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AbstractÐSince the first shape-from-shading (SFS) technique was developed by Horn in the early 1970s, many different approaches

have emerged. In this paper, six well-known SFS algorithms are implemented and compared. The performance of the algorithms was

analyzed on synthetic images using mean and standard deviation of depth (Z) error, mean of surface gradient (p, q) error, and CPU

timing. Each algorithm works well for certain images, but performs poorly for others. In general, minimization approaches are more

robust, while the other approaches are faster. The implementation of these algorithms in C and images used in this paper are available

by anonymous ftp under the pub/tech_paper/survey directory at eustis.cs.ucf.edu (132.170.108.42). These are also part of the

electronic version of paper.

Index TermsÐ Shape from shading, analysis of algorithms, Lambertian model, survey of shape from shading algorithms.
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1 INTRODUCTION

S hape recovery is a classic problem in computer vision.

The goal is to derive a 3D scene description from one or

more 2D images. The recovered shape can be expressed in

several ways: depth Z�x; y�, surface normal �nx; ny; nz�,
surface gradient �p; q�, and surface slant, �, and tilt, �. The

depth can be considered either as the relative distance from

camera to surface points, or the relative surface height

above the x-y plane. The surface normal is the orientation of

a vector perpendicular to the tangent plane on the object

surface. The surface gradient, �p; q� � �@z@x ; @z@y�, is the rate of

change of depth in the x and y directions. The surface slant,

�, and tilt, �, are related to the surface normal as

�nx; ny; nz� � �l sin� cos �; l sin� sin �; l cos��, where l is the

magnitude of the surface normal.
In computer vision, the techniques to recover shape are

called shape-from-X techniques, where X can be shading,

stereo, motion, texture, etc. Shape-from-shading (SFS) deals

with the recovery of shape from a gradual variation of

shading in the image. Artists have long exploited lighting

and shading to convey vivid illusions of depth in paintings.

To solve the SFS problem, it is important to study how the

images are formed. A simple model of image formation is

the Lambertian model, in which the gray level at a pixel in

the image depends on the light source direction and the

surface normal. In SFS, given a gray level image, the aim is

to recover the light source and the surface shape at each

pixel in the image. However, real images do not always

follow the Lambertian model. Even if we assume Lamber-

tian reflectance and known light source direction, and if the
brightness can be described as a function of surface shape
and light source direction, the problem is still not simple.
This is because if the surface shape is described in terms of
the surface normal, we have a linear equation with three
unknowns, and if the surface shape is described in terms of
the surface gradient, we have a nonlinear equation with two
unknowns. Therefore, finding a unique solution to SFS is
difficult; it requires additional constraints.

This paper is about the comparison and performance
analysis of SFS techniques. We have implemented six well-
known SFS algorithms and compared them in terms of
timing (CPU time) and accuracy (mean and standard
deviation of the depth error and mean of the surface
gradient error) in order to analyze the advantages and
disadvantages of these approaches. Two synthetic images
with two different light sources each and three real images
were used in our experiments. We found that none of the
algorithms has consistent performance for all images since
they work well for certain images, but perform poorly for
others. In general, minimization approaches are more
robust, while the other approaches are faster. The imple-
mentation of these algorithms in C and images used in this
paper are available by anonymous ftp.

2 LITERATURE REVIEW

Shading plays an important role in human perception of
surface shape. Researchers in human vision have attempted
to understand and simulate the mechanisms by which our
eyes and brains actually use the shading information to
recover the 3D shapes. Ramachandran [45] demonstrated
that the brain recovers the shape information not only by
the shading, but also by the outlines, elementary features,
and the visual system's knowledge of objects. The extrac-
tion of SFS by visual system is also strongly affected by
stereoscopic processing. Barrow and Tenenbaum discov-
ered that it is the line drawing of the shading pattern that
seems to play a central role in the interpretation of shaded
patterns [2]. Mingolla and Todd's study of human visual
system based on the perception of solid shape [30] indicated
that the traditional assumptions in SFSÐLambertian re-
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flectance, known light source direction, and local shape
recoveryÐare not valid from a psychological point of view.
One can observe from the above discussion that human
visual system uses SFS differently than computer vision
normally does.

Recently, Horn et al. [19] discovered that some impos-
sibly shaded images exist, which could not be shading
images of any smooth surface under the assumption of
uniform reflectance properties and lighting. For this kind of
image, SFS will not provide a correct solution, so it is
necessary to detect impossibly shaded images.

SFS techniques can be divided into four groups:
minimization approaches, propagation approaches, local
approaches, and linear approaches (see Fig. 1). Minimiza-
tion approaches obtain the solution by minimizing an
energy function. Propagation approaches propagate the
shape information from a set of surface points (e.g., singular
points) to the whole image. Local approaches derive shape
based on the assumption of surface type. Linear approaches
compute the solution based on the linearization of the
reflectance map.

2.1 Minimization Approaches

One of the earlier minimization approaches, which recov-
ered the surface gradients, was by Ikeuchi and Horn [21].
Since each surface point has two unknowns for the surface
gradient and each pixel in the image provides one gray
value, we have an underdetermined system. To overcome
this, they introduced two constraints: the brightness
constraint and the smoothness constraint. The brightness
constraint requires that the reconstructed shape produce the
same brightness as the input image at each surface point,
while the smoothness constraint ensures a smooth surface
reconstruction. The shape was computed by minimizing an
energy function which consists of the above two constraints.
To ensure a correct convergence, the shape at the occluding
boundary was given for the initialization. Since the gradient
at the the occluding boundary has at least one infinite
component, stereographic projection was used to transform
the error function to a different space. Also using these two

