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This paper presents a theory and practical computations for vi-
sual age classification from facial images. Currently, the theory has
only been implemented to classify inputimages into one of three age-
groups: babies, young adults, and senior adults. The computations
are based on cranio-facial development theory and skin wrinkle
analysis. In the implementation, primary features of the face are
found first, followed by secondary feature analysis. The primary
features are the eyes, nose, mouth, chin, virtual-top of the head and
the sides of the face. From these features, ratios that distinguish
babies from young adults and seniors are computed. In secondary
feature analysis, a wrinkle geography map is used to guide the de-
tection and measurement of wrinkles. The wrinkle index computed
is sufficient to distinguish seniors from young adults and babies. A
combination rule for the ratios and the wrinkle index thus permits
categorization of a face into one of three classes. Results using real
images are presented. This is the first work involving age classifica-
tion, and the first work that successfully extracts and uses natural
wrinkles. It is also a successful demonstration that facial features
are sufficient for a classification task, a finding that is important
to the debate about what are appropriate representations for facial
analysis. (© 1999 Academic Press

1. INTRODUCTION

term too, an improvement of our understanding of how human
may classify age from visual images can be used in the doma
of indexing into a face database by the person’s age, in the ar
of newspaper-story understanding [10, 11], and in the applice
tion areas such as gathering population age-statistics visual
(for example, getting the ages of patrons at entertainment ar
amusement parks or in television network viewer-rating stud
ies.)

To gain an understanding for the aging process of the face, w
consulted studies in cranio-facial research [1], art and theatric
makeup [2, 7], plastic surgery, and perception [5]. The main the
ory in the area of cranio-facial research is that the appropriat
mathematical model to describe the growth of a person’s hee
from infancy to adulthood is the revised cardioidal strain trans
formation, written in polar form as?’ =0, R = R(1+ k(1 —
cosd)), whered is the angle formed from th¥-axis, R is the
radius of the circlek is a parameter that increases over time,
and (R, 0')’s are the successive growths of the circle over time
[1]. The revised cardioidal strain transformation describing hea
growth can be visualized as a series of ever growing circles a
attached at a common tangent “base” point, in this case the tc
of the head. With this transformation the growth of lower parts
of the face is more pronounced than that of the upper part. Thu
for example, within the top and bottom margins of the head, th

As humans, we are easily able to categorize a person’s a&yes occupy a higher position in an adult than in an infant (not

group from animage of the person’s face and are often able totbat this is due not to eye migration, but instead to an outgrowin
quite precise in this estimation. This ability has not been pursuaad dropping of the chin and jaw).
in the computer vision community. In order to begin researching Another consequence of this development into adulthood i
the issues involved in this process, this research addresseshiag relative to the margins formed by the eyes and the moutl
limited task of age classification of a mugshot facial image inthe position of the nostrils (nose) drops. Hence, to distinguis|
a baby, young adult, and senior adult. babyfaces from the two older groups, this research has evaluat
Any progress in the research community’s understanding @fset of ratios. These ratios only require the automatic localize
the remarkable ability that human’s have with regard to facidion of primary features, namely the eyes, nose, mouth, chin, ar
image analysis will go a long way toward the broader goals wfrtual top of the head (see Fig. 9). Ratio 1 is theatio formed
face-recognition and facial-expression recognition. In the lorty two segments: the segmentjoining the two eyes and the
run, besides leading to a theory for automatic precise age idesttgment, between the midpoint 6f; and the nose. Ratio 2 is
fication which would assist robots in numerous ways, analysistbfe T-ratio formed by two segments: the segméngs above,
facial features such as aging-wrinkles will assist in wrinkle anand the segmerfi; between the midpoint of; and the mouth.
ysis for facial-expression recognition. However, in the short&atio 3 is theT-ratio formed by two segments: the segment
T, as above, and the segment between the midpoint of;
*Also at RSI Baseband Technologies, Orlando, FL 32822. E-mail: kwon@&r‘d the Ch_m' Rfatlo 4is the ratio of the segmgnt r?prese”“”g t
ucf.edu. difference in height between nose and eye-midpoint, and the se
1 E-mail: niels@bohr.cs.ucf.edu. ment representing the difference in height between mouth ar
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2 KWON AND LOBO

