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ABSTRACT

This paper presents a method to recover the temporal
synchronization between a pair of video sequences using the
frame-to-frame motion of the sequences instead of pixel-
based comparisons between the two sequences.

A previous method uses the similarity between corre-
sponding frame-to-frame homographies. It works when the
transformations are extremely accurate, but is not robust in
the presence of noise. To overcome these problems, we have
created and tested four new measures. All of the new mea-
sures perform well with either precise or noisy data for both
real and synthetic sequences.

1. INTRODUCTION

There are an increasing number of applications in computer
vision that use inputs from multiple video sequences. These
applications require temporal synchronization of the video
inputs. Since this synchronization is not always provided, it
is often necessary to recover the temporal synchronization
from the video sequences themselves.

Traditional methods assume that the cameras are view-
ing the same scene, and use pixel-based comparisons be-
tween sequences to determine time alignment. These meth-
ods cannot be used in situations where the camera fields of
view do not overlap, when the cameras are different sensor
types, or when the camera fields of view are vastly different,
because features visible in one camera may not be present
another.

In this paper, temporal alignment is recovered using the
frame-to-frame motion of each of the input video sequences.
Pixel-based methods may be used to find this motion, since
successive frames of video from a single camera will have
considerable overlap and similar camera parameters. In-
stead of comparing pixels between videos, the algorithm
compares transformations. This makes it possible to align
two videos that are viewing completely different scenes, as
long as the cameras have the same motion.

Previous work is reported in Section 2. Section 3 defines
the temporal synchronization problem. The mathematical
models used to describe the frame-to-frame transformations
are reviewed in Section 4. Five temporal synchronization

evaluation measures are detailed in Section 5. Section 6
contains the experimental results for real and synthetic se-
quences, and conclusions are given in Section 7.

2. RELATED WORK

Caspi and Irani [3] proposed a method for using the cam-
era motion to align two non-overlapping sequences taken
from cameras with an unknown, but fixed relationship. In
this process, the subtle differences between the frame-to-
frame motions in the two sequences are used to find the
inter-sequence homography. The same frame-to-frame mo-
tions are also used to find the temporal alignment by finding
the time offset that results in the highest similarity between
the two sets of transformations.

3. TEMPORAL SYNCHRONIZATION

Temporal synchronization is achieved by determining which
frame of the second sequence corresponds to a given frame
of the first sequence. Assuming that both cameras are cap-
turing frames at the same constant rate, this correspondence
can be described by a constant offset, �t, which is the in-
teger number of frames that separates the two sequences.
If the two sequences are initiated by manually pressing the
“record” button at the same time, this �t will be a small
number, less than a half second. Since 15 frames takes 2/3
of a second with NTSC (30 Hz.) and 3/5 of a second with
PAL (25 Hz.), the range of [-15, 15] should be a sufficient
interval to search for �t.

In order to use the frame-to-frame motion of the se-
quences to recover the temporal alignment, the two cam-
eras must be rigidly joined together and there must be non-
uniform motion of the two cameras. If the two cameras
are fixed, there will not be any global motion to detect. If
the two cameras are on a platform with constant motion,
like a motorized turntable, the frame-to-frame motion will
be uniform for every frame, and the temporal synchroniza-
tion cannot be automatically recovered using only the global
motion.

More formally, given two unsynchronized sequences, S
and S 0, taken by two moving cameras with an unknown but



fixed relationship, we wish to find �t such that frame i in
sequenceS corresponds to frame i+�t in sequenceS 0. The
offset, �t, is assumed to be an integer, and can be either
positive or negative. For this discussion, we will assume
that the cameras are using the same frame rate (not NTSC
with PAL). If the rates are different, the method can still be
used as long as appropriate temporal scaling is applied.

4. FRAME-TO-FRAME TRANSFORMATIONS

When the translation of the camera position is negligible
compared to the distance to the scene or when the scene is
planar, the global motion can be described by a homography
(2D). When there is significant translation of the camera po-
sition between the two images and the scene is not planar,
a fundamental matrix must be used to describe the global
motion (3D).

The measures presented here for evaluating the tempo-
ral alignment can be used for both these cases. The only
restriction on the inter-sequence transformation is that the
relationship between the cameras is rigid.

