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Abstract—In most image processing and computer vision appli-
cations, real-world scale can only be determined when calibration
information is available. Dynamic scenes further complicate most
situations. However, some types of dynamic scenes provide useful
information that can be used to recover real-world scale. In this
paper, we focus on ocean scenes and propose a method for finding
sizes in real-world units and the sea state from an uncalibrated
camera. Fourier transforms in the space and time dimensions
yield spatial and temporal frequency spectra. For water waves,
the dispersion relation defines a square relationship between the
wavelength and period of a wave. Our method applies this disper-
sion relation to recover the real-world scale of an ocean sequence.
The sea state—including the peak wavelength and period, the
wind speed that generated the waves, and the wave heights—is
also determined from the frequency spectrum of the sequence
combined with stochastic oceanography models. The process is
demonstrated on synthetic and real sequences, validating the
results with known scene geometry. This has wide applications in
port monitoring and coastal surveillance.

Index Terms—Fourier transforms, frequency domain analysis,
image analysis, sea surface, water.

I. INTRODUCTION

WATER is one of the basic requirements for life, and
oceans cover a majority of the planet, yet its infinitely

varying surface makes analysis of many scenes challenging.
Water is a common element in many visual scenes, ranging
from ponds and fountains to rivers, lakes, and oceans. Analysis
of these difficult scenes is critical for a number of important
tasks. Recent security concerns have increased the demand for
surveillance of ports and coastlines. Emergency response teams
have long dealt with determining the extent of flooding, as well
as search and rescue operations over water.

It is common for vision algorithms to assume that most parts
of the scene are static. Background subtraction methods typi-
cally model each background pixel with a Gaussian [1] or a
mixture of Gaussians [2]. With the specular reflections and caus-
tics that are characteristic of water, a color model that accounts
for all the colors representing the water can easily encompass
the foreground objects as well. An example of such a scene is
shown in Fig. 1. The boat wake and the bright sun reflection on
the water have very similar colors, and the boat pixels have the
same color as the water with less intense sun reflection.

Optical flow methods use the brightness constancy constraint,
which requires that the color of a pixel remain fixed and change
only in location. Initially, the lighting was assumed to remain
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Fig. 1. Example of a water scene. The interesting parts (the boats and the
wakes) have the same RGB values as the background in other parts of the image.

the same, and Lambertian surfaces were assumed. Extensions
to this work have generalized the constraint for varying illu-
mination [3] and dealing with illumination nonuniformity and
specular reflection [4], but still assume rigid motion, at least in
a small area. With the extreme nonrigid motion and dynamic
specular reflections intrinsic to water, these tools are not suit-
able for use in this situation.

Even though static scenes are easier to analyze, there is no
way to measure the actual size of objects in the scene without
some additional knowledge, such as camera calibration or
knowing the size of an object in the scene. Movie makers take
advantage of this limitation, substituting smaller models for
full sized ships or buildings. Most of the time, the replacement
is not detectable, but sometimes it just does not look right. One
cause for this is dynamic elements in the scene, such as water,
smoke, or fire, that cannot be resized. We propose a novel
method to recover the scale of objects in a scene containing
ocean water without camera calibration. Our method also re-
covers the sea state, including the peak wavelength and period,
the wind speed that created the waves, and the likely wave
heights. Determining the size of a ship automatically would go
a long way toward classifying its type in a coastal surveillance
application. While camera calibration might be possible in
this situation, there are other cases where it is not, such as an
amateur video of a whale sighting given to a marine researcher.

A few researchers have tackled the problem of dynamic
scenes, such as water. Voles et al. [5] and, later, Smith et al. [6]
used frame differencing and statistical analysis of grey level
histograms of patches within ocean images to segment ocean
and object pixels. Their methods successfully filter out the
water variations to detect potential obstacles.

Doretto et al. [7] and Fitzgibbon [8] model dynamic textures
as an autoregressive moving average (ARMA) process. With a
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static camera, both used the learned model parameters to synthe-
size a longer sequence from the original. For a moving camera,
Fitzgibbon registered the frames of the video by searching the
space of possible camera motions and using the one that resulted
in the most compact model. Monnet et al. [9] used the same
ARMA model to perform background subtraction for scenes
with a dynamic background. The model is used to predict the
next frame, and the differences between the prediction and the
observation are used for object detection.

