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REAL TIME DISPARITY MAPS
FOR IMMERSIVE 3-D TELECONFERENCING
BY HYBRID RECURSIVE MATCHING AND CENSUS TRANSFORM

ABSTRACT

This paper presents a novel, real-time disparity algorithm developed for immersive
teleconferencing. The algorithm combines the Census transform with a hybrid block- and pixel-
recursive matching scheme. Computational effort is minimised by the efficient selection of a
small number of candidate vectors, guaranteeing both spatial and temporal consistency of
disparities. The latter aspect is crucial for 3-D videoconferencing applications, where novel
views of the remote conferees must be synthesised with the correct motion parallax. This
application requires video processing at ITU-Rec. 601 resolution. The algorithm generates
disparity maps in real time and for both directions (left-to-right and right-to-left) on a Pentium
III, 800 MHz processor with good quality.
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1.� INTRODUCTION

This paper presents a novel, real-time disparity
algorithm developed for an immersive
teleconferencing system.
Immersive teleconferencing subtends a class of
teleconferencing systems enabling conferees
located in different geographical places to meet
around a virtual table, appearing at each station
in such a way to create a convincing impression
of presence [Kalawsky 00]. In particular,
immersive indicates a setup which  completely
covers the angle of view of the visual system
such that the boundaries of the station are not
visible.  Figure 1 shows an artist’s rendering of
such a system.  The purpose is to enable the
participants to make use of rich communication
modalities as similar as possible to those used
in a face-to-face meeting (e.g., gestures, eye
contact, realistic images, correct sound
direction, etc) and eliminate the limits of non-
immersive teleconferencing, which impoverish
communication (e.g., face-only images in
separate windows, unrealistic avatars, no eye
contact) or skew the participants’ balance (e.g.,
some participants appearing larger than others,
or in privileged positions on screen. Such a
system is the target of the European IST project
VIRTUE [Schreer00,VIRTUEweb]. The first
demonstrator, currently under development, is

limited to semi-immersive displays like 60’’
plasma monitor or 80’’ rear Projector.

Figure 1. An artist’s rendering of a -immersive
teleconferencing setup.

In the teleconferencing system we are
developing, the realism of the images of remote
conferees is maximised through view synthesis
[Avidan97]. Two stereo pairs collect images of
each conferee in each station; from these, 3-D
disparity maps are computed at frame rate, and
used to generate synthetic views of remote
participants in the remote stations, adapted to
the viewpoints of the local participants. In this
way, and using physically-plausible view
synthesis, the image generated is a true image,
not an avatar carrying unrealistic artifacts.



A key ingredient in such a system is a module
computing reliable disparity maps at frame rate.
Requirements are exacting: full resolution video
processing according to ITU-Rec. 601;
disparity maps  in real time; no constraints on
participants (e.g., clothes, visual markers); and
cameras mounted around a wide screen,
yielding a wide-baseline stereo geometry, that
is, significant image differences caused by large
camera displacement and different orientations.
Figure 2 shows an example.

 
Figure 2. Example of stereo pair typical for our
application. Notice the large viewpoint difference
(wide baseline) between the two images.

These requirements are not met in toto by
existing approaches, typically based on
hierachical block-matching [Faugeras93] or
optic flow [Barron94]. Wide-baseline stereo has
been investigated [Intille94,Pritchett98] but not
necessarily in real-time applicative contexts. On
the other hand, several real-time stereo systems
have been built around the parallel-camera
configuration to minimise computational
complexity (see e.g. [Bertozzi97, Faugeras93,
Konolige97, Ohm98], [Redert97] for a
teleconferencing application,  and [Kanade96,
Triclops] for other real-time stereo systems).
The algorithm proposed in this paper combines
an optimised implementation of Census-based
matching [Zabih94] with a new, hybrid
recursive matching algorithm (HRM). We
achieve real-time disparity maps reduced by a
factor of 8 with respect to full-size CCIR601.
The attraction of Census-based matching is its
low cost, as only shifts and integer operations
are performed, and improved performance in
discontinuity regions.
HRM reaps the advantages of both block-
recursive matching and pixel-recursive optical
flow estimation. This algorithm has already
been used successfully for fast motion
estimation for format conversion and MPEG
coding [Kauff00,Ohm97] and has recently been
applied to disparity estimation [Kauff 01].
This paper is organised as follows: Section 2
reviews briefly the HRM algorithm; Section 3

presents Census-based block matching; Section
4 sketches the issues of consistency and post-
processing; Section 5 presents some
experimental results; Section 6 summarises and
discusses our work, and suggests some future
developments.