constraints, Brooks and Horn [5] minimized the same
energy function, in terms of the surface normal. Frankot and
Chellappa [11] enforced integrability in Brooks and Horn's
algorithm in order to recover integrable surfaces (surfaces
for which zxy � zyx). Surface slope estimates from the
iterative scheme were expressed in terms of a linear
combination of a finite set of orthogonal Fourier basis
functions. The enforcement of integrability was done by
projecting the nonintegrable surface slope estimates onto
the nearest (in terms of distance) integrable surface slopes.
This projection was fulfilled by finding the closest set of
coefficients which satisfy integrability in the linear combi-
nation. Their results showed improvements in both accu-
racy and efficiency over Brooks and Horn's algorithm [5].
Later, Horn also [18] replaced the smoothness constraint in
his approach with an integrability constraint. The major
problem with Horn's method is its slow convergence.
Szeliski [48] sped it up using a hierarchical basis precondi-
tioned conjugate gradient descent algorithm. Based on the
geometrical interpretation of Brooks and Horn's algorithm,
Vega and Yang [51] applied heuristics to the variational
approach in an attempt to improve the stability of Brooks
and Horn's algorithm.

Instead of the smoothness constraint, Zheng and
Chellappa [54] introduced an intensity gradient constraint
which specifies that the intensity gradients of the recon-
structed image and the input image are close to each other
in both the x and y directions.

All of the above techniques use variational calculus.
Leclerc and Bobick [25] solved directly for depth by using a
discrete formulation and employing a conjugate gradient
technique. The brightness constraint and smoothness
constraint were applied to ensure convergence, and a stereo
depth map was used as an initial estimate. Recently, Lee
and Kuo [28] also proposed an approach to recover depth
using the brightness and the smoothness constraint. They
approximated surfaces by a union of triangular patches.
This approach did not require the depth initialization.

The approaches described so far deal with a single
smooth surface. Malik and Maydan [29] developed a
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solution for piecewise smooth surfaces. They combined the
line drawing and shading constraints in an energy function
and recovered both surface normal and line labeling
through the minimization of the energy function.

2.2 Propagation Approaches

Horn's characteristic strip method [17] is essentially a
propagation method. A characteristic strip is a line in the
image along which the surface depth and orientation can be
computed if these quantities are known at the starting point
of the line. Horn's method constructs initial surface curves
around the neighborhoods of singular points (singular
points are the points with maximum intensity) using a
spherical approximation. The shape information is propa-
gated simultaneously along the characteristic strips out-
ward, assuming no crossover of adjacent strips. The
direction of characteristic strips is identified as the direction
of intensity gradients. In order to get a dense shape map,
new strips have to be interpolated when neighboring strips
are not close to each other.

Rouy and Tourin [46] presented a solution to SFS based
on Hamilton-Jacobi-Bellman equations and viscosity solu-
tions theories in order to obtain a unique solution. A link
between viscosity solutions and optimal control theories
was given via dynamic programming. Moreover, conditions
for the existence of both continuous and smooth solutions
were provided.

Oliensis [33] observed that the surface shape can be
reconstructed from singular points instead of the occluding
boundary. Based on this idea, Dupuis and Oliensis [9], [34]
formulated SFS as an optimal control problem and solved it
using numerical methods. Bichsel and Pentland [3] simpli-
fied Dupuis and Oliensis's approach and proposed a
minimum downhill approach for SFS which converged in
less than 10 iterations.

Similar to Horn's and Dupuis and Oliensis's approaches,
Kimmel and Bruckstein [23] reconstructed the surface
through layers of equal height contours from an initial
closed curve. Their method applied techniques in differ-
ential geometry, fluid dynamics, and numerical analysis,
which enabled the good recovery of nonsmooth surfaces.
The algorithm used a closed curve in the areas of singular
points for initialization.

2.3 Local Approaches

Pentland's local approach [37] recovered shape information
from the intensity and its first and second derivatives. He
used the assumption that the surface is locally spherical at
each point. Under the same spherical assumption, Lee and
Rosenfeld [26] computed the slant and tilt of the surface in
the light source coordinate system using the first derivative
of the intensity.

2.4 Linear Approaches

The approaches by Pentland and Tsai and Shah are linear
approaches which linearize the reflectance map and solve
for shape.

Pentland [38] used the linear approximation of the
reflectance function in terms of the surface gradient and
applied a Fourier transform to the linear function to get a
closed form solution for the depth at each point.

Tsai and Shah [50] applied the discrete approximation of

the gradient first, then employed the linear approximation

of the reflectance function in terms of the depth directly.

Their algorithm recovered the depth at each point using a

Jacobi iterative scheme.

2.4.1 Interreflections

None of the above methods deals with interreflectionsÐthe

mutual illumination between surface facets. Nayaret et al.

[31], [32] addressed the shape-from-interreflection problem

using photometric stereo. They observed that the erroneous

shape extracted by shape-from-photometric-stereo algo-

rithms in the presence of interreflections was shallower

than the real shape. Therefore, they proposed a method to

iteratively refine the shape. Similar formulation of interre-

flection was also discussed by Forsyth and Zisserman [10].

2.4.2 Convergence, Uniqueness, and Existence

Little work has been done on proving the uniqueness or

existence of a solution to SFS. The uniqueness of SFS can be

proven under the condition that the light source direction is

equal to, or symmetric around, the viewing direction [33].

With an initial known curve, the method of characteristic

strips yields a unique solution if the first derivative of

surface depth is continuous. For general cases, the unique-

ness is unknown. However, Lee and Kuo [28] showed that,

given the depth at a reference point, the addition of the

smoothness constraint and successive linearization of the

reflectance map (based on the local gradients obtained from

the previous iteration) provides a unique solution for their

approach, in most cases. Blake et al. [4], [6] and Rouy and

Tourin [46] also provided sufficient conditions for unique-

ness. Their conditions contain either the singular point or

the occluding boundary.
If we consider local uniqueness instead of global

uniqueness over the entire image, the uniqueness of a

solution can be easily determined at singular points and

occluding boundaries, provided that the reflectance map is

given. These are the points at which we can determine the

surface orientation directly from the image brightness. The

brightness pattern in any arbitrary region could arise from

an infinite number of different surfaces. However, the

information at singular points and at occluding boundaries

can be used to constrain the possible solutions.