In addition to these image-based techniques for simulating
temporal textures such as water, the graphics community also
uses model-based techniques. Fournier and Reeves [10] were
among the first to propose such a model for rendering waves.
They modeled multiple wave trains as Gerstner waves, which
are based on sinusoids, but capture the elliptical motion of water
particles. Mastin et al. [11] introduced the use of inverse Fourier
transforms for synthesizing water for graphics. Tessendorf [12],
[13] extended this technique. A frequency spectrum is created
in Fourier space by adding noise to a spectrum based on models
used in oceanographic research. To get the height field for a
given time instant, each element is multiplied by an appropriate
phase shift, then the inverse Fourier transformation is applied.
Since the Fourier transform and its inverse are periodic, the re-
sult is a patch of ocean that can be seamlessly tiled to cover a
large area. Instead of using a standard model, Thon and Ghaz-
anfarpour [14] computed the model from either measured buoy
data or by extracting the frequency spectrum from an image.

Fourier transforms have also been used to analyze water out-
side the graphics field. Sanderson et al. [15] identified a fre-
quency template for the current sea state and detected regions
that deviated from that template as maritime vessels.

The key that allows us to do more than mundane frequency
analysis is the same concept that Mastin et al. and Tessendorf
used to animate their waves for graphics: There is a relationship
between the spatial and temporal frequencies of water waves.
This relation is called the dispersion relation and will be de-
scribed in detail in Section II. If we find the relationship between
the temporal frequencies (in units of seconds ) and spatial fre-
quencies (in units of pixels ) in a water video sequence, we
can use the dispersion relation to solve for the pixels/meter scale
factor, allowing us to recover real world scale from the water
video. Additional knowledge of wave formation models allows
us to ascertain the wave heights and wind conditions from the
frequency spectrum.

Methods, such as grey-level histogram analysis, that ignore
the frequency information cannot take advantage of the disper-
sion relation. Measurements of objects in these systems are lim-
ited to sizes in pixels, which cannot be converted to real world
units without a calibrated camera. Our proposed method uses
spatial and temporal frequency data to recover the sizes of ob-
jects in real world units, like meters.

The rest of this paper is organized as follows. Section II de-
scribes the terminology and physics of water waves needed for
our analysis. In Section III, the process for applying the dis-
persion relation to determine real world scale is given. Sec-
tion IV presents a method for determining the sea state in a
video, including the typical wave height, dominant wavelength
and period, and the speed of the wind that created the waves.

TABLE I
SYMBOLS USED IN WATER WAVE ANALYSIS

We present results for both synthetic and real sequences in Sec-
tion V, discussion in Section VI, and conclusion in Section VII.

II. PROPERTIES OF WATER WAVES

In this section, we will review the oceanography background
needed for our analysis, including definition of the basic termi-
nology for describing water waves, the dependencies between
these quantities for individual waves, statistical tools used for
describing the random sea surface, and models used for de-
scribing the wave spectra.

A. Terminology

We will begin by defining some basic terminology, as it ap-
plies to water waves. The wavelength, , is the horizontal dis-
tance from crest to crest. The wave height, , is the vertical
distance from trough to crest. This is double the traditional am-
plitude, , which is the vertical deviation from the surface at
rest. Wave height is more commonly used than amplitude since
sea level is difficult to determine for a dynamic ocean.

The spatial frequency, , is the reciprocal of the wavelength.
The steepness, , is the ratio of the wave height to the wave-
length [16]. Similarly, in the time domain, wave period, , is
the time between two crests passing a stationary point and the
temporal frequency, , is the reciprocal of the wave period.
The wave speed, , the speed at which a wave crest advances,
is then (not to be confused with the speed at which indi-
vidual water particles move). These quantities and typical units
are summarized in Table I.

B. Individual Wave Relations

As mentioned in Section I, these wave properties are not inde-
pendent. Water waves are much longer than they are tall. Stokes
sets the upper limit of the wave steepness, at [16].
This matches reasonably well with observations of

[16]. If we can determine the wavelength, this makes the
upper bound on the wave height

(1)

The general formula for the speed of waves is [17]

(2)
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where is the mean depth of the water and is the acceleration
of gravity (9.8 m/s when and are in meters and is in m/s).
This change in speed with water depth is what causes waves to
break on the beach. For deep water, > 0.5 (i.e., the depth is
more than half the wavelength), the term approaches one,
resulting in (3)

(3)

Substituting (3) into the definition of wave speed,
yields

(4)

(5)

(6)

Thus, (6) defines the dispersion relation for deep water, quan-
tifying the link between the period and length of a water wave.
The name “dispersion relation” comes from the fact that a set of
waves that overlap will disperse over time, sorting themselves
from longest to shortest due to the differences in speed. We will
assume deep water for the remainder of this discussion.

