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Abstract—Occlusion and lack of visibility in crowded and cluttered scenes make it difficult to track individual people correctly and

consistently, particularly in a single view. We present a multiview approach to solve this problem. In our approach, we neither detect

nor track objects from any single camera or camera pair; rather, evidence is gathered from all of the cameras into a synergistic

framework and detection and tracking results are propagated back to each view. Unlike other multiview approaches that require fully

calibrated views, our approach is purely image-based and uses only 2D constructs. To this end, we develop a planar homographic

occupancy constraint that fuses foreground likelihood information from multiple views to resolve occlusions and localize people on a

reference scene plane. For greater robustness, this process is extended to multiple planes parallel to the reference plane in the

framework of plane to plane homologies. Our fusion methodology also models scene clutter using the Schmieder and Weathersby

clutter measure, which acts as a confidence prior, to assign higher fusion weight to views with lesser clutter. Detection and tracking are

performed simultaneously by graph cuts segmentation of tracks in the space-time occupancy likelihood data. Experimental results with

detailed qualitative and quantitative analysis are demonstrated in challenging multiview crowded scenes.

Index Terms—Tracking, sensor fusion, graph-theoretic methods.

Ç

1 INTRODUCTION

TRACKING multiple people accurately in cluttered and
crowded scenes is a challenging task primarily due to

occlusion between people. If a person is visually isolated
(i.e., neither occluded nor occluding another person in the
scene), it is much simpler to perform the tasks of detection
and tracking. This is because the physical attributes of the
person’s foreground blob, like color distribution, shape, and
orientation, remain largely unchanged as he/she moves.
Increasing the density of objects in the scene increases
interobject occlusions. A foreground blob is no longer
guaranteed to belong to a single person and may belong to
several people in the scene. Even worse, a person might be
completely occluded by other people. Under such condi-
tions of limited visibility and clutter, it might be impossible
to detect and track multiple people using only a single view.
The next logical step is to use multiple views of the same
scene in an effort to recover information that might be
missing in a particular view. In this paper, we propose a
multiview approach to detect and track multiple people in
crowded and cluttered scenes. We are interested in
situations where the scene is sufficiently dense that partial
or total occlusions are common and it cannot be guaranteed
that any person will be visually isolated. Fig. 1 shows
several examples of crowded scenes that we used to test our
approach. Notice that very few people are viewed in
isolation and there are cases of near total occlusion.

In our approach, we do not use color models or shape
cues of individual people. We neither detect nor track
objects in any single camera, or camera pair; rather,
evidence is gathered from all the cameras into a synergistic
framework, and detection and tracking results are propa-
gated back to each view. Our method of detection and
occlusion resolution is based on geometrical constructs and
requires only the distinction of foreground from back-
ground, which is obtained using standard background
modeling techniques. At the core of our method is a planar
homographic occupancy constraint [27] that combines
foreground likelihood information (probability of a pixel
in the image belonging to the foreground) from different
views to resolve occlusions and determine regions on scene
planes that are occupied by people. The homographic
occupancy constraint interprets foreground as scene occu-
pancy by nonbackground objects (in effect using cameras as
occupancy sensors) and states that pixels corresponding to
occupancies on a reference plane will consistently warp
(under homographies of the reference plane) to foreground
regions in every view. The reason we use foreground
likelihood maps instead of binary foreground maps is to
delay the thresholding step to the last possible stage.
Starting from a reference scene plane, the homographic
occupancy constraint is applied using multiple planes
parallel to the reference plane to robustly localize scene
objects. This added step significantly reduces false positives
and missed detections due to artifacts like shadows, or
when it cannot be guaranteed that a single plane will
consistently be occupied by scene objects.

To track, we obtain object scene occupancies for a window
of time and stack them together, creating a space-time
volume. Occupancies belonging to the same person form
contiguous spatio-temporal regions that are clustered using a
graph cuts segmentation approach. This is achieved by
designing an energy functional that combines scene occu-
pancy information and spatio-temporal proximity. The
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energy functional is minimized over the spatio-temporal
grid using graph cuts that result in the segmentation of
contiguous spatio-temporal clusters. Each cluster is the
track of a person and a slice in time of this cluster gives
the tracked location.

We assume that at least one reference scene plane is visible
in the views. This is a reasonable assumption in typical
surveillance installations which are monitoring people in
busy crowded places where usually the ground plane or a
planar structure like a building wall is visible. Such planar
structures usually occupy a large enough image region to be
automatically detected and aligned using robust methods of
locking onto the dominant planar motion. Homographies
induced by the reference plane between views are computed
using SIFT feature matches and employing the RANSAC
algorithm. Homographies of planes parallel to the reference
plane are obtained in the framework of plane-to-plane
homologies, using the vanishing point of the direction normal
to the reference plane. The result is that our approach is
purely image based and performs fusion in the image plane
without requiring to go in 3D space, and thus eliminating the
need for fully calibrated cameras.

The rest of this paper is structured as follows: In
Section 2, we discuss related work. Section 3 details the
observation and theory behind the homographic occupancy
constraint. In Section 4, we present our algorithm that uses
the homographic occupancy constraint to localize people on
multiple planes in the scene. Section 5 describes our
tracking methodology. Section 6 details our experiments
and results providing insight into the utility and efficiency
of our method. We conclude this paper in Section 7.

2 RELATED WORK

In this section, we provide context for the proposed
approach in the backdrop of previous work. Broadly
speaking, the literature on tracking multiple occluding
targets in cluttered scenes can be divided into two
categories: monocular approaches and multiview ap-
proaches, some of which are described below. For a detailed
review of the state of the art in tracking research, the reader
is referred to the recent survey by Yilmaz et al. [61].

2.1 Monocular Approaches

There is extensive literature on single-camera detection and
tracking algorithms for multiple targets. This approach has

the inherent advantage of simple and easy deployment, but
has to rely on limited 3D information in a single view.

Blob tracking is a popular low-cost approach for tracking
objects [17], [16]. It entails extracting blobs in each frame,
and tracking is performed by associating blobs from one
frame to the next. The BraMBLe system [21], for example,
is a multiblob tracker that generates a blob-likelihood based
on a known background model and appearance models of
the tracked people. Its performance degrades when multi-
ple objects merge into one blob due to proximity or
occlusions. Alternate approaches maintain explicit object
states with position, appearance, and shape. Zhao and
Nevatia [63], [64] present interesting results when tracking
multiple people with a single camera. They use articulated
ellipsoids to model human shape, color histograms to
model different people’s appearance, and an augmented
Gaussian distribution to model the background for seg-
mentation. Once moving head pixels are detected in the
scene, a principled MCMC approach is used to maximize
the posterior probability of a multiperson configuration.
This concept of global trajectory optimization was pre-
viously explored in [30] and more recently in [2]. It also
forms the basis of our tracking formulation; however, there
is an important difference. Our approach utilizes fusion of
multiple views at multiple scene planes and trajectory
optimization on scene occupancy probabilistic data that
combines the task of detection and tracking seamlessly.