4.1. Frame-to-frame homography

A homography models the relationship between the location
of a feature at (x; y) in one frame and the location (x 0; y0) of
the that same feature in the next frame with nine parameters,
as shown in Equation 1.

x0 =
h11x+ h12y + h13
h31x+ h32y + h33

; y0 =
h21x+ h22y + h23
h31x+ h32y + h33

(1)

The homography is an exact description of the trans-
formation for a projective camera model when the scene is
planar or the camera is stationary (no translation, only ro-
tation). However, due to the computational complexity of
solving a nonlinear of set of equations like Equation 1, a
simpler linear approximation is often used.

A simplified way to represent the frame-to-frame mo-
tion for a stationary camera or planar scene is the affine mo-
tion model, shown in Equation 2. This model is linear, and
uses six parameters.

x0 = a1x+ a2y + b1; y
0 = a3x+ a4y + b2 (2)

The coefficients of the affine transformation can be used
in simple expressions to describe the frame-to-frame motion
of a pixel [2]. The horizontal translation is given by b 1,
and the vertical translation is given by b2. The divergence
(isotropic expansion) is a1 + a4, the curl (roll, or rotation
about the viewing direction) is given by a3 � a2, and the
deformation (squashing or stretching) is given by a 1 � a4.

There are well-documented methods for determining the
motion parameters, including a hierarchical model [1] and
refinements for excluding local motion [7].

4.2. Frame-to-frame fundamental matrix

When there is significant camera motion and the scene is
not planar, the relationship between successive frames can
be described by a fundamental matrix. The fundamental
matrix, F , relating two images is defined as the 3�3 matrix
such that p0TFp = 0, where p is the point (x; y) in ome im-
age and p0 is the point (x0; y0) in the other image. Since this
equation can clearly be multiplied by a positive or negative
scalar, F can only be determined up to a scale factor.

If the camera matrices P and P 0 are known, the funda-
mental matrix can be computed by

F = [e0]�P
0P+ (3)

where e0 is the epipole defined by e0 = P 0C, C is the center
of the first camera defined by PC = 0, [v]� is the anti-
symmetric matrix such that multiplying this matrix by any
vector will produce the same result as the cross product of
vector v and the vector, and P + is the pseudo-inverse of P
defined by PP+ = I .

If the fundamental matrix F is known, a pair of cameras
P = [I j0] and P 0 = [M jm] can be found for which F is
the fundamental matrix [6]. We can use this M for recover-
ing the temporal synchronization for the 3D case (when the
camera is moving) in the same way that the homography is
used in the 2D case (when the camera is not moving).

5. TEMPORAL SYNCHRONIZATION
EVALUATION MEASURES

The temporal synchronization process consists of evaluating
some error measure for each value of �t in a given range of
positive and negative integers. The value of �t with the
smallest error corresponds to the best alignment of the two
sequences. This is shown in Equation 4.

�t = arg min
�t2[�r;+r]

error(Ti ; T
0

i+�t)
n�r
i=1+r (4)

where r defines the range of integer frame offsets to search,
and the error measure compares tranformation T i from se-
quence S with transformation T 0

i+�t from sequence S 0 for
a range of values of i. If n is the number of frames in each
sequence, the range of i is 1+ r to n� r instead of 1 to n to
keep the number of frames evaulated for each �t constant,
as well as to ensure that i+�t is between 1 and n.

Several different error measures to use for error(X;Y )
are described in the next sections, followed by experimental
results showing the effectiveness of each of the measures.

5.1. Similarity

The measure used by Caspi and Irani [3] to compare trans-
forms from the two sequences is similarity. If Ti in se-



quence S occurred at the same time as T 0

i+�t in sequence
S0, they are related as shown in Equation 5.

T 0i+�t = HTiH
�1 (5)

In Equation 5, H is the 3 � 3 transformation matrix that
maps pixels from an image in sequence S to pixels in the
corresponding image in S 0. Therefore, Ti and T 0i+�t are
similar matrices, so the vector formed by the eigenvalues of
Ti should be parallel to the vector formed by the eigenvalues
of T 0i+�t, according to linear algebra properties of similar
matrices [8]. The degree of similarity can be quantized by
measuring the cosine of the angle between the two vectors
of eigenvalues, using a dot product, as shown in Equation 6.

sim(A;B) =
eig(A)T eig(B)

jeig(A)jjeig(B)j
(6)

In Equation 6, jV j represents the magnitude of vector V and
eig(M) represents the vector formed by the eigenvalues of
the matrix M . This will give a value of 1.0 for matrices that
are perfectly similar, and decrease to 0.0 as the similarity
degrades.