C. Ocean as a Random Process

We have defined properties of a single wave, but in the
ocean, it is difficult to isolate a single wave. It is more useful to
use a stochastic model to describe the properties of the waves.
For analysis, the ocean is assumed to be an ergodic stationary
random process [16], [18]. This means that measuring one real-
ization over a sufficiently long time is equivalent to measuring
many realizations.

This stationary process model is possible because the charac-
teristics of all but the smallest waves change slowly over time.
When a breeze stirs over calm water, the first waves to appear
are tiny capillary waves. The restoring force for these waves is
surface tension, and if the wind ceases, these waves vanish, but
this is the exception, not the rule. If the wind continues to add en-
ergy, larger waves form, whose restoring force is gravity. Once
formed, a gravity wave can travel a long distance with minimal
energy loss. Anyone who has watched the ripples from a pebble
tossed into a pond has seen that the waves continue long after the
pebble has sunk to the bottom. If energy continues to be added
to the system in the form of wind, the waves will continue to
grow until equilibrium is reached, where the energy added is
equal to the energy dissipated by breaking waves. This condi-
tion is called a fully developed sea. The maximum heights and
lengths of the waves depend on the wind speed [17]. If the wind
suddenly ceases, the waves will remain. The use of a stationary
random process to describe the ocean surface is based on the fact
that the frequency spectrum characteristics of a given patch of
ocean will change very slowly over time, even in the presence
of variable winds. The fact that the surf gets extremely rough

TABLE II
BEAUFORT SCALE FOR SEA STATES 0–10 [17]

when a hurricane is still hundreds of miles offshore, even when
the local winds are calm, is further evidence that the waves are
not a function of the local wind.

D. Ocean Models

The efforts to correlate wind speeds and the heights of fully
developed seas date back at least to 1805, when Sir Francis
Beaufort introduced a chart for this purpose [17]. Its original
purpose was to help sailing captains determine whether to add
or take in sail based on observation of the sea. After sails were
replaced with engines, the scale continued to be used to fore-
cast the sea conditions for a given wind speed. Although modern
meteorology has replaced the Beaufort scale for forecasting, the
scale is still useful in the absence of measurement instruments
and provides an intuitive understanding of the conditions. A
modern version of the Beaufort scale is given in Table II. We
can use the table to relate wind speed and wave height, as well
as to verify our results by matching visual observations, like the
frequency of whitecaps, with the last column of the chart.



1528 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 15, NO. 6, JUNE 2006

The model used by Tessendorf [12], [13] to synthesize wind-
driven waves in a fully developed sea for graphics is the Phillips
spectrum

(7)

where is a numeric constant, is the wavevector, is the
magnitude of , and is the wind speed. The wavevector, ,
is a horizontal vector that points in the direction of travel of
the wave, and has magnitude . The maximum value
for (the waves with the most energy) occurs when

, which is equivalent to

(8)

(9)

For example, a wind speed of 5.1 m/s (equivalent to 10 knots,
the upper end of the winds for Beaufort force 3) produces a sea
with the most energy at a wavelength of 23.6 m and a period
of 3.9 s. This agrees with Smith [17], who reports that a wind
speed of 10 knots results in a fully developed sea where most of
the energy is concentrated in waves with a period of 4 s. Thus,
the Phillips spectrum allows us to predict the distribution of the
waves as well as the most common wavelength and period with
only the wind speed as a parameter.

III. DETERMINING SCALE

In our previous work [19], we did spatial and temporal anal-
ysis separately, and then correlated the peaks in the two to re-
cover the scale factor. However, when the camera field of view
was too narrow to capture the peak spatial frequencies, it was
not possible to match the peaks. To overcome this difficulty, our
current work uses the phase rate of change for all the frequen-
cies, instead of relying on a peak magnitude.

Fourier analysis was used by Tessendorf [13] to validate the
model he used for simulating water. He recounted an experi-
ment in which a three-dimensional (3-D) Fourier transform was
used to create a power spectral density (PSD) plot from a video
sequence of ocean water. His results subjectively showed that
the sample exhibits the square law expressed in the dispersion
relation, but he did not extract any further measurements.

We propose to automatically find a scale factor in units
of pixels per meter, from an ocean video sequence. This scale
factor can then be used to find the real world size of objects in
the scene. The algorithm is summarized in Table III.