2.4.3 The Organization of the Paper

The organization of the remainder of this paper is as

follows: The next section introduces background

knowledge related to reflectance models. Section 4

describes six SFS approaches studied in detail in this paper.

Section 5 is devoted to the description of the synthetic and

real images used in this study. We present our experimental

results for six different SFS algorithms in Section 6. The

error analysis is presented in Section 7. Section 8 sum-

marizes the CPU timing of all six algorithms for different

images. Finally, conclusions and future research are

covered in Section 9.
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3 REFLECTANCE MODELS

Depending on their physical properties, surfaces can be
categorized as pure Lambertian, pure specular, hybrid, or
more sophisticated surfaces. In this section, we will describe
the reflectance models and discuss their properties related
to shape from shading.

3.1 Lambertian and Specular Reflectance Models

Lambertian surfaces are surfaces having only diffuse
reflectance, i.e., surfaces which reflect light in all directions.
The brightness of a Lambertian surface is proportional to
the energy of the incident light. The amount of light energy
falling on a surface element is proportional to the area of the
surface element as seen from the light source position (the
foreshortened area). The foreshortened area is a cosine
function of the angle between the surface orientation and
the light source direction. Therefore, the Lambertian surface
can be modeled as the product of the strength of the light
source A, the albedo of the surface �, and the foreshortened
area cos �i as follows:

IL � R � A� cos �i; �1�
where R is the reflectance map and �i is the angle between
the surface normal ~N � �nx; ny; nz� and the source direction
~S � �sx; sy; sz� (see Fig. 2). If we let the surface normal and
the light source direction both be unit vectors, we can
rewrite the above formula as:

IL � A� ~N � ~S; �2�
where ª�º represents dot product.

Specularity only occurs when the incident angle of the
light source is equal to the reflected angle. It is formed by
two components: the specular spike and the specular lobe.
The specular spike is zero in all directions except for a very
narrow range around the direction of specular reflection.
The specular lobe spreads around the direction of specular
reflection.

The simplest model for specular reflection is described
by the following delta function:

IS � B���s ÿ 2�r�; �3�
where IS is the specular brightness, B is the strength of the
specular component, �s is the angle between the light source
direction and the viewing direction, and �r is the angle
between the surface normal and the viewing direction. This
model assumes that the highlight caused by specular
reflection is only a single point, but in real life this
assumption is not true. Another model developed by Phong
[40] represents the specular component of reflection as
powers of the cosine of the angle between the perfect
specular direction and the viewing direction. This model is
capable of predicting specularities which extend beyond a
single point; however, the parameters have no physical
meaning. A more refined model, the Torrance-Sparrow
model [49], assumes that a surface is composed of small,
randomly oriented, mirror-like facets. It describes the
specular brightness as the product of four components:
energy of incident light, Fresnel coefficient, facet orientation
distribution function, and geometrical attenuation factor

adjusted for foreshortening. On the basis of the Torrance-
Sparrow model, Healey and Binford [15] derived a
simplified model by using the Gaussian distribution as
the facet orientation function and considering the other
components as constants. It can be described as:

IS � Keÿ��m�
2

; �4�
where K is a constant, � is the angle between the surface
normal ~N and the bisector H of the viewing direction and
source direction, and m indicates the surface roughness
(Fig. 3).

Most surfaces in the real world are neither purely
Lambertian nor purely specular, they are a combination of
both. That is, they are hybrid surfaces. One straightforward
equation for a hybrid surface is:

I � �1ÿ !�IL � !IS; �5�
where I is the total brightness for the hybrid surface, IS , IL
are the specular brightness and Lambertian brightness,
respectively, and ! is the weight of the specular component.

Nayar et al. [32] proposed a reflectance model which
consists of three components: diffuse lobe, specular lobe,
and specular spike. The Lambertian model was used to
represent the diffuse lobe, the specular component of the
Torrance-Sparrow model was used to model the specular
lobe, and the spike component of the Beckmann-
Spizzichino model was used to describe the specular spike.
The resulting hybrid model is given as:

I � Kdl cos �i �Ksle
ÿ �2

2�2 �Kss���i ÿ �r����r�: �6�
where Kdl, Ksl, and Kss are the strengths of the three
components, � is the angle between the surface normal of a
micro-facet on a patch and the mean normal of this surface
patch, and � is its standard derivation. If we consider the
surface normal being in the Z direction, then ��i; �i� is the
direction of incidence light in terms of the slant and tilt in
3D, ��r; �r� is the direction of reflected light.

Although the Lambertian model is widely used because
of its simplicity, it is a poor approximation to the diffuse
component of rough surfaces. See [20], [24], [7], [35] for
more sophisticated approaches.

4 SELECTED SHAPE FROM SHADING ALGORITHMS

Most SFS algorithms assume that the light source direction
is known. In the case of the unknown light source direction,
there are algorithms [36], [26], [54] which can estimate the
light source direction without the knowledge of the surface
shape. However, some assumptions about the surface shape
are required, such as the local spherical surface, uniform
and isotropic distribution of the surface orientation. Once
the light source direction is known, 3D shape can be
estimated.

We have implemented two minimization, one propaga-
tion, one local, and two linear methods. Ease of finding/
making an implementation was an important criterion. In
addition, this selection was guided by several other reasons.
First, we have attempted to focus on more recent
algorithms. Since authors improve their own algorithms
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or others' algorithms, new algorithms, in general, perform
better than older algorithms. Second, some papers deal with
theoretical issues related to SFS, but do not provide any
particular algorithm. Such papers have not been dealt with
in detail in this paper. Third, some approaches combine
shape from shading with stereo, or line drawings, etc. We
have mentioned such approaches in the review section for
the sake of completeness, but have not discussed them in
detail. Finally, since papers related to interreflection and
specularity consider special and more complex situations of
shape from shading, they have not been dealt with in detail.