2.� HYBRID RECURSIVE MATCHING

The structure of the HRM algorithm is
illustrated in Figure 3. The Census transform
and Hamming distance correlation replace SAD
in calculating the Displaced Block Difference
(DBD) within the block matching stage of the
HRM.
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Figure 3: outline of HRM  algorithm.

The main idea of HRM is to use neighbouring
spatio-temporal candidates as input for block-
recursive disparity estimation. The rationale is
that such candidate vectors are the most likely
to provide a good estimate of the disparity for
the current pixel. In addition, a further update
vector is tested against the best candidate. This
update vector is computed by applying a local,
pixel-recursive process to the current block,
which uses the best candidate of block-
recursion as a start vector. Apart from a
considerable reduction of computational load,
this method also leads to spatio-temporally
consistent disparity maps, particularly
important as temporal inconsistencies in
disparity sequences may cause obvious,
annoying artifacts in the final virtual images of
participants.
The whole algorithm can be divided into three
stages (Figure 3):

1.� three candidate vectors (two spatial and one
temporal) are evaluated for the current
block position by recursive block matching;

2.� the candidate vector with the best result is
chosen as the start vector for the pixel-
recursive algorithm, which yields an update
vector;



3.� the final vector is obtained by comparing
the update vector from the pixel recursive
stage with the start vector from the block-
recursive one.

Census matching is used in steps 1 and 3 for
block matching, in lieu of SAD.

2.1  BLOCK RECURSION

Block recursion is performed in the spatial and
temporal directions on the grid of a sparse
disparity vector field, usually with 8x8 or 4x4
grid size. To cope with arbitrarily shaped video
objects and to determine the spatial candidate
vectors isotropically, the video frames are
scanned in two interleaved, meandering paths,
changing their order from frame to frame and
guided by a binary mask representing the shape
of the video object [Kauff 01]. Three candidates
are tested to select the best one for the current
block-vector position (see Figure 4):

•� A vertical predecessor, chosen from the
block above or below, depending on
whether the vertical scan-direction is top-
to-bottom or bottom-to-top.

•� A horizontal predecessor, taken from the
left or right neighbour block, depending on
the current horizontal direction of the scan
path.

•� A temporal predecessor, taken from the
previous reference frame.
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Figure 4: spatial and temporal candidates for left
and right scan direction,s in the case of a top-to-
bottom scan (a and b) and a bottom-to-top scan (c
and d).

The three candidates are compared to find the
best match in the right image for the current
pixel in the left image. In the HRM original
version, the following shape-driven displaced
block difference (DBD) was taken as criterion
for this purpose, and has been replaced by
Census:
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Notice that no local search around the candidate
vector is applied in the block-recursive stage.
Thus, if only block-recursive matching were
used, the "best match vector" would always be
chosen from the same triple of candidates. This
works well where disparities are spatially and
temporally consistent, but fails in the presence
of abrupt changes in the disparity map. To
obviate this problem, the output of the block-
recursive stage must be updated permanently.
The update is delivered by the pixel-recursive
stage, explained in the next section.

2.2 PIXEL RECURSION

Pixel-recursive disparity estimation is a low-
complexity method calculating dense
displacement fields using a simplified optical
flow approach. The update vector, d, is
calculated using spatial gradients in the current
frame and the displaced pixel difference DPD
given by corresponding points in the left and
right images as follows:
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where ε describes a so-called convergence
factor and di  is an initial displacement. Strictly
speaking, Eq. (1) must be iterated until a
minimum DPD  is reached, setting di to the
output of the previous iteration. However, as
the pixel-recursive stage is only used for



finding an update vector, the following
approximation is applied:
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Experiments have shown that there is no
notable difference between the original optic
flow relation in Eq. (1) and its approximation in
Eq. (2). The threshold value in Eq. (3) is
usually set to 2 or 3, and decreases the
sensitivity of the pixel recursion to noise in
unstructured image regions.
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Current pixel
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Figure 5: outline of the pixel-recursion scheme.