We can derive the expression for as follows. Since the de-
sired scale factor is in pixels/meter, we can start by finding the
ratio of the wavelengths measured in pixels (measured from the
video sequence) and in meters (in the real world)

(10)

TABLE III
SUMMARY OF ALGORITHM FOR DETERMINING

SCALE FROM FROM OCEAN VIDEO

Since the dispersion relation provides an association between
wavelengths in meters and wave periods, we can also write

(11)

The unknowns at this point are the wavelengths and periods,
both in units we can measure from the video sequence. Note
that does not just describe the relationship for one wavelength
and its corresponding period, but for all wavelengths. A two-
dimensional (2-D) Fourier transform is well suited to separate
the different wavelengths in each frame. To reduce the memory
requirements, we only collect a slice through the origin of the
FFT from each frame. The idea of using a slice of each frame
is not uncommon in video processing, and is used, for example,
in film classification [20]. This slice contains all of the spatial
frequencies that the FFT can measure, but in only one direction.
The direction of the slice is chosen by averaging the energy in
each direction in the first frame and choosing the angle with the
highest energy. If the energy is evenly distributed, the choice of
this direction does not make a big difference, but, if the waves
are highly directional, samples in a direction orthogonal to the
direction the waves are traveling may not contain enough energy
to be useful. Since, as discussed in Section II-C, the frequency
spectrum does not change rapidly, the dominant direction in the
first image should suffice for all the frames in the sequence. The
number of pixels in this slice will be denoted as .

We also need to operate on the time dimension of the data to
find the temporal periods for each spatial wavelength, i.e., how
long it takes for the phase of each spatial frequency to complete
a cycle. If we create a new image where column contains the
FFT slice from frame , the FFT of row will show the temporal
frequencies exhibited by waves with spatial wavelength

(12)

Within row , the magnitude of column will show the energy
of waves with period

(13)

where is the number of frames and is the frame rate. Sub-
stituting (12) and (13) in (11), we get

(14)
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TABLE IV
SUMMARY OF ALGORITHM FOR DETERMINING

SEA STATE FROM FROM OCEAN VIDEO

By rearranging terms, we see that the energy image should show
a parabola that intersects the origin

(15)

By fitting a parabola to the data, we can recover . More
specifically

(16)

where is the pixel value at row , column of the
energy image. We can then find , since all the other parameters
are known, as

(17)

IV. DETERMINING SEA STATE

The analysis in the previous section measures the differences
between the propagation speeds for different wavelengths, but
does not attempt to determine which wavelengths are present,
much less which wavelengths are the most prominent. By
finding the energy at the different wavelengths, we can deter-
mine the sea state, the size of the waves, and the wind velocity
that created them. The algorithm is summarized in Table IV.

Since we have the scale, we could find the power in each
spatial frequency in a single frame, then average the results of
multiple frames to find the dominant spatial frequency. With the
scale factor calculated according to Section III, this can be con-
verted to a wavelength in meters. However, wavelengths less
than two pixels or larger than the image size will not be cor-
rectly sampled. Even a modest Beaufort force 3 has a dominant
wavelength of 16 m, so the water would have to be sufficiently
distant for an image to cover multiple cycles of this wavelength.
If we use the temporal axis instead, that same 16-m wavelength
has a period of 3.2 s, so a 30-s video sequence would be able to
capture more than nine cycles of the dominant wave period, re-
gardless of the field of view. For this reason, our wave spectrum
analysis uses the temporal frequencies.

In theory, sampling a single pixel over time will provide the
temporal frequency spectrum. Averaging the spectrum for every
pixel in the frame will increase the accuracy of the estimate.
As a compromise, to keep memory requirements reasonable, we
sample a slice of the original image from each frame, in the same
direction as the slice of the FFT used for calculating the scale.
These slices are collected in an image with the coordinate
(horizontal) equal to the frame number and the coordinate
(vertical) based on the pixel location in the original video frame.

To find the temporal frequencies, we compute the FFT power
for each row, resulting in an image where the coordinate (row)
still represents the pixel location, and the coordinate (column)
shows the energy at a given temporal frequency. Averaging each
column results in a row vector showing the strength at each tem-
poral frequency. The wave period corresponding to each ele-
ment in the vector is given by (13), and the wavelength can be
computed from the period using (6).