4.1 Minimization Approaches

Minimization approaches compute the solution which
minimizes an energy function over the entire image. The
function can involve the brightness constraint and other
constraints, such as the smoothness constraint, the integr-
ability constraint, the gradient constraint, and the unit
normal constraint. In this section, first, we briefly describe
these constraints and, then, discuss SFS methods which use
these constraints.

The Brightness constraint is derived directly from the
image irradiance (2). It indicates the total brightness error of
the reconstructed image compared with the input image,
and is given by Z Z

�I ÿR�2 dx dy; �7�

where I is the measured intensity and R is the estimated
reflectance map.

The Smoothness constraint ensures a smooth surface in
order to stabilize the convergence to a unique solution, and
is given by Z Z

�p2
x � p2

y � q2
x � q2

y� dx dy: �8�

Here p and q are surface gradients along the x and y
directions. Another version of the smoothness term is less
restrictive by requiring constant change of depth only in x
and y directions:

Z Z
�p2
x � q2

y� dx dy: �9�

The smoothness constraint can also be described in terms of

the surface normal ~N :Z Z
�k~Nxk2 � k~Nyk2� dx dy: �10�

This means that the surface normal should change

gradually.
The Integrability constraint ensures valid surfaces, that

is, Zx;y � Zy;x. It can be described by eitherZ Z
�py ÿ qx�2 dx dy; �11�

or Z Z
��Zx ÿ p�2 � �Zy ÿ q�2�� dx dy: �12�

The Intensity Gradient constraint requires that the

intensity gradient of the reconstructed image be close to the

intensity gradient of the input image in both the x and y

directions: Z Z
��Rx ÿ Ix�2 � �Ry ÿ Iy�2� dx dy: �13�

The Unit Normal constraint forces the recovered surface

normals to be unit vectors:Z Z
�k~Nk2 ÿ 1� dx dy: �14�

4.1.1 Zheng and Chellappa (91)

Zheng and Chellappa [54] applied the intensity gradient

constraint, instead of a smoothness constraint (used by

Ikeuchi and Horn [21], Brooks and Horn [5], and Horn [18]),

therefore, their energy function became:
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Z Z
��I ÿR�2 � ��Rx ÿ Ix�2 � �Ry ÿ Iy�2�

� ���Zx ÿ p�2 � �Zy ÿ q�2�� dx dy: �15�
The minimization of the above function was done

through variational calculus. In variational calculus, the
Euler equations, which are differential equations, are first
computed and then solved discretely to minimize the
energy function. Zheng and Chellappa simplified the Euler
equations by taking the first-order Taylor series of the
reflectance map and representing the depth, gradient and
their derivatives in discrete form. Then, a new iterative
scheme was derived which updates depth and gradients
simultaneously. The algorithm was implemented using a
hierarchical structure (pyramid) in order to speed up the
computation. There was no special requirement for the
initialization of the boundary. The initial values for both
depth and gradient can be zero.

The implementation of Zheng and Chellappa's method is
very straightforward. We used the forward difference
approximation to compute the partial derivatives [54]. For
the boundary points, where the forward approximation
could not be applied, we switched to the backward
difference approximation for the first order partial deriva-
tives and set the second order partial derivatives to zero. In
all the experiments, we set � to 1 as suggested by the
authors [54].

4.1.2 Lee and Kuo (91)

Lee and Kuo [28] used the brightness constraint and the
smoothness constraint. In their approach, surfaces were
approximated by the union of triangular surface patches.
The vertices of the triangles were called nodal points and
only nodal depths were recovered. Depths at the pixels,
which are not nodal points, were obtained through
interpolation. For each triangular patch, the intensity of
the triangle was taken as the average intensity of all pixels
in the triangle and the surface gradient of the triangle was
approximated by the cross product of any two adjacent
edges of the triangle. This established a relationship
between the triangle's intensity and the depth at its three
nodal points. Linearizing the reflectance map in terms of the
surface gradient �p; q�, a linear relationship between the
intensity and depth at the nodal points was derived. The
surface depths at the nodal points were computed using
optimization. The optimization problem was reduced to the
solution of a sparse linear system and a multigrid
computational algorithm was applied. There was no
initialization required.

Lee and Kuo's algorithm was implemented using the V-
cycle multigrid scheme to solve the linear system, as
reported in [28]. We used Gauss-Seidel relaxation as the
smoothing operator and as the exact solver for the finest
grid. Full-weighting restriction was applied to transfer the
residual from finer grids to coarser grids and bilinear
interpolation was applied to make the prolongation from
the coarser grid to finer grids. The same template was used
for the smoothness term as given in their paper. The nodal
points in the finest grids were chosen to be the image pixels.
Successive linearizations were done through a maximum of
10 successive iterations, and the number of V-cycles was set

to 10 for the first iteration, 2 for the second, 1 for the rest.
The initial values for depth of the finest grid and corrections
for the coarser grids were all zero. Since the algorithm does
not work for light source direction �0; 0; 1�, we used
�0:001; 0:001; 1:0� as the input light source direction instead.

We used smoothing factor of 2,000 and computed the
level of grids by L � log�M� ÿ 1, where M is the size of the
image. Therefore, we have seven levels for 256 by 256
images and six levels for 128 by 128 images. The depth
maps, after the first iteration, contain more detail but have a
smaller range. After 10 iterations, details are smoothed out,
but the depth range is wider. This means that more
iterations will provide more low frequency information,
which overtakes the high frequency information from the
initial iterations.

4.2 Propagation Approaches

Propagation approaches start from a single reference
surface point or a set of surface points where the shape
either is known or can be uniquely determined (such as
singular points) and propagate the shape information
across the whole image. We discuss one algorithm in this
section.