eye-midpoint. Ratio 5 is the ratio of the segment representinggions of enhanced whites (of the eyes). Once they detect
the difference in height between mouth and eye-midpoint, atite eye, they performed geometric normalization of the eye
the segment representing the difference in height between chieparation for a recognition step. This recognition step uses't
and eye-midpoint. Ratio 6 is the height of the eyes within thegen analysis approach (see below) of Turk and Pentland [2
top and bottom head-margins. and Kirby and Sirovich [15]. The contribution of Shackleton anc
After distinguishing the face as belonging to the union of thé/elsh’s method is that most of the background is eliminated ar
two older classes, our classification goals require us to determardy the feature of interest, in this case the eye, is considered 1
whether the person is a young adult or a senior. Bone structur@tognition.
changes do not occur after the person is fully grown (i.e., theYang and Huang [28] use pyramids to find bright regions (¢
geometric relationships of primary features do not vary); hentige coarsest level) and then confirm the location of a face t
secondary features need to be identified and exploited. Fréimding supporting features.
studying the aging process of adult humans, one can observ€raw, Tock, and Bennett [8] designed a system to locate tt
that the facial skin of an older person is not as taut as inf@atures in a face using statistical knowledge to create an ide
younger adult. template. This system is capable of labeling the hair, the eye
Wrinkles are a good indication of the loosening skin; thus we mouth, and the nose in a mugshot image.
have selected wrinkles as the nextimportant feature (although, irReisfeld and Yeshurun [25] use generalized symmetry to I
general, these aging-wrinkles must not be confused with creasakze the eyes and mouth in images of human faces. Their s)

formed from facial expressions). tem is able to cope with a wide variety of sizes, rotations, an
orientations.
2. PREVIOUS WORK Nagamine, Uemerra, and Masuda [20] have developed me

ods to match features in range images of faces. These imag
No previous work has been reported on any aspects of agaht be produced by, for instance, a binocular system.
information in images of human faces. However, it is appro- Using color images of light-skinned faces, Novak [21] use
priate to review research on facial image analysis, as manyséin tones to find the face, lip-pinks to find the lips, and blue
the issues encountered in our problem are similar to those greens to find the eyes.
countered in related problems. Previous computational work onln an attempt at recognizing facial expressions, Matsuno, Le
face-images has been carried out in two distinct paradigms.and Tsuji [19] use potential nets, which undergo structural de
the first paradigm researchers first extract features such asftrenations at features such as the eyebrows, nose, and mot
eyes, nose, etc., thenthey relate these features geometrically,Baskd on the pattern of deformations, classification is achieve
finally they use the geometric relationships to aid in analysis andWorking in the other paradigm, Turk and Pentland [27] con
recognition. The current research has adopted this paradignveft anN x N image of a face into a single vector of sixé by
locating features and analyzing them for age classification. Toencatenating scan lines. Then they compute the eigenvect
second paradigm treats the complete face image as an inpiuthe covariance matrix of the set of face images. Only a fe\
vector and bases analysis and recognition on algebraic transtdrthe eigenvalues are significant, thus characterizing the loy
mations of the input space. dimensional “face-space.” A face can be represented in this ne
Attempts at performing automated analysis of facial imagspace by a few weights. Recognition is considered success
using geometrical features date back to Bledsoe [3]. A subseien an image’s weights fall within some neighborhood of
quent attempt at this task was undertaken by Kanade [13]. biet of weights already stored in a database. This method is st
started by detecting 16 features. Then he analyzed inter- andsitive to scale, viewing angle, lighting changes, and backgrour
traclass variances, finding that some of the parameters wereriaise. Similar work in this paradigm has been reported by Kirb
effective. The remaining 13 parameters were used for the recagd Sirovich [15].
nition task. However, the features were not always accuratelyAs another embodiment of this approach, O'Toole, Abdi
located. Deffenbacher, and Bartlett [23] used autoassociative memc
More recently, Yuille, Hallinan, and Cohen [29] used detechniques, and this proved useful in classifying faces by genc
formable templates to detect features of faces, in particular, eyesl race, and in recognition. This method sets up an autoas
and lips. External energy functions of valley, peak, edge, and iciative memory of] completely interconnected units, whefe
age intensity are defined. These external images are compusethe number of pixels in an image. The connection strengtl
from the original intensity image. The internal energy consistingere stored in & x J matrix. Eigenvectors were extracted anc
of the template parameters interact dynamically with the extehe first seven eigenvectors were used to differentiate genc
nal energy. The best fit occurs when the total energy equatiamd race. For the training sets they used, it was discovered tl
consisting of internal and external energy, is minimized. the difference in coefficients for the eigenvectors is useful fc
Pursuing the approach of Yuille, Hallinan, and Cohen [29lemale/male classification and for Caucasian/Japanese cla:
Shackleton and Welsh [26] performed feature-locating steps faration. For other work that examined the ability to classify
detecting the eye, having first added template parameters gender using neural networks, see [9].
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Recently, Brunelli and Poggio [4] have compared the utilitysed morphological operators such as open, close, erode, and
of the two paradigms described above, in the task of face recdate) we employ appropriate image transformations to localiz
nition. They concluded that the paradigm of using the completee features.
image patches and a correlation technique (which is related tdA series of stages (similar to epochs in previous work) are se
eigen-analysis in the sense that eigenvectors are linear comigi-where at each stage an intermediate goal is accomplishe
nations of the image patches in the database) outperforms e minimization is performed using gradient descent. Once
feature-based geometric approach (note that they called tretabilized energy sum is reached, the intermediate goal of th
correlation approach “template-matching,” which truly must betage has been realized and processing continues to the n
distinguished from the templates used in the feature-based gstage.
metric approaches described earlier). However, in their experi-Our approach to finding the chin and the sides of the fac
ments, their features were not located with precision (examirieyolves dropping a population afhakeletg14] around the
for example, the location of the left eye in their Fig. 6), andoundaries of the initial oval, in three rectangular regions, an
hence, their conclusion about the inferiority of the approacperforming a Hough transform to find a parabolic curve in eact
may be incorrect. In this research, we determine that facial fex-the three regions. Anakeletis a small snake segment de-
tures, when they can be found, are robust for performing agigned to find a small individual curve segment in the image
classification. In addition, since we need to detect wrinkles fdihe nose and the mouth are found by convolution with dark-ba
the age classification task and since we expect to be abled&iectors. From these features, geometric ratios are compute
transfer insight from its performance here to the area of facialNext, snakelets are used to find wrinkles. A wrinkle geogra:
expression analysis in the long run, we have chosen to adopt plty map drops multiple snakelets in polygonal regions, wher
plicit feature extraction and analysis. It should be noted that farrinkles may typically be found. The main focus of this stage of
a task such as ours, in which there are only a finite number (aguklysis is concentrated on the wrinkles on the forehead, wrir
possibly only a handful) of categories, a few types of geomedles next to the eyes, and the wrinkles near the cheek bones. T
ric relationships of explicit feature analysis may suffice. On thresence of wrinkles in a region is concluded positively if there
other hand, recognition of a specific individual amongst a largee several curves in the region. The different locales of evidenc
set of possibilities (possibly hundreds) requires a much larger the presence of wrinkles are then weighted appropriately t
parameter space. It may be that the few geometric relationshipier the age group within adults.
measured and tested by other researchers (e.g., Kanade [13]),
carry insufficient information on which to base recognition. 4. FACIAL FEATURE DETECTION