Okuma et al. [40] propose a noteworthy combination of
Adaboost for object detection and particle filters for multi-
ple-object tracking. The combination of these two ap-
proaches leads to fewer failures than either one on its
own, as well as addressing both detection and consistent
track formation in the same framework. Brostow and
Cipolla [5] present a probabilistic framework for the
clustering of feature point trajectories to detect individual
pedestrians in a crowd. These and other similar approaches
like [28], [36], [47], [54] skip the modeling of articulations in
favor of appearance models trained for specific unoccluded
views of their respective subjects. As a result, they are
challenged by fully and partially occluding objects, as well
as appearance changes.

A number of monocular tracking techniques have been
devised for handling occlusions. The typical approach is to
detect the occurrence of occlusion by blob merger [17]. The
methods for tracking feature points simply detect the
occlusion of a feature point as the disappearance of the
point being tracked [53]. In recent years, tracking techni-
ques using object contours [62], [34] and appearances [59],
[20], which represent and estimate occlusion relationships
between objects by using hidden variables of depth
ordering of objects toward the camera, have been proposed.
Wu et al. [59] incorporate an additional hidden process for
occlusion into a dynamic Bayesian network and rely on the
statistical inference of the hidden process to reveal occlu-
sion relations. Senior et al. [52] use appearance models to
localize objects and use disputed pixels to resolve their
depth ordering during occlusions. However, the system
cannot maintain object identity after occlusions. Jojic and
Frey [23] and Tao et al. [56] both model videos as a layered
composition of objects and use EM to infer object’s
appearances and motions. Recently, Perera et al. [44]
proposed a two-stage framework, which involves one-to-
one correspondence followed by a split and merge analysis,
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Fig. 1. Examples of cluttered and crowded scenes used to test our

approach. For illustration purposes, only one view for each scene is

shown.
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for linking tracks across occlusions. Most of the aforemen-
tioned approaches rely on partial observations, which
makes it difficult to handle full occlusions. In addition,
small and consistent motions are assumed to predict the
motion patterns of objects through occluded views. This
causes problems in dealing with long periods of occlusions
of an object under unpredictable motions. In spite of the
current body of knowledge, we believe monocular methods
have limited ability to handle occlusions involving several
objects, generally two or three, because the single viewpoint
is intrinsically unable to observe the hidden areas.

2.2 Multicamera Approaches

The use of multiple cameras soon becomes necessary when
one wishes to accurately detect and track multiple occlud-
ing people and compute their precise locations in a complex
environment. Multiview tracking techniques intend to
decrease the hidden regions and provide 3D information
about the objects and the scene by making use of redundant
information from different viewpoints.

In [25], Kelly et al. constructed a 3D environment model
using the voxel feature. Humans were modeled as a
collection of these voxels to resolve the camera-handoff
problem. In [50], Sato et al. use CAD-based environment
models to extract 3D locations of unknown moving objects.
Jain and Wakimoto [22] also utilized calibrated cameras to
obtain 3D locations of each object in an environment model
for the Multiple Perspective Interactive Video. These works
were characterized by the use of environment models and
calibrated cameras. Multitarget tracking by association
across multiple views was addressed in a series of papers
from the latter half of the 1990s. In [38], Nakazawa et al.
constructed a state transition map that linked regions
observed by one or more cameras, along with a number
of action rules to consolidate information between cameras.
Orwell et al. [41] present a tracking algorithm to track
multiple objects in multiple views using “color” tracking.
They model the connected blobs obtained from background
subtraction using color histogram techniques and use them
to match and track objects. Cai and Aggarwal [6] extend a
single-camera tracking system by starting with tracking in a
single camera view and switching to another camera when
the system predicts that the current camera will no longer
have a good view of the subject. Spatial matching was based
on the euclidean distance of a point to its corresponding
epipolar line. In [24], individuals are tracked both in image
planes and top view using a combination of appearance and
motion models. Bayesian networks were used in several
papers as well. In [7], Chang and Gong used Bayesian
networks to combine geometry (epipolar geometry, homo-
graphies, and landmarks) and recognition (height and
appearance) based modalities to match objects across
multiple sequences. Bayesian networks were also used by
Dockstader and Tekalp in [10], to track objects and resolve
occlusions across multiple calibrated cameras. Integration
of stereo pairs is another popular approach, adopted by
[31], [37], [9], [1] among others. Krumm et al. [31] use stereo
cameras and combine information from multiple stereo
cameras in 3D space. They perform background subtraction
and then detect human-shaped blobs in 3D space. Color
histograms are created for each person and are used to
identify and track people. Mittal and Larry [37] use a
similar method to combine information in pairs of stereo

cameras. Regions in different views are compared with each
other, and back projection in 3D space is done in a manner
that yields 3D points guaranteed to lie inside the objects.

Although these methods attempt to resolve occlusions,
the underlying problem of using features (appearance
templates, blob shapes) that might be corrupted due to
occlusions remains. Second, occlusion reasoning in these
approaches is typically based on temporal consistency in
terms of a motion model, whether it is Kalman filtering or
more general Markov models. As a result, these approaches
may not be able to recover if the process begins to diverge.
The scenes shown in Fig. 1 would be difficult to resolve for

the majority of these methods. As well as cases of near total
occlusion, the people are dressed in very similar colors.
Using blob shapes or color distributions for region match-
ing across cameras may lead to incorrect segmentations and
detections.

The homographic occupancy constraint [27] presented in
this paper fuses information from multiple views using
sound geometrical constructs and resolves occlusions by
localizing people on multiple scene planes. We essentially
attempt to find image locations of scene points that are
guaranteed to be occupied by people. These occupancies are
then used to resolve occlusions and track multiple people.
In this context, the work by Mittal and Larry [37], Franco
and Boyer [12], Berclaz et al. [2], Yang et al. [60], and the
parallel work on range sensor-based occupancy grids for
robot navigation is quite relevant [11], [57]. However,
unlike these approaches, which fuse information in 3D
space requiring calibrated cameras, our approach is com-
pletely image based and requires only 2D constructs like
planar homographies to perform fusion in the image plane

without requiring to go in 3D space.
Alternative approaches to homography-based tracking

by Kalman and particle filtering were presented in [19] and
[29], respectively. The authors in [19] extracted the principal
axes of upright humans tracked in each view and then
combined multiple views using planar homographies.
Homography-based 2D segmentation and tracking of
objects has also been studied in the intelligent transporta-
tion domain, for instance, the recent work by Park and
Trivedi [42], [43]. They propose to combine multiple view
data, which is then augmented with contextual domain
knowledge for the analysis and query of person-vehicle
interactions for situational awareness and pedestrian safety.
In [26], Khan and Shah proposed an approach that avoided
explicit calibration of cameras and instead utilized con-
straints on the field of view (FOV) lines between cameras,
learned during a training phase, to track objects across the
cameras. These and similar techniques track objects in
individual uncalibrated views and then create associations
across views for better localization; this approach declines
with increasing densities of scene objects. We neither
localize nor track people from any single camera, or camera
pair; rather, evidence is gathered from all the cameras into a
unified synergistic framework where occlusion resolution,
detection, and tracking are performed simultaneously. The
detection and tracking results are then propagated back to
each view.
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3 HOMOGRAPHIC OCCUPANCY CONSTRAINT

Consider a scene containing a reference plane being viewed
by a set of wide-baseline stationary cameras. The back-
ground models in each view are available and, when an
object appears in the scene, it can be detected as foreground
in each view using background difference. Any scene point
lying inside the foreground object in the scene will be
projected to a foreground pixel in every view. This also
applies for scene points inside the object that lie on the
reference plane except, however, that the projected image
locations in each view will be related by homographies
induced by the reference plane. We can state the following:

Proposition 1. If 9P 2 R3 such that it lies on scene plane � and
is inside the volume of a foreground object, then the image
projections of the scene point P given by p1; p2; . . . ; pn in any
n views satisfy both of the following:

. 8i, if �i is the foreground region in view i, then
pi 2 �i.