4.2.1 Bichsel and Pentland (92)

Following the main idea of Dupuis and Oliensis, Bichsel
and Pentland [3] developed an efficient minimum downhill
approach which directly recovers depth and guarantees a
continuous surface. Given initial values at the singular
points (brightest points), the algorithm looks in eight
discrete directions in the image and propagates the depth
information away from the light source to ensure the proper
termination of the process. Since slopes at the surface points
in low brightness regions are close to zero for most
directions (except the directions which form a very narrow
angle with the illumination direction), the image was
initially rotated to align the light source direction with
one of the eight directions. The inverse rotation was
performed on the resulting depth map in order to get the
original orientation back. Assuming the constraint of
parallel slope, the surface gradient, �p; q�, was precomputed
by taking the derivative of the reflectance map with respect
to q in the rotated coordinate system, setting it to zero and
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then solving for p and q. The solutions for p and q were

given by:

p �
ÿsxsz �

�������������������������������������
�1ÿR2��R2 ÿ s2

y�
q
R2 ÿ s2

x ÿ s2
y

�16�

q � psysx ÿ sysz
R2 ÿ s2

y

: �17�

where �sx; sy; sz� is the light source direction and R is the

reflectance map as previously defined.
In the implementation of Bichsel and Pentland's algo-

rithm, the initial depth values for the singular points were

assigned a fixed positive value (55 in our case; this number

should be related to the maximum height of object) and the

depth values for the other points were initialized to large

negative values (-1.0e10). Instead of computing the distance

to the light source, only the local surface height is computed

and maximized in order to select the minimum downhill

direction. This is based on the fact that the distance to the

light source is a monotonically increasing function of the

height when the angle between the light source direction

and the optical axis (z-axis here) is less than 90 degrees.

Height values are updated with a Gauss-Seidel iterative

scheme and the convergence is accelerated by altering the

direction of the pass at each iteration.

4.3 Local Approaches

Local approaches derive the shape by assuming local
surface type. They use the intensity derivative information
and assume spherical surface. Here, we describe Lee and
Rosenfeld's [26] approach.

4.3.1 Lee and Rosenfeld (85)

Lee and Rosenfeld [26] approximated the local surface
regions by spherical patches. The slant and tilt of the surface
were first computed in the light source coordinate, then
transformed back to the viewer coordinate. They proved
that the tilt of the surface normal could be obtained from:

� � arctan
Iy cos �S ÿ Ix sin �S

Ix cos �S cos�S � Iy cos�S sin �S
; �17�

where Ix and Iy are intensity derivatives along the x and y
directions, �S is the slant of the light source, and �S is the tilt
of the light source.

If the surface has uniform reflectance, and if the
reflectance map is given by I � � ~N � ~S (Lambertian), then
the brightest point has its surface normal pointing toward
the light source and the cosine value of surface slant can be
obtained by the ratio of its intensity and �.

This approach is an improvement on Pentland's first
approach since it involves only the first derivatives of the
intensity rather than the second derivatives. This makes it
less sensitive to noise. However, the local spherical
assumption of the surface limits its application.
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Fig. 5. Synthetic images generated using two different light sources: (a) synthetic vase �0; 0; 1�, (b) Mozart �0; 0; 1�, (c) synthetic vase �1; 0; 1�, (d)
Mozart �1; 0; 1�.

Fig. 6. Real images: (a) Lenna, (b) pepper, (c) vase.



The major part in the implementation of Lee and
Rosenfeld's algorithm is the rotation of the image from
the viewer coordinates to the light source coordinates and
the computation of the intensity gradient in the light source
coordinates. For this method, there are no parameters
which needed to be determined.

4.4 Linear Approaches

Linear approaches reduce the nonlinear problem into a
linear through the linearization of the reflectance map. The
idea is based on the assumption that the lower order
components in the reflectance map dominate. Therefore,
these algorithms only work well under this assumption.

4.4.1 Pentland (88)

Pentland's second approach [38] used the linear approx-
imation of the reflectance map in p and q. The reflectance
function can be expressed as follows:

I�x; y� � R�p; q� � cos�S � p cos �S sin�S � q sin �S sin�S�����������������������
1� p2 � q2

p ;

�19�
where �S and �S are, respectively, the slant and tilt of light
source. By taking the Taylor series expansion of the
reflectance function about p � p0, q � q0, and ignoring the
high order terms, we have

I�x; y� � R�p0; q0� � �pÿ p0� @R
@p
�p0; q0� � �q ÿ q0� @R

@q
�p0; q0�:
�20�

For Lambertian reflectance, the above equation at p0 � q0 �
0 reduces to

I�x; y� � cos�S � p cos �S sin �S � q sin �S sin�S:

Next, Pentland takes the Fourier transform of both sides of

the equation. Since the first term on the right is a DC term, it

can be dropped. Using the identities:

@

@x
Z�x; y� !FZ�!1; !2��ÿi!1� �21�

@

@y
Z�x; y� !FZ�!1; !2��ÿi!2�; �22�

where FZ is the Fourier transform of Z�x; y�, we get:

FI � FZ�!1; !2��ÿi!1� cos �S sin�S
� FZ�!1; !2��ÿi!2� sin �S sin�S; �23�

where FI is the Fourier transform of the image I�x; y�. The

depth map Z�x; y� can be computed by rearranging the

terms in the above equation and then taking the inverse

Fourier transform.
This algorithm gives a noniterative, closed-form solution

using Fourier transform. The problem lies in the linear

approximation of the reflectance map, which causes trouble

when the nonlinear terms are large. As pointed out by
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Fig. 7. Results for Zheng and Chellappa's method on synthetic images:
(a) vase, (b) Mozart, (a1) and (b1) show the results for test images with
light source �0; 0; 1�. (a2) and (b2) show the results for test images with
light source �1; 0; 1�.