AND LOCALIZATION
3. OVERVIEW OF THE APPROACH

IN THIS RESEARCH The localization of the facial features is performed in stages
At each stage, a particular facial feature parameter is found. Tt
A high level description of the steps in the approach taken aenter position of the head in the image is initialized manually
this research is presented next. with an allowance for a large margin of error. In separate work
we show how the center of a face can be located automatical
with no knowledge of the scene [18] (another approach is dis
cussed in [28]). The initial oval-finding stage finds an oval that
best fits the face/head, and consequently the center position
the head is automatically updated. The chin-finding stage finc
the best chin in the rectangular area specified by the oval par

A. Find facial features

. Find initial rough oval

. Find chin; adjust oval

. Find sides of face

. Compute virtual top of head

NOoO o WNPER

' F!nd €yes meters. The face sides-finding stage finds the left and right side
. Find mouth . " .
' Find nose of the face in the area specified by the chin and oval parz

meters. The virtual top of the head is then acquired from the
oval generated from the chin and the two face sides. The chi
parameter, if it is found robustly, is then used to refine the initia
oval. Otherwise, the initial oval is used for the remaining stages
Our approach to finding the initial oval, and the eyes follows thd@he iris-attracting stage places both the left and the right iri
of Yuille, Hallinan, and Cohen [29] and Shackleton and Welstenters of the template near the respective iris centers in the ir
[26]. An energy equation is defined accordingBg = Eext+  age specified by the oval parameter. The iris-fitting stage tries t
Eint, WhereEeyx = Eeye+ Eedget Evalley+ Eintensity@ndEin; cON-  fit more accurately the iris contour by estimating the iris radius
tains the geometric template for the face. These energy teraml simultaneously improving estimates of both iris center po
are related to potential fields that guide the template fitting prsitions. The mouth-finding stage finds the position of the cente
cess. The potential fields are formed from the image operation§the mouth and finally the nose-finding stage finds the positiol
Corresponding to the image forces used in previous work (whiohthe bottom of the nose.