The similarity error measure consists of the sum of one
minus the similarity of each pair of transforms for a given
value of �t, as shown in Equation 7. Good values for �t
are expected to produce similarities close to one, resulting
in small values of errorSIM .

errorSIM (Ti; T
0

i+�t) =
n�rX
i=1+r

(1� sim(Ti; T
0

i+�t)) (7)

This measure was originally intended for use with a 2D
sequence, where the camera translation was negligible. It
is still valid when the cameras are allowed to translate, be-
cause the sequence-to-sequence homography still maps pla-
nar points and maintains the relationship in Equation 5.

In practice, the similarity calculations resulted in a num-
ber very close to one (like 0.99998), even when the wrong
�t was used. To understand why, the three eigenvalues of
the 3� 3 affine transform coefficient matrix were computed
analytically, and found to be 1,
1
2 (a1+a4+

p
a21 + 4a2a3 � 2a1a4 + a24) and 1

2 (a1+a4�p
a21 + 4a2a3 � 2a1a4 + a24). There is no dependency on

b1 or b2, the global pixel translation. Several other measures
were created to take advantage of global pixel translations
and other easily observable global motion in order to find a
method more tolerant to inaccuracies.

The two common quantities derived from the global pix-
el translation (b1 and b2 in the affine model) are the magni-
tude and direction of the translation. These are used for the
first two new measures.

5.2. Translation magnitude

In most cases, a larger motion in one sequence should cor-
respond to a larger motion in the other sequence, since the
cameras are rigidly connected. The translation magnitude
measure is based on this idea. It calculates the correlation
coefficient of the translation magnitude in each pair of cor-
responding frames for a given �t.

The correlation is �1 when two random variables are
linearly dependent. Since a larger translation in one se-
quence corresponds to a larger translation in the other se-
quence, we are only concerned with positive correlation.
The best temporal alignment should be at the value of �t
where the correlation is closest to +1. We used one mi-
nus the correlation as the error measure, so the best align-
ment occurs when the error is the minimum. Equation 8
defines the error from Equation 4 for the translation magni-
tude measure.

errortm(Ti; T
0

i+�t) = 1� corr[tm(Ti); tm(T 0i+�t)] (8)

where tm(Ti) is

tmaffine =
q
b21 + b22 (9)

tmhomography =

s
h213 + h223

h233
(10)

for the affine model and the full 3x3 homography respec-
tively.

5.3. Translation direction

The next measure is based on the idea that when one camera
moves in some direction, the other should move in a related
direction. The relation depends on the relative orientation
of the two cameras.

The translation direction measure calculates the corre-
lation of the translation direction in one sequence with the
translation direction in the other. One minus the absolute
value of the correlation is used as the error measure. The
absolute value allows for negative correlation, such as when
the cameras are pointing in opposite directions. The error
for the translation direction measure is given in Equation 11.

errortd(Ti; T
0

i+�t) = 1� jcorr[dir(Ti); dir(T
0

i+�t)]j
(11)

where dir(Ti) is defined as:

diraffine = tan�1
b2
b1

(12)

dirhomography = tan�1
h23=h33
h13=h33

(13)

for the affine model and full 3x3 homography respectively.



Before calculating the correlation, the angles from the
second sequence were adjusted so that they were within
180Æ of the angles from the first sequence by adding or sub-
tracting 360Æ. Without this adjustment, +179Æ and �179Æ

would appear to be 358Æ apart, instead of 2Æ apart.
The translation direction is undefined when the transla-

tion magnitude is zero (b1; b2 = 0), and unstable when the
translation magnitude is very small. To prevent these spu-
rious angles from degrading the result, a weighted correla-
tion is used. The angles are weighted by the square of the
product of the translation magnitudes for the corresponding
frames.

5.4. Roll motion

After creating measures based on the global translation, the
other expressions easily obtained from the affine model (list-
ed in Section 4.1) were considered. The divergence is not a
good candidate, since the zoom during the sequence is fixed,
and the camera does not change its distance from the scene
for the 2D sequences. The deformation is also not expected
to change during the sequence. This leaves curl, defined as
rotation about the optical axis, and also called roll motion.