Fig. 8. Results for Lee and Kuo's method on synthetic images: (a) vase,
(b) Mozart. (a1) and (b1) show the results for test images with light
source �0; 0; 1�. (a2) and (b2) show the results for test images with light
source �1; 0; 1�.



Pentland, when the quadratic terms in the reflectance map

dominate, the ªfrequency doublingº occurs, in this case, the

recovered shape will not be consistent with the illumination

conditions.
The implementation of Pentland's algorithm was done

using the fast Fourier transform and the inverse fast Fourier

transform (see (23)).

4.4.2 Tsai and Shah (92)

Tsai and Shah [50] employed the discrete approximations of

p and q using finite differences in order to linearize the

reflectance map in terms of Z. The reflectance function for

Lambertian surfaces is:

R�pi;j; qi;j� � ÿsxpi;j ÿ syqi;j � sz��������������������������
1� p2

i;j � q2
i;j

q : �24�

Using the following discrete approximations for p and q,

p � Zi;j ÿ Ziÿ1;j and q � Zi;j ÿ Zi;jÿ1, the reflectance equa-

tion can be rewritten as:

0 � f�Ii;j; Zi;j; Ziÿ1;j; Zi;jÿ1�
� Ii;j ÿR�Zi;j ÿ Ziÿ1;j; Zi;j ÿ Zi;jÿ1�: �25�

For a fixed point �i; j� and a given image I, a linear

approximation (Taylor series expansion up through the first

order terms) of the function f (25) about a given depth map

Znÿ1 is:

0 � f�Ii;j; Zi;j; Ziÿ1;j; Zi;jÿ1�
� f�Ii;j; Znÿ1

i;j ; Znÿ1
iÿ1;j; Z

nÿ1
i;jÿ1� � �Zi;j ÿ Znÿ1

i;j �
@

@Zi;j
f�Ii;j; Znÿ1

i;j ; Znÿ1
iÿ1;j; Z

nÿ1
i;jÿ1� � �Ziÿ1;j ÿ Znÿ1

iÿ1;j�
@

@Ziÿ1;j
f�Ii;j; Znÿ1

i;j ; Znÿ1
iÿ1;j; Z

nÿ1
i;jÿ1� � �Zi;jÿ1 ÿ Znÿ1

i;jÿ1�
@

@Zi;jÿ1
f�Ii;j; Znÿ1

i;j ; Znÿ1
iÿ1;j; Z

nÿ1
i;jÿ1�:

�26�

For an M by M image, there are M2 such equations, which

will form a linear system. This system can be solved easily

using the Jacobi iterative scheme, which simplifies equation

(26) into the following equation:

0 � f�Zi;j� � f�Znÿ1
i;j � � �Zi;j ÿ Znÿ1

i;j �
d

dZi;j
f�Znÿ1

i;j �: �27�

Then, for Zi;j � Zn
i;j, the depth map at the nth iteration, can

be solved directly:

Zn
i;j � Znÿ1

i;j �
ÿf�Znÿ1

i;j �
d

dZi;j
f�Znÿ1

i;j �
: �28�

The initial estimate of Z0
i;j is set to zero for all pixels,

Gaussian smoothing is applied to the final depth map to get

a smoother result. Note that depth is computed here by a

simple division without any matrix inverse (28). This is a

simple but efficient algorithm. However, it has problems

with self-shadows.
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Fig. 9. Results for Bischel and Pentland's method on synthetic images:
(a) vase, (b) Mozart. (a1) and (b1) show the results for test images with
light source �0; 0; 1�. (a2) and (b2) show the results for test images with
light source �1; 0; 1�.

Fig. 10. Results for Lee and Rosenfeld's method on synthetic images:
(a) vase, (b) Mozart. (a1) and (b1) show the results for test images with
light source �0; 0; 1�. (a2) and (b2) show the results for test images with
light source �1; 0; 1�.



The implementation of Tsai and Shah's algorithm is
straightforward. The depth is updated iteratively using
(28). However, special care is needed to avoid division
by zero [50].

5 EXPERIMENTAL IMAGES

It is very difficult to choose good test images for SFS
algorithms. A good test image must match the assumptions
of the algorithms, e.g., Lambertian reflectance model,
constant albedo value, and infinite point source illumina-
tion. It is not difficult to satisfy these assumptions for
synthetic images, but no real scene perfectly satisfies these
conditions. In real images, there will be errors to the extent
that these assumptions are not matched. In this section, we
describe the images chosen to test the SFS algorithms.

5.1 Synthetic Images

The synthetic images were generated using true depth

maps or range data obtained from a laser range finder. We

simply computed the surface gradient �p � @Z
@x ; q � @Z

@y�
using the forward discrete approximation of the depth, Z,

and generated shaded images using the Lambertian

reflectance model. There are at least two advantages of

using synthetic images. First, we can generate shaded

images with different light source directions for the same

surface. Second, with the true depth information, we can

compute the error and compare the performance. However,

the disadvantage of using synthetic images is that perfor-

mance on synthetic images cannot be used reliably to

predict performance on real images.
In our study, we used five synthetic surfaces (Synthetic

Vase, Sphere, Mozart, Penny, and Sombrero) with three

different light sources (�0; 0; 1�, �1; 0; 1�, �5; 5; 7�). These

images are available through our web site. In this paper, we

focus our discussion on Synthetic Vase and Mozart with

two light sources �0; 0; 1� and �1; 0; 1�. See [53] for detailed

discussion on all five images.
The Synthetic Vase was generated using the formula

provided by Ascher and Carter [1] as follows:

Z�x; y� �
����������������������
f�y�2 ÿ x2

q
;

where

f�y� � 0:15ÿ 0:1 � y � �6y� 1�2 � �yÿ 1�2 � �3yÿ 2�;
ÿ 0:5 � x � 0:5; and 0:0 � y � 1:0:

This yields a maximum depth value of approximately

0.29. In order to generate a depth map with the proper size

and scale, we map the x and y ranges to [0, 127], and scale Z

by a factor of 128.
The depth map for Mozart was provided by Professor

Kuo of USC.
The depth maps for both synthetic surfaces are shown in

Fig. 4. The synthetic images generated from these surfaces

with light source directions �0; 0; 1� and �1; 0; 1� are shown
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Fig. 11. Results for Pentland's method on synthetic images: (a) vase, (b)
Mozart. (a1) and (b1) show the results for test images with light source
�0; 0; 1�. (a2) and (b2) show the results for test images with light source
�1; 0; 1�.