B. Compute facial feature ratios
C. Compute wrinkle analysis
D. Combine B and C to conclude age category.
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Head Template of the center close to where it was initially dropped’&t,(Ye).
P The ks-terms are outward-forcing for each half-length to pre
—a vent the oval from becoming too small. Tketerm also helps

to overcome the possibility of the lower edge of the oval stab
lizing around the mouth. Thky-term tries to maintain a ratio
f that is reasonable for a face. The fitting of the oval is performe
b by iteratively updating the oval center position and the oval axe
half-lengths {5, fp). The update formula is obtained by gradi-
ent descent with respect to these four parameters. The stag
complete when the total energy stabilizes around a minimu
value. Figure 2 illustrates the outcome of this stage.

iris_radius(r)

& o

leye(x,y) %, reye(x.y)

nose(x,y_)

mouth(x,y) oval_center(x ), yg)

chin(x,y) 4.2. Chin-Finding Stage

The chin-finding stage uses the edge-image potential to fil

FIG. 1. This shows a face template, including the parameters used in oveire bottom of the chin. First, multiple snakelets are dropped
fitting and eye-fitting. random orientations in a grid, one per grid point, in a rectar
gular region of Width% fa centered at the vertical axis of the

Figure 1 explains some of the parameters used. For the graglial center, and of heigri(fb to the top anc% fp to the bottom,

ent descent process, potential images are created. The poteptisltioned from the horizontal axis tangent to the bottom of th
image for the edgebeqqe Was generated by first applying a moroval. After all the snakelets have stabilized, they are used to o
phological operator oflilate(5) — erodg5) and then blurring it tain a Hough transform for the strongest parabola in that regio
by using an exponential filter «*“+Y")"* with ana value of 0.8. The Hough transform is implemented in two stages. First, ea
The dilate operator causes expansion while #redeoperator snakelet votes for a coarse candidate position for the base of |
causes shrinkage. Further details of morphological operators gaimabola. Nonmaximal suppression is performed on these vot
be found in Haralick and Shapiro [12]. The potential image faind the best five are chosen. Amongst these five, the one tha
the valley, ®yaiey, Was generated by first applying a morpholocated in the highest position on the face (to eliminate parabol
logical operator oftlos€21) and then blurring it by using ancorresponding to necklines of clothing, or of the shadow forme
exponential filter with ame value of 0.4. A similar operator was by the chin) is chosen. Then, the snakelets that voted for tF
used by Shackleton and Welsh [26]. Tdleseoperator smooths winning position of the base are identified, and a finer search
contours and fills gaps [12]. The eye potential imdgg. was the base is performed in a similar manner. This leads to robt
generated with a first-order difference operator of size 3, in battentification of the chin, when itis delineated in the raw image

X andY directions. If the image quality is poor, or illumination conditions are bad
the correct position of the chin is very difficult to find.

4.1. Initial Oval-Finding Stage Determination of whether a chin is found is currently done b

The initial oval-finding stage uses the edge-image potentf#iman visual inspection. If it has been found, itis used in thre

®eqgeto find the best oval that fits the outline of the face: places: to refine the initial oval; to find the virtual top of the hea

using also the sides of the face (see upcoming sections on “fe
side-finding stage” and “finding the virtual top of the head”);

Eovaltotal = Eedget Einternas _ . L . .
ovaos edee merma and to be used in ratios 3a and 5a. If it is determined that it

edge = C2 DeggdX) ds. not found, the bottom of the initial oval is used in the ratios, thu
length Jace edge requiring ratios 3b and 5b. In these ratios, the chin is referre
Einternal = Ki(Xe — X¢) + Ki(Ye — Y — (0.1) ) fas “ochin” (for ova_l-chin). Furth(_er research should explore ho
. it can be automatically determined whether the chin has be
+ ko fa — 0.7fp) + kae 1 4 kge " found robustly. Figure 3 shows the stages involved in locatin

the chin.