We want to extract information about the sea state from this
energy spectrum. One way would be to find the peak period, then
use (9) to find the corresponding wind speed. However, noise
could easily distort the peak. Instead, we use the energy at all the
measured frequencies to find the wind speed that minimizes the
error between the Phillips spectrum model from (7) and our data
(this may not be the same as the current wind speed, since the
waves change much more slowly than the wind). More formally,
we want to find the wind speed , such that

(18)

where is the PSD measured from the video sequence as
a function of the wavenumber magnitude , and is the
Phillips spectrum from (7). At each value of , linear least
squares was used to find the Phillips amplitude that best fit
the data, which was then used to compute the error.

Once the wind speed is known, the Beaufort chart (Table II)
provides the probable wave heights and overall marine condi-
tions. Equations (8) and (9) can be used to find the dominant
wavelength and period, and (1) provides an upper limit on the
dominant wave height.

V. RESULTS

We tested this process on both synthetic and real sequences.
The synthetic sequences used Tessendorf’s inverse Fourier
transform technique [12], [13] to generate water scenes. Since
the synthetic data was created using the deep water disper-
sion relation and the Phillips frequency spectrum with known
parameters, experiments on the synthetic data verify that our
method can successfully extract these parameters. The real
sequences test whether the scale and sea state can also be
recovered under imperfect conditions in a real situation.

A. Synthetic Data

The steps in the process are illustrated in Fig. 2. All the syn-
thetic sequences used a 300 300 pixel viewport with a 30
field of view. The first synthetic sequence had a length of 60 s at
30 f/s (1800 frames). The viewpoint was positioned 50 m above
the water looking down. In this configuration, the 150 pixels in
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Fig. 2. Steps in the process for determining scale for a synthetic water sequence. All FFT magnitude plots actually show the log of the magnitude to make details
easier to see. All FFT phase plots show 0 as black and 360 as white. (a) First frame. (b) One column from each frame. (c) First frame FFT magnitude. (d) First
frame FFT phase. (e) Temporal magnitude image containing one column from the FFT of each frame. (f) Temporal phase image. (g) Magnitude of the FFT of the
temporal image. (h) Magnitude of the FFT of the rows of the raw collection image. (i) Energy at each temporal frequency.

half the field of view cover m, so the ground
truth for is 11.20 pixels/m. A wind speed of 2.6 m/s (about
5 knots) was used to generate the waves, which is typical of
Beaufort force 2. According to (9), this should correspond to a
peak wave period of 2.0 s.

Fig. 2(a) shows the first frame of the sequence.
Fig. 2(c) and (d) shows the magnitude and phase respectively
of Fig. 2(a). The zero frequency values are at the center of each.
The magnitude plot shows directionality of the waves, with the
majority of the energy concentrated at the lower frequencies
and most of the energy is in waves traveling vertically in the
video. The phase plot looks like random noise because random
phases were used to generate the frequency spectrum in the
simulation.

For each frame, a slice from the raw image and a slice from
the FFT of the frame were collected, both in the dominant di-
rection calculated from the first frame (vertical). Each accumu-
lated image is 300 pixels high (the slice length ) by 1800 pixels
wide (the number of frames ). The resulting raw image is
real and the first 500 frames are shown in Fig. 2(b). The FFT
image is complex. The magnitude and phase are depicted in
Fig. 2(e) and (f), respectively. Time increases from left to right in
both, and the lowest spatial frequencies are in the middle rows.
The horizontal stripes in the magnitude image show that the av-

erage energy of the waves having a given wavelength did not
change much over time. It also echoes the observation from the
single frame FFT magnitude, that most of the energy is at lower
spatial frequencies. In the phase image, 0 is shown as black and
360 is shown as white. While the phases at the various spatial
frequencies in the single image were random, Fig. 2(f) shows
that they change smoothly. More importantly, the lower frequen-
cies change more slowly than the higher frequencies. This was
predicted by the dispersion relation.

Finding the scale factor requires us to quantify the rate at
which the phases change for each spatial frequency, so we found
the FFT of each row. The magnitude of the result is shown
in Fig. 2(g). The brightest pixels form half a parabola through
the origin in the center of the image. The other half is missing
here because waves traveling in the direction opposite the wind
were suppressed in the simulation. The parabola that best fit this
image was found to be . This parabola is drawn
superimposed on Fig. 2(g). The integer multiples, or harmonics,
of the base frequencies can also be seen in the plot. Using (17),
we find pixels/m, which is very close to the ground
truth value of 11.20 pixels/m, with an error of 0.36%.