Fig. 12. Results for Tsai and Shah's method on synthetic images: (a)
vase, (b) Mozart. (a1) and (b1) show the results for test images with light
source �0; 0; 1�. (a2) and (b2) show the results for test images with light
source �1; 0; 1�.



in Fig. 5. The images are either reduced or expanded to

make their sizes power of 2.

5.2 Real Images

In our study, we used five real images (Vase, Lenna,

Pepper, Mannequin, and Vase). These images are available

through our web site. In this paper, we focus our discussion

on Lenna, Pepper, and Vase, shown in Fig. 6. See [53] for

detailed discussion on all five images.
The light source direction for Vase was estimated by the

Lee and Rosenfeld method, and the rest were provided with

the images:

. Lenna: Light source direction is �1:5; 0:866; 1�.

. Pepper: Light source direction is �0:766; 0:642; 1�.

. Vase: Light source direction is �ÿ0:939; 1:867; 1:0�.
The Vase image was provided by Professor Woodham of

UBC. The other two images were provided by Professor

Kuo of USC.

Note that the light source direction is one possible source
of uncertainty in these algorithms.

6 EXPERIMENTAL RESULTS

It is difficult to choose the proper control parameters for

each algorithm because they may vary from image to image.

It is even harder to chose similar parameters for different

algorithms. We manually selected parameters for each

algorithm in order to obtain the best results. This causes the

variation of parameters for different algorithms and

different images. All algorithms were treated equally when

tuning the parameters.

With respect to the initial conditions for different

algorithms, we tried to provide the same initial condition

for all the algorithms in order to obtain a fair comparison.

Therefore, only singular points (points with the highest
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Fig. 13. Results for Zheng and Challappa's method on real images: (a) Lenna, (b) pepper, (c) vase.

Fig. 14. Results for Lee and Kuo's method on real images: (a) Lenna, (b) pepper, (c) vase.



gray level) were used in the initialization of Bichsel and

Pentland's algorithm, since singular points can be auto-

matically detected.
The depth maps computed from both synthetic and real

images using each algorithm are shown in Figs. 7 through

18. Below we analyze the results using the 3D plots of depth

maps.

6.1 Zheng and Chellappa

The results for synthetic images are shown in Fig. 7 and the
results for real images are shown in Fig. 13. The basic
shapes for Lenna and Pepper are recovered with enough
details; however, some errors can be seen around the mouth
and on the cheeks in Lenna. Their method also has a
problem with light source �0; 0; 1�, which will zero out most
of the terms in the iterative equations ([54, p. 688]). In order
to get reasonable results for the images with light source
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Fig. 15. Results for Bischel and Pentland's method on real images: (a) Lenna, (b) pepper, (c) vase.

Fig. 16. Results for Lee and Rosenfeld's method on real images: (a ) Lenna, (b) pepper, (c) vase.

Fig. 17. Results for Pentland's method on real images: (a) Lenna, (b) pepper, (c) vase.



�0; 0; 1�, we used �0:01; 0:01; 1� instead as the light source
direction. Their results also showed some error along the
light source direction.

6.2 Lee and Kuo

The results for synthetic images are shown in Fig. 8 and the
results for real images are shown in Fig. 14. It can be seen
that the algorithm performs okay, even when the light
source is from the side except in the cases of vase, which
create the self-shadows. The recovered surfaces are well-
outlined, but lack details and have a tendency to be over-
smoothed. Although different smoothing factors can be
used for different images in order to get the best results,
small changes in the smoothing factor will not affect the
results very much.

6.3 Bichsel and Pentland

The results for synthetic images are shown in Fig. 9 and the
results for real images are shown in Fig. 15. All results were
obtained after eight iterations. The algorithm provides the
best results for the cases when the light source is on the
side. However, the algorithm does not give good results for
real images considered in this study except for Pepper. This,
we think, is due to the inaccuracy of the initial singular
points. The algorithm is very fast; usually only five
iterations are required to provide reasonable results.

6.4 Lee and Rosenfeld

The results for synthetic images are shown in Fig. 10 and
the results for real images are shown in Fig. 16. Their
method estimates the depth using local spherical assump-
tion and intensity derivatives. This makes the algorithm
unsuitable for nonspherical surfaces and very sensitive to
noise, which is clear from the depth maps obtained for the
real images and some synthetic images, such as Mozart. The
intensity of the real images varies slightly, causing the
depth estimation to falter, while the synthetic images yield
good depth maps due to the smooth surfaces. However, the
results can be improved by prefiltering the input images in
order to reduce the noise.

6.5 Pentland

The results for synthetic images are shown in Fig. 11 and
the results for real images are shown in Fig. 17. Pentland's

algorithm produces reasonable results on most surfaces
where the reflectance changes linearly with respect to the
surface shape, even if the surface is naturally varying, such
as a person's face. However, this algorithm has difficulty
when the reflectance changes in a nonlinear manner. For
real images, the algorithm produces adequate results for all
images except for vase.

6.6 Tsai and Shah

The results for synthetic images are shown in Fig. 12 and
the results for real images are shown in Fig. 18. From Fig. 12,
we can clearly see that their method works well on smooth
objects with the light source close to the viewing direction.
However, it is sensitive to the noise, such as the black hole
on the nose of Mozart image or the shadow areas.