The coefficients used arec, =200, cz=100, k; =100,
k, =100, ks = 100000,8, =0.04, 8, =0.028. These numeric 4.2.1. Parabola-fitting algorithm. The following is a nu-
values were chosen by a combination of trial/error and contemerical description of the parabola-fitting process.
plation about their roles in the computation. With two known points on the parabola,

The oval axes half-lengthd{, f,) are initialized and the oval
is positioned inside the face perimeter. Kagerm force draws y = k(x —h)?>+c  (U-shaped parabola equation)
the oval centerX., Yc) downward because the oval center found
in stage 1 is biased towards the top due to the inclusion of hallr =
in stage 1. Thé-term also maintains the horizontal componeny, = k(x, — h)? + c.

k(x1 —h)>+c (c, h, k are the same for both equations)
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FIG. 2. Oval-fitting: (a) original image; (b) edge potential; (c)—(f) various stages before the final fit.

Algebriac manipulations yield 4.3. Face Side-Finding Stage
(x2 — h)2y1 — (X1 — h)2ys The face side-finding stage uses the edge-image potential
= 0o —h2—(xa—hZ find the left and right sides of the face. This stage uses th

parabola-fitting algorithm, except that the parabola equation
Since 1, y1) and o, y») are known, solve foc andh by are modified to suit the left and right open-ended parabolas

using a Hough transform. Figure 4 shows the right and left open-ended parabolas.

FIG.3. Chin-finding: (a) initial snakelets dropped on the negative of edge potential image; (b) stabilized snakelets; (c) the winner in Hough spaceithmark
an “X,” which is the chin.
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<

of the ratio of the height of the eyes from the chin, relative to th
virtual top of the head. This process is obviously affected by tf
errors in finding the sides of the face, which in turn are affecte
by disheveled hair in the lower half of the face, and a ear that
too close to the side of the face. Figure 5 shows the outcome

y
\h
T X
/[J\ one of the successful cases.

hc)  The following is a numerical description of the process o
estimating the oval that yields the virtual top of the head. Th
parametric form of the oval equation is

X = fa* cosO + Xg

(a) (b)

FIG. 4. (a) Right open-ended parabola to fit the left side of the face. (b) Left
open-ended parabola to fit the right side of the face. where

y = fp* sind + yo,

(X0, Yo) = ovalcenter,
The following are the parabola equations for the right open- (X, y) = point on the ovakdge,

ended parabola and the left open-ended parabola, respectively: 0 = angle from thex-axis,
(fa, fp) = the respective andy distances
x=k(y—c2+h, x=—-k(y—c)+h. from the ovalcenter.

Given (, y), (Xo, Yo), and f,, we can solve forf,:
Figure 5 shows the stages in locating the left and right sides of & ¥). (xo. Yo) b a

the face. This process is also very robust, except when the ear is 0 = sin Y (y — yo)/ fo]

too close to the side of the face, or when there is disheveled hair

within the lower half of the face. Evaluation of the goodness fa = (X — Xg)/ COSH.

of fit for the side-finding stage is performed by human visual

inspection. Figure 6 shows the resulting snakelets of the parabola-fittir
for the three groups. These snakelets are then used as an ir

4.4. Finding the Virtual Top of the Head to the virtual top of the head finding algorithm.

The top of the skull is very difficult to estimate when thel.5. Eye-Finding Stage
person has hair. Hence, an alternative strategy is used here. It
described next.

At this stage, the three pools of snakelets that voted for win-4.5.1. Iris-attracting stage. The iris-attracting stage places
ning parabolas are pooled, and a single oval is fit to all thmth the left and the right iris centers of the template near the r
snakelets’ points. The goal here is experimental and tentativesipective iris centers in the image specified by the computed ov
its purpose. The oval is used to find the virtual top of the head, adUsing the parameters from the refined oval (or the initial ova
confined by the snakelets that support the parabolas of the cifithe refinement cannot be computed), both the left and the rig
and sides of the face. The purpose of this is to have an estimigitecenters of the template are placed near the respective iri

"Fhis consists of aniris-attracting stage and an iris-fitting stag

FIG.5. Face side-finding: (a) the “X” on each side marks the base point of the parabola for that side of the face. Virtual head finder: (b) snakeletsgfter
down; (c) snakelets that support the three parabolas; (d) the fit of the face-oval has been refined. The virtual top of the head is the top of this oval.
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Left_Side Right_Side point. The relevant expression that is minimized is
Group Group
\ / Eiris_total = Eintensity_total + Evalley_total + Eeye_total + Einternal

e - E; . — Ei . 4+ E _—
= Snakelets\\ intensity._total intensity_eye intensity_iris