. 8i;jpi ¼ ½Hi�j�pj, where Hi�j is the homography
induced by plane � from view j to view i.

Warping a pixel from one image to another using the
homography induced by a reference scene plane amounts to
projecting a ray through the pixel onto the piercing point
(point where the ray intersects the reference plane) and then
projecting it to the second camera center. If the pixel’s
piercing point is inside (occupied by) a foreground object in
the scene, it follows from Proposition 1 that the pixel will
warp to foreground regions in all views. This can be
formally stated as follows:

Proposition 2. Let � be the set of all pixels in a reference view r
and let Hi�r be the homography of plane � in the scene from the
reference view to view i. If 9p 2 � such that the piercing point
of p with respect to � lies inside the volume of a foreground
object in the scene, then 8ip0i 2 �i, where p0i ¼ ½Hi�r�p and �i

is the foreground region in view i.

We call Proposition 2 the homographic occupancy constraint
[27]. Notice that this does not distinguish between fore-
grounds in different views that may correspond to different
objects. It is essentially using camera sensors as scene
occupancy detectors with foreground interpreted as occu-
pancy in the line of sight of the image sensor. Although the
foreground regions associated across views may corre-
spond to different scene objects (specifically the nearest
foreground object in the line of sight of the particular image
sensor), the homographic occupancy constraint insures that
they all correspond to the same scene occupancy.

This has the dual action of localizing people in the scene
as well as resolving occlusion, which is described in Fig. 2.
Fig. 2a shows a scene containing a person viewed by a set of
cameras. The foreground regions in each view are shown as
white on a black background. A pixel which is the image of
the feet of the person will have a piercing point on the
ground plane (the reference plane for this example) that is
inside the volume of the person. According to the
homographic occupancy constraint, such a pixel will be
warped to foreground regions in all views. This is
demonstrated by the pixel in view 1 of Fig. 2a that has a
blue ray projected through it. Foreground pixels that do not
satisfy the homographic occupancy constraint are images of

points off the ground plane. Due to plane parallax, they are
warped to background regions in other views. This is
demonstrated by the pixel with a red ray projected through
it. Fig. 2b shows how the homographic occupancy con-
straint would resolve occlusions. The blue person is
occluding the green person in view 1. This is apparent by
the merging of their foreground blobs. In such a case, there
will be two sets of pixels in view 1 that satisfy the
homography constraint. The first set will contain pixels
that are image locations of blue person’s feet (same as in
Fig. 2a). The other set of pixels is those that correspond to
the blue person’s torso region, but are occluding the feet of
the green person. Even though these pixels are image
locations of points off the ground plane, they have piercing
points inside a foreground object, which in this case is the
green person. This process creates a seemingly translucent
effect detecting feet regions even if they are completely
occluded by other people. Clearly, having more people
between the blue and the green person will not affect the
localization of the green person on the ground plane.

It should be noted that the homographic occupancy
constraint is not limited to the ground plane and, depend-
ing on the application, any plane in the scene could be used.
In the context of localizing people in a surveillance scenario,
the ground plane is typically a good choice if it is clearly
visible. In other scenarios, a building wall or any planar
landmark can be used as the reference plane. In the next
section, we develop an operator that uses this approach to
localize people on a reference plane.

4 LOCALIZING PEOPLE

Let �1;�2; . . . ;�n be the images of the scene obtained from n
uncalibrated cameras. Let �r be a reference view. Hi�r is
homography of the reference plane � between the reference
view and any other view i. Using homographyHi�r, a pixel p
in the reference image is warped to pixel p0i in image �i. Let
x1; x2; . . . ; xn be the observations in images �1;�2; . . . ;�n at
locations p01; p

0
2; . . . ; p0n, respectively, (i.e., xi ¼ �iðp0iÞ). Let X

be the event that pixel p has a piercing point inside a
foreground object (i.e., p represents the reference plane �
location of a foreground object in the scene). Given
x1; x2; . . . ; xn, we are interested in finding the probability
of event X happening, i.e., P ðXjx1; x2; . . . ; xnÞ.
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Fig. 2. The figure shows people viewed by a set of cameras. The views
show the foreground detected in each view. For (a), the blue ray shows
how the pixels that satisfy the homographic occupancy constraint warp
correctly to foreground in each view, while others have plane parallax
and warp to background. (b) demonstrates how occlusion is resolved in
view 1. Foreground pixels that belong to the blue person but are
occluding the feet region of the green person satisfy the homographic
occupancy constraint (the green ray). This seemingly creates a see-
through effect in view 1, where the feet of the occluded person can be
detected.
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Using Bayes law

P ðXjx1; x2; . . . ; xnÞ / P ðx1; x2; . . . ; xnjXÞP ðXÞ: ð1Þ

The first term on the right-hand side of (1) is the likelihood of
making observation x1; x2; . . . ; xn, given eventX happens. By
conditional independence, we can write this term as

P ðx1; x2; . . . ; xnjXÞ ¼ P ðx1jXÞ � P ðx2jXÞ � . . .� P ðxnjXÞ:
ð2Þ

Now, the homographic occupancy constraint states that if a
pixel has a piercing point inside a foreground object, then it
will warp to foreground regions in every view. Therefore, it
follows that

P ðxijXÞ / LðxiÞ; ð3Þ

where LðxiÞ is the likelihood of observation xi belonging to
the foreground. Plugging (3) into (2) and back into (1), we get

P ðXjx1; x2; . . . ; xnÞ /
Yn
i¼1

LðxiÞ: ð4Þ

The value of P ðXjx1; x2; . . . ; xnÞ given by (4) represents
the likelihood of the scene location being occupied by the
foreground object. In effect, we are hypothesizing in the
reverse direction by reasoning about scene occupancies
from the fusion of scene observations.

4.1 Modeling Clutter and FOV Constraints

So far, we have assumed the scene point under examination
is inside the FOV of each camera, limiting our analysis to
overlapping region of the multiview setup. Also, the fusion
operation in (4) assigns uniform prior precedence to each
view. Due to the varying amounts of clutter in a particular
view, the degree of confidence in foreground detection will
be effected. Clutter may cause false detections or miss the
foreground in some cases. Therefore, in this section, we
propose to use a measure of clutter, in order to weigh the
foreground likelihood information detected from different
views in our fusion model.