When the two cameras are pointed in roughly the same
direction, a roll motion in one sequence should correspond
with a roll motion in the other sequence. The roll measure
calculates the correlation between the roll motion (curl) of
corresponding frames of the two sequences. One minus the
absolute value of the correlation is used as the error mea-
sure. The absolute value allows for negative correlation,
such as when the cameras are pointing in opposite direc-
tions. Equation 14 defines the error for the roll measure.

errorroll(Ti; T
0

i+�t) = 1� jcorr[roll(Ti); roll(T
0

i+�t)]j
(14)

where roll(Ti) is defined as:

rollaffine = a2 � a3 (15)

rollhomography = h12 � h21 (16)

for the affine model and the full 3x3 homography respec-
tively.

5.5. Combined measure

Measures based on translation are expected to perform bet-
ter in sequences exhibiting larger and more diverse transla-
tion. Measures based on roll should work better when there
is significant rotation. The correlation not only indicates the
best �t for a given measure, but also quantifies the quality
of the match. We can incorporate both the translation mag-
nitude and roll motion measures in a combined measure that
will work for either type of motion, using the correlations to
compute a weighted average.

6. EXPERIMENTAL RESULTS

The five measures described in the previous section were
used to evaluate the temporal alignment of both synthetic
and real sequences, for both 2D and 3D cases. The synthetic
data was used in both its original form (ground truth) and
with noise added. The sequences and graphs of the results
are available on the web page: http://www.cs.ucf.edu/�vi-
sion/projects/time shift/time shift.htm.

6.1. Synthetic data

Synthetic data was generated in a virtual environment. The
actual content of the images was not used to calculate the
time shift; only the positions and orientations of the cameras
were used. Two sets of sequences were generated; one in
which the camera translated and rotated (3D), and the other
in which the camera only rotated (2D). Each set contained
four sequences of 60 frames. Within a set, each sequence
used the same reference motion, but with a different angle
offset from the reference viewpoint.

6.2. Perfect synthetic data results

The frame-to-frame homographies for each sequence of the
2D set (no camera translation) and fundamental matrices for
each sequence of the 3D set (translating camera) were cal-
culated from the ground truth motion. The five methods
described in the previous section were used to evaluate the
best time shift value for each of the six possible combina-
tions of the four sequences for both the 2D and 3D data sets.
All five error measures correctly showed a minimum error
at �t = 0 in all cases.

6.3. Noisy synthetic data

Noise was introduced to the synthetic data by using the
ground truth to find a set of correspondences in each pair
of successive frames in each sequence. These correspond-
ing points were rounded, then used to generate frame-to-
frame homographies or affine transformations for the 2D
sequences using the direct linear transformation (DLT) al-
gorithm [6], or frame-to-frame fundamental matrices for the
3D sequences using the 8-point algorithm [5]. This simu-
lates uniform noise equivalent to a matching algorithm that
always finds the best pixel, but doesn’t refine the match to
full precision subpixel accuracy.

A sample of the results for noisy 2D and 3D using pairs
of the synthetic sequences is shown in Figure 1. The simi-
larity measure is incorrect for all six 2D homography cases,
four of six 2D affine cases, and four of six 3D cases. The
four new measures correctly show the minimum at �t = 0
in all cases.
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Fig. 1. Noisy synthetic data results. The correct alignment
is �t = 0.

Since the similarity measure performed much worse for
both the noisy homography and the noisy affine data than for
the perfect homography, it would appear that the accuracy
of the transformations has a greater impact on the similarity
measure than the choice of model.

6.4. Real data

Several pairs of real video sequences were analyzed using
all five error measures. The results are summarized in Ta-
ble 1. The “HAF” column indicates whether the frame-to-
frame tranformation was modeled with a homography (H),
affine (A), or fundamental matrix (F). The numbers indicate
the value for �t.

Seq HAF Sim TMag TDir Roll Comb
Book- H -3 12 10 12 12
shelf A 12 12 15 12 12
Sensor H -4 0 0 0 0

A 0 0 0 0 0
Foot- H 0 0 0 5 0
ball A -20 0 0 4 0
Haifa H -3 0 0 0 0

A 0 0 0 0 0
Seq2 H +20 0 0 0 0

A 2 0 0 0 0
Corner F 1 1 1 1 1

Table 1. Results from real sequences for the five methods

In the “Bookshelf” sequence, two cameras with approx-
imately the same field of view were mounted on a tripod,
with one vertical and the other sideways. The sequence
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Fig. 2. Results from the “Bookshelf” and “Sensor” se-
quences. The correct alignments are �t = 12 and 0.

consists primarily of roll motion, with very little translation
(pan or tilt). The correct offset is �t = 12. As expected, the
roll measure performed better than the translation measures,
and the error was lower as well. The combination method
chose the correct frame offset. A plot of the error for this
sequence using the homography is shown in Figure 2.