To quantify the sea state, we need to find the wind speed that
best fits our data. The magnitude of the FFT in the time dimen-
sion, along the rows of Fig. 2(b), is shown in Fig. 2(h). The ver-
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TABLE V
RESULTS FROM SYNTHETIC SEQUENCES

tical stripes indicate that the energy spectra at each measured
pixel were similar. Averaging each column produces the energy
at each temporal frequency, and is shown in Fig. 2(i). The best
wind speed was calculated to be 2.2 m/s (4.3 knots), 15% away
from the 2.6 m/s expected. This was found by using (18) to test
wind speeds from 0.5 to 25.0 m/s at increments of 0.1 m/s. The
Phillips spectrum generated by a wind speed of 2.2 m/s is also
shown in Fig. 2(i).

This wind speed is consistent with sea state 2 on the Beaufort
scale. Table II leads us to expect wave heights less than a foot
(0.3 m). Equations (8) and (9) show that the peak wavelength
should be 4.4 m, and the peak wave period should be 1.7 s. The
wave steepness from (1) limits the maximum wave height to
0.44 m.

The analysis was done on simulated oceans ranging from sea
state two through sea state six. The results are summarized in
Table V. In all of these trials, analysis of the synthetic data yields
a scale factor within 8% and wind speed within 15% of the
ground truth values. This validates our premise that this algo-
rithm can recover these quantities from ocean video.

To test the robustness to noise, we added random zero mean
Gaussian noise to each 8-bit channel of the sea state 2 synthetic
video, with the standard deviation of the noise varying from 10
to 100. The recovered scale and wind speed varied by only 2%,
indicating that the method is not sensitive to noise.

B. Real Data

In the real world, it is difficult to capture ocean video with a
stationary camera from directly overhead. For the first sequence,
dubbed “surfer1,” perspective correction was applied to video
acquired using a tripod on a pier to generate an overhead view.
The visible horizon and knowledge of the camera focal length
facilitates calculation of the camera slant angle [21], which, in
this case, was 80 (10 below the horizon). Fig. 3(a) shows
the first frame of the first real sequence, and Fig. 3(b) shows
the overhead view generated. The resolution of the corrected
view is 360 360 pixels, and the video is 45 s (1363 frames)
long. There is a surfer in the center of the raw image, which is
at the top edge of Fig. 3(b), and was used to verify our scale
calculation. The length of the surfboard in the video is
pixels, and the board was estimated to be 8 or 9 ft (2.4 to 2.7 m)
long. This gives a ground truth scale factor of between 16.3 and
20.0 pixels/m for this video.

Fig. 3(d) shows the FFT of Fig. 3(b). The dominant direction
in the first frame was found to be 18 from horizontal, which
agrees with the observation that the waves primarily traveled
from left to right in the images, toward the shore. Fig. 3(e) and

(f) depict changes in the magnitude and phase respectively of
the slices over the first 500 frames. The magnitude image shows
the maximum magnitude at one cycle per image in each frame,
with the magnitude decreasing as the frequency increases, indi-
cating that the field of view (or the portion of it used in the per-
spective correction) was probably not wide enough to capture
the actual peak spatial frequency. This is not a problem, since
we use the temporal frequencies to find the peak frequency. The
phase image clearly shows the phase offset between the top half
(positive frequencies) and bottom half (negative frequencies).
It also shows that the phase changes more slowly in the rows
closer to the center (i.e., lower frequencies). The magnitude of
the FFT of the rows the temporal image and the best fit parabola
are shown in Fig. 3(g). The parabola is not as obvious, but is vis-
ible near the center. The scale factor found by fitting a parabola
was pixels/m. This agrees with our estimate using the
surfboard length, which was 16.3 to 20.0 pixels/m.

Fig. 3(c) shows a column from each of the first 500 frames
of the raw sequence, with time increasing from left to right.
The next step of our algorithm for determining the sea state
requires finding the FFT of each row of this image. The mag-
nitude of the result in shown in Fig. 3(h), with the lowest fre-
quencies in the center columns. The column averages are dis-
played in Fig. 3(i). The wind speed that fits this data the best is
2.3 m/s (4.5 knots), and the corresponding Phillips spectrum is
also shown in Fig. 3(i). The dominant wavelength is, therefore,
4.8 m, and the wave period is 1.8 s.