Schmieder and Weathersby [51] proposed the concept of
an RMS clutter metric of the spatial-intensity properties of
the scene. Due to its robustness and applicability, it is one of
the most commonly used clutter measures. Experimental
results that have been reported in the literature [51], [49]
show a high correlation between the average target
detection time by human subjects and the Schmieder and
Weathersby (SW) clutter metric. The SW clutter metric is
computed by averaging the variance of contiguous square
cells over the whole image:

C ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
k¼1

�2
k

vuut ; ð5Þ

where �2
k is the variance of pixel values within the kth cell,

and N is the number of cells or blocks the picture has been
divided into. Typically, N is defined to be twice the length
of the largest target (in our case, humans) dimension. We
compute the clutter metric for each view at each time
instant on the foreground likelihood maps obtained from
background modeling (for each pixel, the likelihood of
being foreground); therefore, �2

k in (5) is the variance of
foreground likelihood values in the kth cell. Fig. 3 shows

some of the views of data sets used in our experiments (first
row), their corresponding foreground likelihood maps
(second row), and the SW clutter values obtained from
them. As illustrated by Fig. 3, the views with more noise
and clutter in the foreground likelihood maps have a
greater SW clutter metric value.

In order to assign higher confidence to foreground
detected from views with lesser clutter, we use the
following method. For each foreground likelihood map i,
we use clutter Ci, computed using (5) as its prior weight in
the log likelihood of the fusion operation in (4):

log P ðXjx1; x2; . . . ; xnÞð Þ /
Xn
i¼1

1

�Ci
log LðxiÞð Þ; ð6Þ

where � ¼
P

i
1
Ci

is a normalizing factor. The effect of
modeling clutter on the performance of our approach is
further discussed in the results and experiments section.

Though (6) ensures that the evidence from all available
views is combined to maximize the certainty in the
localization hypothesis, it also assumes that the region of
space under analysis is inside the overlapping FOV of all
cameras. If a scene point is outside the FOV of one or more
cameras, the missed detection causes the remaining,
possibly correct detections from other views to be dis-
carded. This obvious problem is corrected by modifying the
fusion operator as

log P ðXjx1; x2; . . . ; xnÞð Þ / �i�ðxiÞð Þ
Xn
i¼1

1

�Ci
�ðxiÞ; ð7Þ

where

�ðxÞ ¼ 1 if x inside image dimensions;
0 otherwise;

�

and

�ðxÞ ¼ logðLðxÞÞ if �ðxÞ ¼ 1;
0 otherwise:

�

The form of (7) ensures that if a scene point is outside the
FOV of a camera, that particular view will not effect the
fusion results. Also, the normalizing term �i�ðxiÞ guaran-
tees higher confidence in regions with greater view overlap.

A pixel p in a reference view can be classified as an image
of the reference scene plane localization of an object if the
occupancy likelihood given by (7) is above a threshold. In
the case foreground objects are people and the reference
scene plane is the ground plane, pixel p will correspond to
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Fig. 3. The first row shows images from two of our test sequences (two
views each). The second row shows foreground likelihood maps for
views in the first row, where redder corresponds to greater foreground
likelihood. The SW clutter metric is computed on these foreground
likelihood maps. It can be visually corroborated that views with noisy
foreground likelihood maps have higher clutter value.
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the feet of a person in the scene. Since pixel p and its
warped locations in other views p01; p

0
2; . . . ; p0n all have the

same piercing point, they all correspond to the same
location on the reference scene plane. Therefore, by finding
p in the reference view that satisfies the homographic
occupancy constraint, we have in fact, localized the
particular person in all views (i.e., p01; p

0
2; . . . ; p0n). This

strategy implicitly resolves the issue of correspondences
across views and makes the choice of reference view
irrelevant (chosen arbitrarily).

4.2 Localization at Multiple Planes

As pointed out earlier, the homographic occupancy con-
straint is not limited to any single plane in the scene. In fact,
fusion can be performed on multiple planes to increase
robustness of the localization. There might be cases where
occupancy on the scene reference plane is intermittent, for
example, when the ground plane is used and the people are
running or jumping, resulting in minimal contact with the
ground. Another example of this is when, in the absence of a
visible ground plane, a building back wall is used where there
is actually no occupancy requiring the use of planes parallel to
the back wall plane. Our approach is, therefore, to perform
localization at the reference plane, as well as multiple
imaginary planes parallel to the reference plane along the
normal direction. Evidently, when obtaining homographies
induced by the imaginary planes, a conventional feature
correspondence-based approach is not feasible. However, as
we have shown (in the Appendix), if we have the homo-
graphy Hi�j induced by a reference scene plane � between
views i and j, then the homographyHi�j induced by a plane �
parallel to � is given by

Hi�j ¼ Hi�j þ ½0j�vref �
� �

I3�3 �
1

1þ � ½0j�vref �
� �

; ð8Þ

where vref is the vanishing point of the normal direction
and � is a scalar multiple controlling the distance between
the parallel planes.

In our implementation, we typically use the ground
plane as the reference scene plane and the up direction as
the reference direction. The reference plane homographies
between views were automatically calculated with SIFT [32]
feature matches and using the RANSAC algorithm [18].
Vanishing points for the reference direction were computed
by detecting vertical line segments in the scene and finding
their intersection in a RANSAC framework as in [48]. In the
absence of robustly detectable vertical landmarks, we
estimate the vanishing point from observations of walking
people similar to the approach described in [33]. It should
be noted that the particular values of � are not significant,
we are only interested in the range of � for planes that span
the body of the object (e.g., if the object is a person, then
starting from the ground plane to a plane that is parallel to
the ground plane and touching the tip of the head). The
computation of this range for � is quite straightforward
since, outside this range, the homographic occupancy
constraint is not satisfied (i.e., the occupancy likelihood
approaches zero). In the next section, we outline our
algorithm for using the homographic occupancy constraint
to obtain people localization likelihoods on multiple planes.

4.3 Localization Algorithm

Our algorithm for localizing people is rather simple. First,
we obtain the foreground likelihood maps in each view.
This is done by statistically modeling the background using
a Gaussian distribution [55], [58] and finding the probability
for each pixel belonging to the foreground. In the second
step, instead of warping every pixel in the reference image
to every other view, we perform the equivalent step of
warping the foreground likelihood maps from all the other
views on to the reference view. These warped foreground
likelihood maps are then fused according to (7), to produce
what we call a “synergy map” of the reference plane [27].
The synergy map is a 2D grid of object occupancy
likelihoods. The process is repeated on multiple planes
parallel to the reference plane to obtain a series of synergy
maps. Though a threshold can then be applied to each
synergy map to obtain reference plane localizations, this
would require the estimation of an optimal threshold at
each fusion plane. Besides, there are interdependencies
between occupancies at different planes. We therefore delay
the act of thresholding and feed the soft occupancy
likelihood information from the synergy maps directly into
our tracking module, the details of which are presented in
Section 5. The following are the steps in our localization
algorithm:

Objective Localize people on N planes parallel to scene
reference plane
Localization Algorithm

1) Obtain the foreground l ike l ihood maps
�1;�2 . . . ;�n.

. Model Background using a Mixture of Gaus-
sians.

. Perform Background Subtraction to obtain fore-
ground likelihood information.