Multiple pixel-recursive processes are started at
every first pixel position of the odd lines in the
block under inspection (an example is shown in
Figure 5 with a 4x4 block). Each recursion
works over two lines using left-to-right scan for
odd lines and right-to-left scan for even lines.
Thus, the total number N of recursions per
block depends on the size of the block, and is
given by half of the block’s height (i.e., N=2 in
the example from Figure 5, N=4 for 8x8 blocks,
etc).
With rectified images, pixel recursion is only
used for the x-component of the disparity vector

in Eqs. (2), (3) and (4). With unrectified
images, pixel recursion is carried out for both
components of the disparity vector. Here, the x
and y components are processed independently
of each other; as a consequence, the resulting
update vector does not necessarily meet the
epipolar constraint. Therefore, the update vector
is clamped to the closest pixel position at the
current epipolar line after each recursion step.
Finally, the vector with the smallest DPD
among all pixel-recursion processes is taken as
the final update vector. After pixel recursion,
the DBD is calculated for this selected update
vector and compared to the DBD of the start
vector. If the latter is smaller than the one of the
start vector, the update vector is chosen as final
output vector, otherwise the start vector from
the block-recursive stage is retained (see Figure
3).

2.3 EPIPOLAR CONSTRAINT

As the HRM algorithm from Figure 1 is used to
estimate disparities and since it can therefore be
assumed that the cameras of the stereo rig are
weakly calibrated, the well-known epipolar
constraint can be exploited to increase matching
robustness in the given approach. The epipolar
constraint tells us that a pixel mr=[xr,yr,1]T of
the right image which corresponds to a pixel
ml=[xl,yl,1]T of the left image, must lie on the
epipolar line lr of ml [Zhang 96]:
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Here, F denotes the the fundamental matrix
representing a compact description of weak
camera calibration.

However, note that in the most general case the
two components of the gradient vector in Eq.
(3) are calculated independently from each
other and do not necessarily meet the epipolar
constraint. One way to correct this is to clamp
all vectors obtained during pixel recursion onto
the closest position of the corresponding
epipolar line. Thus, the update vectors and with
it all output vectors subsequently stored in the
block vector memory and used as candidates
during block recursion (see Fig. 3) now respect
the epipolar constraint.

Another possibility is to rectify the left and
right input images before applying the HRM



algorithm from Figure 3. In this case the
epipolar lines always coincide with horizontal
scan lines of the rectified images [Fusiello97].
As a consequence, disparity estimation is
simplified to a horizontal match. In this special
case, only the horizontal component of the
gradient in Eq. (3) is calculated and only the
horizontal component in Eq. (2) is updated
whereas the vertical component is always equal
to zero. The epipolar constraint is now
respected implicitly.

A further alternative to exploit the epipolar
constraint implicitly is the so-called λ-
parametrisation which has been proposed by
[Alvarez00] in the framework of an anisotropic
diffusion approach to disparity estimation. It is
based on the fact that the disaprity vector can be
decomposed into independent components

71PGPP ⋅+⋅+=+= OOU
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Here, N and T denote normalized vectors
perpendicular and, respectively, tangential to
the corresponding epipolar line lr. γ is the
distance from ml to lr and λ is an unknown
parameter along the epipolar line. Note that N,
T and γ are given by epiolar geometry and can
be calculated in dependence on ml and lr. Using
this λ-parametrisation the pixel recursion from
Eq. (2) can be applied to the scalar λ instead of
disparity vector d:
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Here, wx and wy denote to weighting factors
depending on ml and lr. After pixel recursion
the resulting update vector can be determined
using Eq. (6).

3.� CENSUS-BASED MATCHING

The original HRM algorithm from Fig. 3 uses
the DBD to select the start vector out of the
three candidates. To combine HRM with
census-based matching, the algorithm has been
modified as shown in Fig. 6. For this purpose
the two input images are transformed by using
the Census Transform, and the matching
criterion adopted is the Hamming distance
(HD).
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Figure 6: combination of HRM with CENSUS.