We were able to recover this peak period from the temporal
dimension, even though a single frame did not cover enough
area to capture this peak wavelength. This is because the time
dimension spanned 45 s, or 25 cycles of the peak period. The
spatial dimension only covered 20 m (360 pixels/18.1 pixels/m),
which is four cycles of the peak wavelength.

A wind speed of 4.5 knots qualifies as Beaufort force 2. This
is consistent with the observations of the day, where breaking
waves were rare (the surfer did not find any suitable waves
before leaving). Wave heights can be expected to be less than
0.3 m, according to the Beaufort scale, and wave steepness
limits the wave heights to 0.36 m.

To validate our claim that the direction used for the slice is
not critical, we processed the sequence using a variety of dif-
ferent directions. The scale factor calculated for each is shown
in Table VI. For directions between and , all scale
factors are within 10% of the expected range. It is only the direc-
tions nearly orthogonal to the dominant direction that produce
erroneous results.

An additional sequence, “surfer2,” filmed immediately after
“surfer1,” with doubling the zoom factor as the only change,
produced a scale factor of 9.2 pixels/m and the same wind speed
of 2.3 m/s. The scale factor is half of that for the “surfer1” se-
quence, which is the expected result when the field of view is
cut in half. Since the water did not change, the same wind speed
was found.

The next real sequence, named “east1,” was recorded on the
same day, and from the same pier as before, facing out to sea
toward the east. The camera was on a tripod braced against the
pier railing and tilted down 60 to 70 from horizontal. This was
as close to vertical as we could get while keeping the pier itself
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Fig. 3. Determining scale for the ”surfer1” ocean sequence. The surfboard visible in the first frame was used to validate the results. (a) First frame. (b) Overhead
view. (c) One column from each of the first 500 frames. (d) First frame FFT magnitude. (e) Temporal magnitude image containing one column from the FFT of the
first 500 frames. (f) Temporal phase image. (g) Magnitude of the FFT of the temporal image. (h) Magnitude of the FFT of the rows of the raw collection image.
(i) Energy at each temporal frequency.

TABLE VI
SCALE FOR THE “SURFER1” SEQUENCE FOR VARIOUS SLICE DIRECTIONS

out of the camera field of view. No perspective correction was
used. Due to the optical characteristics of the water, the waves
are less well defined in this video, and there is more sun glint.
The physical patch of water observed is much smaller, but the
analysis was still able to find the scale factor. We used the first
60 s of the video, so the sequence length was 1800 frames.

Fig. 4(a) shows the first frame of the video. The magnitude
and phase of the FFT of this image are in Fig. 4(c) and (d).

The FFT magnitude looks very similar to the previous sequence,
which was expected since the statistical properties of the water
change very slowly. Fig. 4(e) and (f) shows the magnitude and
phase of the temporal image. The longer periods at lower fre-
quencies in Fig. 4(f) are only visible in the lowest frequency
rows. Fig. 4(g) shows the magnitude of the FFT of the rows of
the temporal image (a slice from the 3-D FFT). We have drawn
the best fitting parabola in the top half. The resulting scale factor
is 74.6 pixels/m, and this is consistent with the experimental
setup.

To determine the sea state, we collected a slice from each raw
frame, shown in Fig. 4(b). The temporal frequencies in each row
are shown in Fig. 4(h), and the average energy at each temporal
frequency over all the rows is plotted in Fig. 4(i). The calculated
wind speed is 2.5 m/s (4.9 knots), which differs from the value
found in the previous video by less than 10%, and still qualifies
as Beaufort force 2. The dominant wavelength is 5.7 m and the
dominant wave period is 1.9 s. The Beaufort scale leads us to
expect wave heights around 0.3 m, and the wave steepness limits
the most common waves to 0.57 m.
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Fig. 4. Determining scale for the “east1” ocean sequence. (a) First frame. (b) One column from each frame. (c) First frame FFT magnitude. (d) First frame FFT
phase. (e) Temporal magnitude image containing one column from the FFT of each frame. (f) Temporal phase image. (g) Magnitude of the FFT of the temporal
image with the best parabola superimposed in one half. (h) Magnitude of the FFT of the rows of the raw collection image. (i) Energy at each temporal frequency.

The “surfer1” and “east1” sequences had very different visual
appearance due to changes in the view angle and sun angle. The
first sequence had a wave pattern that was easy to see, whereas
the second sequence showed mostly sun glint. Our method for
finding the scale factor gave reasonable results in both cases,
and our analysis of the sea state produced comparable results
for both, in spite of the large visual differences.