2) Obtain reference plane homographies and vanishing
point of reference direction.

3) for i ¼ 1 to N

. Update reference plane homographies using (8)

. Warp foreground likelihood maps to a reference
view using homographies of the reference plane.

- Warped Foreground Likelihood maps:
�01;�

0
2 . . . ;�0n

. Fuse �01;�
0
2 . . . ;�0n at each pixel location p of the

reference view according to (7) to obtain synergy
map �i

. end for
4) Arrange �is as a 3D stack in the reference direction

. � ¼ ½�1; �2 . . . �n�
Fig. 4 shows the algorithm applied to one of our test

scenes. The first two rows of Fig. 4a show the foreground
likelihood information in the available views. View 4 was
chosen as the reference view and the other views were
warped to the reference view with the homography of the
reference scene plane (the ground plane). The synergy map
from the fusion is shown in the third row and it clearly
highlights the feet regions of the people. Notice how
occlusions are resolved and the ground locations of people
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are detected. Fig. 4b shows the synergy maps produced by
fusing at multiple planes parallel to the ground plane. For
the purpose of tracking, the synergy maps were rectified
with the reference planes. The rectified image is an accurate
picture of the relative ground locations of the people in the
scene. The 2D synergy maps are then stacked together into a
3D grid � of object occupancy likelihoods that represents a
discrete sampling (on the reference planes) of the contin-
uous scene occupancy space. As described in the next
section, tracking is performed using �s on all synergy maps
simultaneously.

5 TRACKING

Our tracking methodology is based on the concept of
spatio-temporal coherency of scene occupancies created by
objects. Assuming that a particular scene location at a
specific time can be occupied by only a single individual,
we hypothesize that over time spatially coherent scene
occupancies correspond to the tracks of scene objects. We
therefore propose a look-ahead technique to solve the
tracking problem by using a sliding window over multiple
frames. This information gathering over time, of systems
simulating the cognitive processes, is supported by many
researchers in both computer vision and psychology (e.g.,
[15], [35], [39]). Neisser [39] propose a model in which the
perceptual processes continually interact with the incoming
information to verify hypotheses formed on the basis of
available information up to a given time instant. Marr’s

principle of least commitment [35] states that any inference
in a cognitive process must be delayed as much as possible.
Many existing algorithms use similar look-ahead strategies
or information gathering over longer intervals of time (for
example, by backtracking) [45], [46].

Let us denote by 		n ¼ ð	n1 ; 	n2 ; . . . ; 	nt Þ the trajectory of
spatio-temporal occupancies by individual n, where 	ni
represents the spatial localization of the individual n in the
occupancy likelihood information �i at time i. Given the
occupancy likelihood information from our localization
algorithm for a sliding time window of t frames
�1;�2; . . . ;�t, the tracks are obtained by maximizing the
posterior conditional probability:

½	̂	1; . . . ; 	̂	n� ¼ arg max
l1;...;ln

P ð		1 ¼ l1; . . . ; 		n ¼ lnj�1;�2; . . . ;�tÞ:

ð9Þ

To achieve this, we define an energy function that
combines occupancy regularization and region information,
in a fashion similar to Mumford-Shah style functions. The
global minimum is found by using graph cut techniques
that will be discussed next.

5.1 Graph Cuts Trajectory Segmentation

For a time window of t frames, we obtain the scene occupancy
likelihood information from our localization algorithm:
�1;�2; . . . ;�t. Each �i is a 3D grid of object occupancy
likelihoods, obtained from multiview fusion at multiple scene
planes as described in previous sections. By arranging �is in
the time dimension, we create what we call a spatio-temporal
occupancy likelihood grid: �̂ ¼ ½�1; �2; . . . ; �t�: Each location
or node in this 4D grid contains the object presence
likelihood for a specific space-time point. Our goal is to
segment �̂ into background (nonoccupancies) and object
occupancy trajectories with the following criteria:

1. Grid locations with high occupancy likelihoods have a
higher chance of being included in object trajectories.

2. Object trajectories are spatially and temporally
coherent.

Given these criteria, we define our energy function as

E ¼ 

X
p2P
��̂�ðpÞ þ

X
ðp;qÞ2N

Bp;q; ð10Þ

whereP is the set of all grid locations/nodes in �̂,N is the set
of grid locations in a neighborhood, and Bp;q / e�distðp;qÞ=2�2

,
where distðp; qÞ is the 4D euclidean distance between grid
locations p and q and � is a normalizing factor. The first
term in (10), also known as the data term, imposes scene
occupancy. The second term known as the smoothness term
imposes the constraint of spatio-temporal coherency. By
minimizing (10), the idea is to obtain regions in the spatio-
temporal occupancy likelihood space that have high
presence probabilities (small negative log likelihood) and
are smooth, meaning that they are close to each other both
in space and time.

In order to minimize the energy function given in (10),
we use graph cut techniques. Graph cuts have been used in
the past in the context of tracking humans [13] but, unlike
other approaches designed to work in the appearance
domain, our formulation is purely in the scene occupancy
domain. Our undirected graph G ¼ ðV ;EÞ is as follows: The
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Fig. 4. (a) The first two rows show the foreground likelihood maps
obtained from the background model on the available views. The color
map assigns a brighter palette to higher values. View 4 was chosen as
the reference view. The third row shows the synergy map obtained by
warping views 1, 2, and 3 onto view 4 and fusing them together. A surf
plot of the synergy plot is shown on the left. The ground locations of the
people stand out clearly. For the sake of visualization, we show the
binary image on the right, obtained by applying a threshold and rectifying
with the ground plane. (b) On the left are two more synergy maps using
planes parallel to the ground plane (planes 5 and 9 of 10). On the right is
the illustration of the synergy maps �is obtained from all fusion planes
being packaged up in a single 3D data structure � that is passed on to
the tracking module.
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set of vertices is the set of spatio-temporal grid locations
augmented by the source S and sink T vertices:
V ¼ P [ S; T . The set of edges consists of all neighboring
pairs of nodes, as well as edges between each node and the
source and sink: E ¼ N [ fðp; SÞ; ðp; T Þ : p 2 Pg. In terms of
the weights on the edges, there are three cases to consider. If
ðp; qÞ 2 N , then wðp; qÞ ¼ Bp;q. On the other hand, if the edge
contains the source S or sink T as one of its vertices, then
wðp; fS; TgÞ ¼ ��̂ðpÞ.

It is relatively straightforward to show that the minimum
cut on the graph G corresponds to the minimum values of
the energy function equation (10) [3]. The specific algorithm
we use is the �-expansion algorithm described in [4]. To
keep the problem computationally tractable, we quantized
the XY plane as a 100 � 100 grid. The number of fusion
planes, the quantization on the Z direction, was between 10
and 20, depending on the experiment. The sliding time
window size was kept at 15 frames for each experiment
(which corresponds to 1 second in the real world of a 15 fps
video). The sliding window has minimal overlap, one
frame, e.g., the last frame of windowi and the first frame of
windowiþ1 are the same. The overlap is used to pass on the
track identities. The identities are initialized in the first
window. For successive windows, each segmented track is
given the ID that a previous window assigned it at the
overlap frame. Though larger window size and greater
overlap can be used to improve performance, we found the
improvement was not significant enough to justify the
increased load of processing.