The Census transform [Zabih94] captures the
local grey-level structure. It maps the
neighbourhood of a pixel to a bit string
identifying the pixels with smaller intensity
values than the central one. As no intensity
value is encoded, the representation is largely
immune to photometric and projective
distortion, image gain or bias (whether local or
global) and gamma correction.
Assume that the image region to transform is a
square of side , and W is the square correlation
(matching) window. Each pixel P in W will be
replaced with the value of the local transform,
computed in the region of radius  centered at
P. Note that the transform is applied to W
separately in I1 and I2, then the transformed
windows are compared via correlation.
If ⊕  denotes concatenation, the Census
transform of a pixel P of image I  is defined as
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and I(P) and I(P’) are, respectively, the intensity
values at points P and P’. The correlation of the
window W between the two images I1 and I2 is
given by
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where the error (dissimilarity) criterion is
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Note that the value of Err can be 0, 1 or -1, and
that Err(P,P’) is nonzero just in case P and P’



switch their relative ordering between the two
images. If ⊗ denotes the Hamming distance
between two bit strings, i.e., the number of bits
that differ, the Census transform correlation can
be written as

[ ] [ ]PITPITWC ,,)( 21 ⊗= .

Both steps of this algorithm (Census transform,
correlation) are spatially uniform. However,
when combined, the resulting method is not: the
influence of a particular pixel varies depending
on its location, and the farther a pixel is from
the center of the window, the lower its
influence.
The attraction of Census-based matching is its
low cost, as only shifts and integer operations
are performed. Our implementation [Zini99]
adopts various optimisations to minimise the
number of operations performed.

4.� CONSISTENCY CHECK

The matching procedure described above is
performed twice (left-to-right and right-to-left),
then left-right consistency is applied. Disparity
vectors failing the test are rejected and are
interpolated using the surrounding, consistent
disparity vectors.
The holes created by this consistency analysis
are firstly filled by a 3x3 median filter. This
procedure also smooths the disparity map and
filters out outliers. Obviously, the median filter
cannot be applied to holes larger than the filter
mask. To fill these, a linear interpolation filter
is applied in the horizontal direction.
Subsequently, a bilinear filter is used to
generate a dense disparity vector field out of the
sparse field.

5.� EXPERIMENTAL RESULTS

The benefits of the Census transform within the
HRM framework have been tested on the basis
of a segmented and rectified input sequence, of
which a stereo pair is shown in Figure 7.

  

Figure 7: input stereo pair after figure-
background segmentation and rectification.

Figure 8 shows the disparity maps obtained
from the combined HRM and Census algorithm
(Figure 6). The black regions show areas of
inconsistent disparities.

  

Figure 8: left-to-right and right-to-left disparity
maps after consistency check.

Figure 9 shows the same disparity maps after
median filtering and interpolation. The holes
c\aused by the inconsistency check are now
filled. Note that the disparity maps are spatially
(and temporally) consistent in areas of
homogeneous depth, and rapid depth transitions
around the arms have been found accurately.
Synthesis results based on this disparity maps
show good quality.

  

Figure 10: Final disparity maps after median
filtering and interpolation.

To quantify the benefit of Census Transform in
the given framework, we compared the HRM
with and without CT  on the basis of computer
simulations. Two criteria have been used for
this comparison: the percentage of consistent



disparities and the delta of the consistency
check. Figures 11 and 12 plot the two criteria,
respectively, against frame number. The grey
circles refer to the original HRM algorithm
(called SAD here), the black squares to the
Census matching version. Both graphs show
that CENSUS matching improves performance.
More detailed comparisons (not reported here)
also show that the combination of HRM with
Census matching gives better results especially
in critical regions, such as areas of low texture
or close to borders of segmented objects (e.g.,
arm contours in Figure 7).
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Figure 11: Percentage of consistent disparities
(see text).

FRQVLVWHQF\�RI�GLVSDULWLHV

�
���  
��� !
��� "
��� #
$

$%�  
$%� !
$%� "
$%� #

� & $ � $ &  ��  �& '��
( )+* , -+. /

m
ea

n 
de

lt
a

0
1+2
354

Figure 12: Mean delta of consistency check
(see text).

6.� CONCLUSIONS AND FUTURE WORK

We have presented a real-time matching
algorithm combining Census matching with a
highly efficient pixel-recursive scheme.
Experiments with stereo sequences from the
target application (immersive teleconferencing)
indicate that the combined algorithm performs
better than the original pixel-recursive one. The
algorithm is being incorporated in the first
demonstrator of an immersive teleconferencing
system developed for by EU VIRTUE project.

As to future technical work, we are
investigating a different kind of parametrisation
for estimating the epipolar geometry, called
lambda parametrisation. Experiments are also
under way  with a novel, robust detector of
occlusion contours using registered disparity
maps and intensity data.
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