf2

x yf2
x xyfxfy yyfxfy yfxfy ]T ,

S3[n] =
∑

x,y,t=n

[ xf2
x yf2

x f2
x xfxfy yfxfy fxfy ]T ,

S4[n] =
∑

x,y,t=n

[ x2fxfy xyfxfy xfxfy x2f2
y xyf2

y xf2
y ]T ,

S5[n] =
∑

x,y,t=n

[ xyfxfy yyfxfy yfxfy xyf2
y yyf2

y yf2
y ]T ,

S6[n] =
∑

x,y,t=n

[ xfxfy yfxfy fxfy xf2
y yf2

y f2
y ]T .
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With these definitions, M is defined as follows:

M [ t, N + t, 2N + t, 3N + t, 4N + t, 5N + t , k] = Cl1 [k, t] ∗ S1(t),
M [ t, N + t, 2N + t, 3N + t, 4N + t, 5N + t , k + l1] = Cl1 [k, t] ∗ S2(t),
M [ t, N + t, 2N + t, 3N + t, 4N + t, 5N + t , k + 2l1] = Cl1 [k, t] ∗ S3(t),
M [ t, N + t, 2N + t, 3N + t, 4N + t, 5N + t , k + 2l1 = Cl2 [k, t] ∗ S4(t),
M [ t, N + t, 2N + t, 3N + t, 4N + t, 5N + t , k + 3l1 + l2] = Cl2 [k, t] ∗ S5(t),
M [ t, N + t, 2N + t, 3N + t, 4N + t, 5N + t , k + 3l1 + 2l2] = Cl2 [k, t] ∗ S6(t).

The final term in (21) is N, and it is defined as follows:

N [ k, k + l1, k + 2l1, k + 2l1, k + 3l1 + l2, k + 3l1 + 2l2 ] =
N∑

n=1

[
Cl1 [k, n]

( ∑

x,y,t=n

[xfxft yfxft fxft]
)
, Cl2 [k, n]

( ∑

x,y,t=n

[xfyft yfyft fyft]
)]
.

The solution for A-SPREFs with different propagation axes can be obtained by either a change
of variables in these equations, or by rotating the spatiotemporal region such that the desired
axis of propagation is aligned with t.
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