Note that we do not make hard detection decisions and
use them for tracking. Rather, tracking and detection are
intimately tied together and are performed simultaneously
when we segment out space-time tracks from the occu-
pancy likelihood data �̂. This, we believe, is an elegant
solution to the inherently coupled tasks of detection and
tracking. The advantage of this approach is twofold. First,
false negatives and false positives are reduced compared
with a traditional threshold-based detection (see experi-
mental evaluation). In cases where a missed detection from
thresholding (for one or more frames) would cause a track

to be lost, we are able to recover the tracks and, hence, the
detections. This is because the energy functional minimized
with graph cuts combines both occupancy probability and
spatio-temporal smoothness. For instance, if the occupancy
probability for a person does not pass the detection
threshold for a particular frame in the time window, our
track segmentation approach still includes the region in the
particular frame to reduce the cost incurred by having
neighboring nodes in the space-time occupancy grid more
than one frame away (smoothness). Second, this approach
helps in cases where a thresholded detection results in
artifacts in a single person’s detection, i.e., the region is split
into two or more very close but unconnected regions. Such
regions are typically merged together by our approach. This
property of our approach may also cause tracks of two or
more people to merge if they come very close to each other;
however, these are uncommon cases and resolved in the
long run, since people’s body parts tend to remain closer to
them than to other people. In situations where detection
results using a thresholding approach are sufficiently good
(typically not the case in challenging scenarios as demon-
strated in our results section), a simple tracker like EKF or
the more sophisticated particle filtering tracking can be
used as has been attempted in past literature [63], [28].
However, such trackers do not naturally handle splits and
merges, and require an explicit split-merge analysis
separate from the tracking. This, of course, is naturally
handled in our track segmentation approach.

In Fig. 5b, we describe an example of the spatio-temporal
occupancy tracks obtained for a scene containing nine
people, which was used in one of our experiments. The
figure shows the results after processing multiple time
windows. Only the 3D marginal on the ground reference
plane of the actual 4D occupancy tracks are shown. A slice
in time is the tracked location of people in the scene. Fig. 6
shows the 3D marginal view of the 4D spatio-temporal
occupancy tracks at a particular time instant for one of our
experiments. Track windows are plotted around each track.
The tracking results are propagated to other views using the
inverse of the homographies used in localization.

6 RESULTS AND DISCUSSIONS

In order to evaluate our approach, we conducted several
experiments with both the data that we collected and
multiview data sets which are publicly available. The
current implementation of our localization algorithm runs
on a Nvidia GeForce 7300 GPU and is capable of fusing up
to eight views (480 � 720) on 10 fusion planes at the rate of
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Fig. 5. (a) A sequence of synergy maps at the ground reference plane of
nine people obtained using our algorithm. In (b), we show the XY cut
(corresponding to the ground reference plane) of the 4D spatio-temporal
occupancy tracks obtained using our tracking approach. Different tracks
are colored differently to help in visualization. The spiraling pattern of the
racks is only a coincidence. This occurred because the people were
walking in circles in this particular sequence.

Fig. 6. (a) The reference view. (b) The 3D marginal of the 4D spatio-

temporal occupancy tracks at a particular time. Notice the gaps in

localizations for each person’s color-coded regions. This is because only

10 planes parallel to the ground in the up (Z) direction were used.
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approximately 35 fps. The computation cost increases
linearly with both number of views and the number of
planes at which fusion is performed. Fig. 7a shows the plot
of run time against the product of the number of views and
the number of planes on which localization was performed.
The 2D nature of our localization algorithm has allowed us
to harness the strength of the graphics card hardware
acceleration. Fig. 7b shows the effect of increasing image
resolution on the computation time. Notice the jump at
1,160 � 1,500, this is because, at such high resolutions, the
GPU cache runs out of memory, resulting in reduced
efficiency. In practice trials, the highest resolution images
we used were 576 � 720. For the graph cuts-based tracking,
we used a publicly available implementation, http://
www.cs.cornell.edu/~rdz/graphcuts.html. On a 2.4 GHz
core 2 duo machine, the implementation takes approxi-
mately 14-15 seconds on a grid of 100 � 100 � 10 � 15.

6.1 Video Data sets

We are reporting results on four multiview data sets. Three
of these are novel challenging data sets that we captured
ourselves. The fourth is a publicly available multicamera
data set containing video sequences of a soccer match. The
frame rate of all the sequences is 15 fps (subsampled from
30 fps streams). We computed error rates for these
sequences in terms of false detections and missed detections
or their sum which we call detection error. We define a true
positive as the case when the bounding box of a tracked
person (localization of a person over all fusion planes)
encapsulates that particular individual in all views. For
some of these sequences, we calculated detailed tracking
errors by comparing them with the ground truth (manually
marked tracking of the people).

Parking lot data set. This scene was captured using a
video-surveillance dedicated setup of four synchronized
cameras in a parking lot. The cameras were mounted at
various heights ranging from 2 to 6 m and arranged unevenly
in a rough circle. The sequence is over 3,000 frames and
contains between five and nine people. The people were
constrained to move in an area of approximately 5 � 5 m
to simulate dense crowds and severe occlusions. We were
attempting to increase the density of people and vary the
number of views in order to study the breakdown thresh-
olds and other characteristics. The homographic occupancy
constraint was applied on 10 planes including and parallel
to the ground plane in the up direction.

Fig. 8 shows our tracking results on the parking lot data
set. For better visualization, only 2D track bounding boxes

are plotted for this sequence. Due to the density of the
gathering, occlusions were abundant and quite severe. An
interesting thing to note is the color similarity of the people
in the scene. A method that uses appearance (color
distribution) matching across views would perform poorly
in such a situation, whereas our method performs quite
well. The top row of Fig. 8 shows a visualization of the top
view, with configuration of the cameras overlaid. Camera
overlap is color coded so that brighter yellow corresponds
to higher overlap. The blue and red squares in the top view
depict the true and false positives, respectively.

In Fig. 9, we show the quantitative and qualitative
analysis of our results on this sequence. We analyzed the
accuracy of our tracking results by comparing them with
the ground truth, which was obtained by manually clicking
the head and feet location of each person in each view. Our
tracking accuracy measure was the perpendicular distance
between the central axis passing through the localizations of
a person in a particular view (the least square line through
the centroids of localizations on all fusion planes) and the
central axis obtained from manual marking (the ground
truth line connecting head and feet). For this sequence, we
had access to metric calibration data in order to convert
image distances to actual world distances in terms of inches.
The error was calculated for each tracked person in each
view and was averaged over the number of people and the
number of views. False positives and negatives were not
included in the calculation of this measure. We call this the
total average track error. Fig. 9a is the plot of the total average
track error, computed at intervals of 100 frames. We varied
the number of views by selecting a subset of the available
views, in order to study the effect of reducing views on our
approach. As expected, the total average track error
significantly increased, from a mean of approximately
4 inches with four views (green plot) to over 14 inches
with two views (red plot). The magenta plot in the figure
shows the track error with four views, if clutter modeling is
not used. As shown, the accuracy of tracking decreases if
clutter modeling is not done. Clutter modeling helped in
making the tracks more streamlined and precise by
effectively pruning out false occupancy information in the
periphery of detections. Also, in some cases (frames 550,
600, 800), the track error with three views and clutter
modeling (blue plot) is close to that of four views without
clutter modeling. Although we do not expect this particular
trend to be the general pattern, it does indicate that
modeling clutter has a useful impact. Detection error, on
the other hand, was relatively unaffected with the use of
clutter modeling, e.g., false detections arising due to scene
locations being occluded from every view are not affected
by using clutter modeling.