VI. DISCUSSION

The methods proposed here work in a wide variety of con-
ditions, but as with most things, there are limits. The sequence
must have a frame rate fast enough to capture the temporal fre-
quencies present in the current sea state without aliasing, and be
long enough to cover a number of cycles of these frequencies.
The dominant periods range from 2 s for sea state 2 to 20 s from
sea state 10. In sea state 2, the wave periods with significant en-
ergy range from 1 to 3 s. According to the Nyquist–Shannon
sampling theorem, we need a sampling rate double the highest
frequency to recover the frequency spectrum, which is 2 Hz. for
this case. For reliable results, the sequence should cover at least
20 cycles of the dominant period, which translates to a minimum
length of 40 s for seastate 2, increasing to 400 s for seastate 10.

We tested various shorter clips from the sea state 2 synthetic
video, and found that the scale could still be recovered within
16% of the ground truth value for durations as short as 4 s (twice
the dominant period). The calculated wind speed varied by as
much as 36% from the ground truth for durations of more than
5 s.

In the spatial domain, the dominant wavelengths vary from
6 m in seastate 2 to 600 m in seastate 10. Within seastate 2,
the wavelengths with significant energy range from 1 to 12 m.
Video with at least 2 pixels/m should avoid spatial aliasing at
all sea states. Since the peak wavelength is derived from the
peak period using the temporal domain, there are no require-
ments for the camera field-of-view to cover a specified number
of wavelengths.

We tested the robustness of the method to the scale factor
by generating synthetic sequences for sea state 2 from a range
of altitudes such that ranged from half a pixel per meter to
over 100 pixels/m. The errors in the recovered scale factor were
less than 2% for < 40, but got worse as increased beyond
40. We attribute these errors at low altitudes to fewer spatial
wavelengths being visible in each frame and the polygons in
the synthetic model getting larger.
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Our procedure does not require excessive amounts of
memory. One minute of uncompressed video at a modest
300 300 resolution adds up to over 160 million pixels. When
8 bytes are needed for each pixel (32-bit floats for both the real
and imaginary parts) and multiple copies are required (source
and destination of an operation), the memory capacity of even
high-end machines can quickly be exceeded if all the data is
required at once (such as for a 3-D FFT). Since we operate
on one frame at a time and accumulate intermediate results
in a 2-D image, we can handle higher resolutions and longer
durations of video without running out of memory.

More precisely, the storage requirements of our algorithm are
order , where is the number of pixels in a slice and
is the number of frames in the sequence. This is the size of the
accumulated FFT image used to find the scale, as well as the size
of the collected strips used to find seastate. Subsequent FFTs of
these image in both algorithms produce results of the same size.

As for computational complexity, the scale calculation is
dominated by finding the 2-D FFT of each frame. FFT in one
dimension is , where is the number of elements.
FFT in 2-D consists of a one-dimensional (1-D) FFT for each
row, followed by a 1-D FFT for each column, or ,
for an image. Performing this operation times pro-
duces a computational complexity of for finding
the scale. Sea state computation requires an FFT on each of

rows, each having elements, resulting in
(remember, is the number of pixels in a slice, and varies from

to , depending on the direction of the slice).

VII. CONCLUSION

We have used Fourier transforms to exploit the dispersion re-
lation property of water waves to find the real world scale (in
pixels per meter) for synthetic and real sequences with no prior
camera calibration. This well-known (in oceanography circles)
equation quantifies the square relationship between the wave-
length and period of a wave. We used the known time axis of the
video to find the unknown scale of the scene. The results were
validated by the ground truth in the synthetic case, and known
scene geometry for the real sequences. We are not aware of any
previous work in the image processing community that has used
the dispersion relation to recover the scale.

In addition, we used the temporal frequency spectrum to-
gether with known stochastic models of ocean frequency spectra
to determine the sea state, including the dominant wavelength
and period, the wind speed that created the waves, and the prob-
able wave height. All of these properties were recovered from
the video with no prior knowledge of the camera parameters or
scene geometry.

This process can be used in tasks such as coastal surveillance
to determine the size of ships, or in marine research to find the
size of objects in an ocean surface video when no scale reference
is available.

Ocean scene analysis is not as specialized a field as it first
appears, due to the abundance of ocean on our planet, and the
importance of security and monitoring of coastlines, since they
usually coincide with international borders. We have used prop-
erties that are unique to water for this process, but we seek to

contribute to the overall effort of understanding dynamic nat-
ural phenomena.
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