The results for real images are reasonable for Vase, but
noisy for Lenna and Pepper, especially in the top and
bottom regions of Pepper, and the nose, eyes, and hat
regions of Lenna.

7 ERROR ANALYSIS

In the previous section, we reported results for synthetic
and real images and qualitatively analyzed the results by
considering the 3D plots of the depth map. In this section,
we will quantitatively analyze the results for the synthetic
images for which the true depth maps are available to be
used in error measurements. There are several ways to
report the error behavior. We use the following two:

. Mean and standard deviation of depth error
(Tables 1 and 2). For each algorithm, we compared
the recovered depth with the true depth from the
range image. The output depth from each algorithm
was first normalized according to the true depth,
then compared with the true depth for mean and
standard deviation of depth error.

. Mean gradient error (Table 3). This indicates the
error in the surface orientation. The standard
deviation is not used here since it does not have
any physical meaning. The forward discrete approx-
imation was used to compute the gradient from the
recovered depth.
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Fig. 18. Results for Tsai and Shah's method on real images: (a) Lenna, (b) pepper, (c) vase.



For those algorithms which compute the surface gradient
together with the depth, we still use the discrete approx-
imation of the depth to calculate the surface gradient in the
gradient error table, in order to be consistent with the other
algorithms.

There are several ways to analyze the error Tables 1, 2,
and 3. One way to is to consider for each algorithm the sum
of errors for four images and rank algorithms based on this
measure. According to the sum of average error the ranking
of algorithms (Table 4) is as follows: Lee and Kuo, Zheng
and Chellappa, Bichsel and Pentland, Pentland, Lee and
Rosenfeld, and Tsai and Shah. We have also tried to rank
these algorithms based on sum of standard deviation of
depth errors, sum of gradient (p-q) errors, and, finally,
based on their performance on each image, the ranking is
pretty much similar to the above ranking.

8 TIMING

CPU timing (Table 5) is computed on a SUN SPARC 4. Disk
I/O time is not included and only computational time is
considered. All the synthetic images are 128 by 128. All the
real images are 256 by 256. From the timing table (Table 5),

we see that the minimization approaches are significantly

slower than other approaches. For the minimization

approaches, time depends not only on the size of the input

image, but also varies from scene to scene. For the other

approaches, time depends only on the size of the input

image. The order of the algorithms according to CPU time,

from the slowest to the fastest, is Lee and Kuo's algorithm,

then followed by Zheng and Chellappa's, Bichsel and

Pentland's, Pentland's, Lee and Rosenfeld's, and Tsai and

Shah.

9 CONCLUSIONS AND FUTURE RESEARCH

SFS techniques recover the 3D description of an object from

a single view of the object. In this paper, we discussed

several existing algorithms and grouped them into four

different categories: minimization techniques, propagation

techniques, local techniques, and linear techniques. These

groupings are based on the conceptual differences among

the algorithms. Six representative algorithms were imple-

mented in order to compare their performance in terms of

accuracy and time. This comparison was carried out on two

synthetic surfaces; each was used to generate two synthetic

images using different light source directions.
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TABLE 1
Average Z Error for Synthetic Images

TABLE 2
Standard Deviation of Z Error for Synthetic Images

S1 and S2 stand for two different light sources, �0; 0; 1� and �1; 0; 1�.

TABLE 3
Average p-q Error for Synthetic Images

TABLE 4
Ranking Based on Sum of Average Depth Errors (Using Table

1) for Synthetic Images



To analyze the accuracy, the output for the synthetic
images was compared with the true surface shapes and the
results of comparison were shown in the forms of the
average depth error, the average gradient error, and the
standard deviation of depth error. The output for real
images was only analyzed and compared visually. The
conclusions drawn from the analysis are as follows:

1. All the SFS algorithms produce generally poor
results when given synthetic data,

2. Results are even worse on real images, and
3. Results on synthetic data are not generally predictive

of results on real data.

There are several possible directions for future research.
As we noted, reflectance models used in SFS methods are
too simplistic; recently, more sophisticated models have
been proposed ([20], [24], [7], [35]). This not only includes
more accurate models for Lambertian, specular, and hybrid
reflectance, but also includes replacing the assumption of
orthographic projection with perspective projection, which
is a more realistic model of cameras in the real world. The
traditional simplification of lighting conditions, assuming
an infinite point light source, can also be eliminated by
either assuming a noninfinite point light source, or
simulating lighting conditions using a set of point sources.
This trend will continue. SFS methods employing more
sophisticated models will be developed to provide more
accurate, and realistic, results.

Another direction is the combination of shading with
some other cues. One can use the results of stereo or range
data to improve the results of SFS (such as [25] and [41]) or
use the results of SFS or range data to improve the results of
stereo. A different approach is to directly combine results
from shading and stereo (such as [8]).

Multiple images can also be employed by moving either
the viewer (as in [16]) or the light source (as in [53]) in order
to successively refine the shape. The successive refinement
can improve the quality of estimates by combining
estimates between image frames and reduce the computa-
tion time since the estimates from the previous frame can be
used as the initial values for the next frame, which may be
closer to the correct solution. By using successive refine-

ment, the process can be easily started at any frame,
stopped at any frame and restarted if new frames become
available. The advantage of moving the light source over
moving the viewer is the elimination of the mapping of the
depth map (warping) between image frames.

One problem with SFS is that the shape information in
the shadow areas is not recovered since shadow areas do
not provide enough intensity information. This can be
solved if we make use of the information available from
shape-from-shadow (shape-from-darkness) [12], [13], [14],
[22], [43], [44], [47] and combine it with the results from SFS.
The depth values on the shadow boundaries from SFS can
be used either as the initial values for shape-from-shadow,
or as constraints for the shape-from-shadow algorithm. In
the case of multiple image frames, the information
recovered from shadow in the previous frame can also be
used for SFS in the next frame.
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