In our opinion, the other most significant factor influen-
cing the performance of our algorithm is the density of the
crowd or gathering. The greater the density, the more scene
occupancies per unit area and, therefore, greater occlusions
from vantage points resulting in difficulty with detection
and localization. In Fig. 9b, we show three plots depicting a
correlation between the density of people in the scene and
the resulting detection error (sum of false positives and
missed detections). To obtain people density, we calculate
the area of the convex hull (in square feet, recall that we
have metric calibration) containing the ground plane
localizations of all tracked people at a given time instant
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Fig. 7. Localization algorithm runtime on a GPU. (a) The execution time

is linear with both the number of views and number of fusion planes.

(b) Execution time with varying image resolution. As the resolution

increases beyond the cache limit of the GPU, the performance drops.
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and divided the number of people by this value. The people
density varied from 0.09 to 0.17 persons/sq ft as can be seen
in the bottom plot of Fig. 9b. The top plot shows the
detection error versus time at intervals of 100 frames. Notice
the correlation, especially at the peaks of people densities.
The correlation coefficient between the density plot and
detection error plot is 0.7 for four views, 0.75 for three
views, and 0.62 for two views.

Although we acknowledge that the number of views and
people density are not the only scene factors influencing the
performance of our approach, we believe that these are the
most crucial. A detailed analysis can be quite exhaustive
and can include camera configuration, relative people
configuration (certain formations of people can occlude
scene regions from all cameras) and scene geometry. These
and other factors are beyond the scope of this paper and
will be addressed in future studies.

We have also experimented with utilizing a simple
threshold-based detection approach to empirically test the
advantage of using our graph cuts track segmentation
approach. We empirically set the most optimal threshold
(running several times and selecting the best threshold) on
occupancy likelihoods �̂ obtained from the localization
algorithm. At each frame, we have regions detected as
people. We obtain the connected components on these
regions and put a minimum size threshold on these to
prune out the noise. Detection error is then computed as
specified earlier. Plots of the detection error from the simple
thresholding approach are shown in Fig. 10 and can be
compared with our approach. As shown by the data, simple
thresholding results in many more detection errors com-
pared with our approach, thus corroborating our claim that
the integration of detection and tracking in a unified track
segmentation formulation is desirable. Though it may be
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Fig. 8. Parking lot sequence. Tracking results for a scene containing nine people captured from four view points. The first row shows a visualization
of the top view. It shows the camera FOV overlap, with higher overlap corresponding to yellower regions. Detection true and false positives are
shown with blue and red squares, respectively. Rows 2-5 show the four camera views of the scene. Left to right, the columns correspond to frames
600, 800, and 1,000 in the respective views. In the camera views, for better visualization and less clutter, only 2D track bounding boxes are used
unlike in Figs. 1, 11, 13, and 14. Track bounding boxes are color coded and numbered to show the correspondences that our algorithm accurately
maintains across views. Notice the severe and recurring occlusions.
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argued that threshold-based detection results can be
improved by incorporating more sophisticated models, like
human shape priors, we maintain that such models can be
used to augment our track segmentation approach (see [14]
for a use of shape priors in graph cuts-based segmentation).

Indoor data set. This sequence was captured with four
frame synchronized cameras (480 � 720) placed roughly
evenly in a semicircular arc configuration. All four cameras
were approximately at head level �1:8 m. Due to the
camera orientation and configuration, the ground plane is
only partially visible in just one view. This meant we could
not use the ground plane as the reference plane due to a
lack of correspondences for homography calculation, a case
that might arise in practical scenarios. Therefore, we use the
back wall in the scene, which is clearly visible in all the
views, as the reference plane. Localization was performed
on a total of 20 planes including the wall reference plane
and planes parallel to it in the normal direction. There are

several straight lines in the direction normal to the back
wall plane in the scene (cavities on the right and left of the
wall plane, stair case, ceiling, windows, etc.), which are
used for the vanishing point calculation. Fig. 11 shows the
tracking results for this sequence. The first row shows the
top view with the camera configuration and overlaps in the
FOVs. As stated for the parking lot sequence, yellower
regions have higher camera overlap and the blue squares
are tracked locations.

Fig. 12 shows the quantitative analysis for this sequence.
We did not have metric calibration data for these sequences;
therefore, we calculated the total average track error in the
image space. This was done by calculating the distance in
pixels between the top of the tracked localization (centroid
of top patch of the track bounding cubes in Fig. 11) and the
manually marked top of the heads of the people. Fig. 12a
shows the variation of the total average track error for a
sequence of frames by selectively varying the number of
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Fig. 9. Parking lot data set. (a) Total average track error of persons tracked over time. Pixel distances were converted to inches in the scene using
metric calibration data. As expected, track error increases with lesser number of views. This is essentially because of imprecise localization. Also,
the track error increases if clutter is not modeled as can be seen for the magenta plot. (b) Plot on the top shows the detection error (number of false
positives + number false negatives) over time. The bottom plot shows the variation of the people density over time. Notice the correlation between
detection error and people density. As can be seen, increasing density effects the performance of our algorithm. Higher density means more
interperson occlusions for any vantage point and, thus, more detection errors.

Fig. 10. Parking lot data set. (a) Detection error for utilizing a simple thresholding of the occupancy likelihood data compared with our trajectory

segmentation-based approach. Plots for detection error using two views and four views are shown. As can be clearly seen, our approach performs

much better. (b) Detection results using a threshold-based approach. Blue rectangles are true positives, red rectangles are false positives, and green

ellipses are false negatives.
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views. With four views, the track error hovers around
20 pixels, which is quite good considering the size of a
person is about 250 � 75 pixels and only the head location
rather than a central axis was used to calculate the track
error. However, with only two views, the tracking becomes
intractable. The magenta plot in Fig. 12a also shows the
track error for four views if clutter modeling is not used. As
shown, total average track error can be reduced by nearly
10 pixels if clutter is modeled. In Fig. 12b, we show the plots
of accumulated detection errors, the sum of false positives
and false negatives accumulated over time, if a single fusion
plane is used for the homographic occupancy constraint.

Note that the accumulated detection error contains no extra
information from detection error, we use it for better
visualization in the plots in this case. Results of 4 of the
20 planes, including the back wall plane and planes parallel
to it, are shown. The original reference plane, the back wall,
has the worst performance (red plot) because at no time
instant were there people touching (occupying) the back
wall, resulting in zero detections. Other individual planes
fare only marginally better. People kept moving in circles,
coming closer and going farther away from the back wall.
This meant there was no single plane that could reliably
localize all of the people over a meaningful period of time.
Fig. 12b also shows in green the plot of accumulated
localization errors when using all 20 fusion planes together.
As shown, the error is significantly reduced, thus corrobor-
ating our initial motivation to use multiple planes to
localize people.