In the “Sensor” sequence of Caspi and Irani [4], one se-
quence used a regular video camera and the other used an
infrared camera. There is minimal camera movement at the
beginning of the sequence, and the motion present is primar-
ily horizontal, with minimal roll. All of the new measures
produced the correct time offset, and as expected, the roll
motion measure had larger errors than those based on trans-
lation. The similarity measure produced the wrong result
when using homographies. The results of applying the four
measures using the affine model are shown in Figure 2.

Caspi and Irani used very accurate homographies to get
the correct answer with the similarity measure. Our method
was able to get the correct time offset with less accurate
homographies as well as the simplified affine model.

The “Football” sequence of Caspi and Irani [4] consists
of two cameras with approximately the same field of view
that are aligned side-by-side, with minimal overlap. The se-
quence is dominated by views of buildings. Even though the
roll measure produced an incorrect value for the time shift,
the combination method still achieved the correct result.

In the “Haifa” sequence of Caspi and Irani [4], one cam-
era is zoomed into a small portion of the field of view of the
other camera, through a fence. Our new measures correctly
found the time shift even with imperfect homographies and
using the affine model.

“Seq2” is also from Caspi and Irani. Two cameras with
different fields of view are pointed at a building. The cam-



era has significant pan and tilt as well as roll motion. All
of the new methods found the corrent time shift using ho-
mographies that were not accurate enough for the similarity
measure, as well as with the affine motion model.

The final real sequence was the “Corner” sequence. The
cameras in this sequence had significant motion, requiring
the use of the fundamental matrix for the frame-to-frame
transformations. One camera was digital, while the other
was analog. They were pointing in roughly the same direc-
tion, with different zoom factors. All the measures found
the correct time offset in this 3D sequence.

6.5. Summary

Table 2 shows the overall results for the four different tem-
poral shift measures. For the synthetic data, the results are
shown for all six possible 2D and six possible 3D combina-
tions. The noisy data additionally includes the six 2D affine
cases. “Correct” indicates that the algorithm uniquely iden-
tified the correct time shift.

Measure Perfect Syn Noisy Syn Real
H and F H, A and F H, A and F

Similarity All 12 14 of 18 6 of 11
correct wrong wrong

Translation All 12 All 18 All 11
Magnitude correct correct correct
Translation All 12 All 18 2 of 11
Direction correct correct wrong
Roll All 12 All 18 2 of 11
Motion correct correct wrong
Combination All 12 All 18 All 11

correct correct correct

Table 2. Performance Summary for the Five Methods

7. CONCLUSION

Based on the summary data, the combination measure ap-
pear to be a good metric for recovering the temporal align-
ment for real or noisy data for both 2D (minimal camer-
a translation) and 3D (significant camera translation). The
measures based on translation have difficulty when there is
little translation, and the measures based on roll don’t work
well when there is minimal roll motion. Instead of choos-
ing roll or translation, the combination measure can operate
on sequences both types of sequences, and still determine
the correct time alignment. The similarity measure does not
seem to be able to distinguish between noise and misalign-
ment.

The new measures gave much better results than the
previously proposed similarity measure in the presence of

noise. We have shown that the similarity measure cannot
handle inaccuracies in the frame-to-frame transformations.
This level of accuracy is not a reasonable assumption, es-
pecially in the presence of local motion. In addition, if
the application does not require perfect transformations, it
should not be necessary to spend extra time refining the spa-
tial alignment just to determine the temporal alignment.

One possible improvement on this process is to use the
temporal alignment obtained this way to find the spatial
alignment between the two cameras. The spatial alignment
can then be used to determine more accurately the relation-
ship between the frame-to-frame transformations, which in
turn can be used to refine the temporal alignment.

Applications that use inputs from multiple video sources
require temporal synchronization. We have demonstrated
new methods that can be used when external synchroniza-
tion is not available. These methods work by extracting in-
formation from the frame-to-frame transformation matrices
and using correlation to find the best temporal offset. The
methods were demonstrated on synthetic and real 2D and
3D sequences, with both perfect and noisy frame-to-frame
transformations. The measure that uses a combination of
translation and roll rotation was correct in all of the experi-
ments.
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