Basketball data set. This data set was captured using
three cameras (480 � 720) that were arranged roughly in
a semicircular arc. The sequences are approximately 1,000
frames long and consists of 10 players playing basketball.
Homography constraint fusion was applied at 20 planes
including the ground plane and planes parallel to it in the
up direction. Based on observations, the highest plane was
approximately 2.5 m above the ground.

This data set is challenging not only because of the
limited number of views and occlusions due to the high
number of players but also because of shadows and
reflections off the shiny floor. Moreover, the players have
highly nonlinear and unpredictable motion paths including
jumps and leaps off the ground. For other approaches, even
if the occlusions are resolved and the shadows and
reflections removed, it will still be difficult to keep track
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Fig. 11. Indoor data set. Tracking using the back wall as the primary
reference plane. Twenty planes parallel to the back wall were used in
total. The top view color coding is the same as in Fig. 8. Three-
dimensional bounding boxes encapsulating the localization on all fusion
planes are plotted.

Fig. 12. Indoor data set analysis. (a) Total average track error over time
from the top center of the track bounding box to the manually marked
head locations of people. (b) Plot on the top shows the accumulated
detection error (number of false positives + number of false negatives
accumulated over time) for different individual planes. Error is the worst
for plane 1 (i.e., the back wall) since at no time are people touching
(occupying) the back wall. Other planes parallel to the back wall in the
normal direction are only marginally better. This is because people keep
moving away and toward the back wall in circles, meaning there is no
single plane that can be used to reliably localize the people. Since we
use all the plane simultaneously, our localization errors are significantly
reduced, as shown by the green plot.

Fig. 13. Basketball data set. Tracking of multiple players in a basketball
game. Notice the track of the player who is jumping (red track box in
frame 350). Due to limitations in the number of cameras and constraints
on camera configuration as well as scene clutter (due to reflections off
ground and occlusions), our results had relatively higher detection
errors. Note the red, white, and magenta track boxes in views
corresponding to frame 300. One player is missed in each box (black
squares in top view). Also, there are some false positives in frames 350
and 400 (red squares in top view and black track boxes in camera
views).
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of the players with such motion paths, whereas our
approach performs quite well (see Fig. 13). Notice the
player who is jumping and being tracked (red bounding
box, second column of Fig. 13). Clearly, using a single
fusion plane, like the ground, would cause the jumping
player’s track to be lost. Although there are false positives
and false negatives (red and black squares in the top view),
we believe more views can resolve many of these.

Soccer data set. This a publicly available data set, http://
sceptre.king.ac.uk/sceptre/default.html, consisting of eight
frame-synchronized views of a soccer match. The cameras
are placed in a configuration that covers the entire pitch,
with two focused on the goal areas on opposite sides. The
sequences are about 1,000 frames long. Occlusions are quite
abundant due to the large number of players. There is also a
lot of clutter due to jitter of the cameras. We believe this is a
result of wind or the shaking of the platform on which the
cameras were mounted. Another challenge is the lack of
pixel resolution on players. Depending on the view, player
patches could be as small as 5 � 25 pixels. In spite of these
challenges, our method was able to localize and track the
players with a high degree of accuracy. Fig. 14 shows our
tracking results. The first row is the top view, with the same
color coding as previously described for other sequences.
Notice that there are greater instances of errors in regions of
less view overlap and higher density of players.

6.2 Discussion of Failure Scenarios

In addition to the qualitative description and quantitative
evaluation, we would also like to summarize the failure
scenarios for our approach [60]. If a person is not part of the
high foreground likelihood regions in the views, it may
cause a missed detection (false negative). This may occur if

the person’s appearance is very similar to the background
or if the person is occluded by some portion of the
background itself, e.g., a tree or a part of a building or by
another person whose appearance is very similar to the
background. Another failure scenario is if a part of the
scene is occluded in all views by the foreground objects
(other people). In this case, our approach may generate a
detection even if the region is not occupied by a person
(false positive). Finally, track IDs may be switched in the
case when two or more occupancy tracks of different
people merge for longer than the sliding window time and
then split. This may happen at high people densities when
people start touching/bumping into each other or when
there no sufficient number of views to “see” the empty
spaces between people. Though a simple appearance-based
heuristic may be used to resolve the switching of identities
(albeit requiring a visibility/occlusion check), we have kept
our approach purely occupancy based and this failure case
remains.

7 CONCLUSIONS

We have presented an algorithm that can reliably track
multiple people in a complex environment. This is achieved
by resolving occlusions and localizing people on multiple
scene planes using a planar homographic occupancy
constraint. By combining foreground likelihood information
from multiple views and obtaining the global optimum of
space-time scene occupancies over a window of frames, we
segment out the individual trajectories of the people.

There are many possible extensions of this work. One
direction is to incorporate color models in the detection and
tracking of individual people. The color models can be used
to disambiguate tracks in cases when two or more people
come too close to be segmented as separate entities. Using
articulated human shape models can be another addition
that can act as a prior to prune out false detections and
increase robustness of localization. Similarly, a human
motion model that takes into account the consistency of
speed and direction as well as modeling collision avoidance
strategies between people could be an interesting addition.
These models may be useful in situations where crowd
densities increase and camera views are limited.

APPENDIX

Let Hi�j be the homography between views i and j induced
by scene plane �. Now, Hi�j can be decomposed as the
product of two homographies first from i to � and then
from � to j:

Hi�j ¼ ½H�toj�½Hito��: ð11Þ

Similarly, the homography Hi�j induced by a plane � that is
parallel to � can be written as

Hi�j ¼ ½H�toj�½Hito��: ð12Þ

Now, from Criminisi et al. [8], we have

H�toj ¼ ½H�toj� þ ½0j�vref �; ð13Þ

where vref is the vanishing point of the normal direction
and � is a scalar multiple:
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Fig. 14. Soccer data set: Tracking of multiple players in a soccer match.

The top view is color coded as described in earlier figures. In rows 2-5,

we show views 1-4 of the available views. Due to space limitations, all

views could not be shown.
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Hito� ¼ invðH�toiÞ ¼ inv ½H�toi� þ ½0j�vref
� �

¼Hito� �
1

1þ g ½Hito��½0j�vref �½Hito��;
ð14Þ

where g ¼ traceð½0j�vref �½Hito��Þ: Replacing (13) and (14) into

(12), we have

Hi�j ¼ H�toj þ ½0j�vref �
� �

Hito� �
1

1þ g ½Hito��½0j�vref �½Hito��
� �

:

ð15Þ

Since Hito� is a central projection from one plane to another

(2D perspectivity with six DOF), the last row is [0 0 1];

therefore, g ¼ traceð½0j�vref �½Hito��Þ ¼ �. Plugging this and

(11) into (15) and with some matrix algebra, we reach

Hi�j ¼ Hi�j þ ½0j�vref �
� �

I3�3 �
1

1þ � ½0j�vref �
� �

: ð16Þ
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