A A Evalley_total = Evalley_eye+ Evalley_iris
A
. Eeye_total = Eey&eye"— Eeye_iris
- ~— Chin_Group Eintensity eyeiS the same as in iris-attracting stage
. . 2 %
Chin_Point (x.y) Eintensity_iris = - 709 (Dintensity(x) ds
r x length left_iris_edge

FIG. 6. This shows the snakelets and the chin-point used in the virtual top of

the head finding algorithm. 2 X Cgy

+ d; iw(X)d A
rx area/ /|eﬂ_ms_area ntensiy{X)

in the image. The left iris center is placéglfb above the oval

center fory and% fa left of the oval center fok. Similarly, the
right iris center is placeq% f, above oval center foy and% fa
right of the oval center fok. The iris-attracting stage uses the
valley image potentiad,aiey and the intensity image potential
Dinensity t0 attract both left and right iris centers to their true
positions. The following expression is minimized:

Eeye_total = Eintensity+ Evalley + Eeye

Cs
_// cIDintensity(x)dA
area) Jieft_iris_area

Eintensity = -

Evalley_eyelS the same as in iris-attracting stage

2 X Cg

_ Dyaiey(X) ds
r x length left_iris_edge e

EvaIIey_iris =

2 X Cg
/ / q)valley(x) dA
r xarea/ Jiefiiris_area

Eeye eyelS the same as in iris-attracting stage

C7

L DPeye(X) ds
length left_iris_edge i

Eeye_iris =

Cs
- // cI)imensity(x) dA
areaj Jright_iris_area

Cs
Evai :_J/ Dyaliey(X) d A
e are left_iris_area e

Cs
+ — // cI)valley(x) dA
areaj Jright_iris_area

Einternal = k4eﬂ53r .

The coefficients used arg, = 100, cs =300, c; =200, cg =
100, cg =150, ks =80000,83 = 0.6, and these were picked by
thoughtful observation about their relative importance.
The iris-fitting stage uses the intensity image potedtigbnsity,
the valley image potentiabyaiey, and the eye image potential
deye to fit the iris template to the actual image. Theterm is
_ G an outward force that prevents the radius of the iris from becornr
length Jieft_iris_edge ing too small. The darkness of the iris area from the intensit)
Ca image and the brightness of the iris area from the valley imag
+ length S i Deye(x) ds. potential, along with the iris edge information from the eye im-
fight-Iris-edge age potential, guide the fitting of the iris template to the image
The coefficients used apg = 100, cs = 300, and their numeric The eye parametees b, c (which are constants controlling the

values were selected after deliberation about their roles relatR!ndary of the eye) are scaled with respect to the radius
to each other. the iris and these parameters are used to clip the iris disc to

The iris centers are initially positioned, guided by the ové]artial disc. T.h.e only parameters allowed to ch.a.nge in this stac
parameters. The valley potential is strong around the actual f€ POth the iris centers and the scale of the iris template. Tk
area and itdraws the iris/eye template over a substantial distarR@ameters are _u_pdated by gradlen'F d_escent. Figure 7 Sh_OWS |
The update is by gradient descent. The oval parameters are §fome of the iris-attracting and -fitting stages. Evaluation o

allowed to change in this stage. Thus, only a change in the if¢ 90odness of fit for the eye-finding stage is conducted b
parameters will update the total energy. human visual inspection.

Deye(x) ds

Eeye

4.5.2. Iris-fitting stage. For the iris-fitting stage, the equa—4'6' Finding the Mouth

tions from the iris-attracting stage and additional equations forAfter finding both iris centers, a vertical axis half way between
each of the energy potentials are used. An internal energy tethme two irises is computed. The search area for the mouth |
is also introduced to prevent the iris radius from collapsing todetermined by a rectangular region of wi(ﬁh‘a centered at
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FIG. 7. Iris-attracting and iris-fitting: (a) original image; (b) valley potential; (c) edge potential shown just for eyes; (d)—(e) iris-attractingf3tégalisris fit.

the vertical axis, and of height®f,, centered at & f, from the 5. EVALUATING DIFFERENT FACIAL

bottom of the oval. This area s large enough so that the mouth is FEATURE RATIOS

guaranteed to be within this region. An averaging filter (simple

arithmetic average) with mask size of 85 is convolved with  After the primary facial features have been located, they cz
the mouth area of the intensity image to produce the moutg used to compute the ratios for age classification. Six rati
image potentiatbmou From the mouth image potential, eactre evaluated and their usefulness is discussed. A facial datab
horizontal line is summed and the one with the maximum su@ 47 faces, comprising babies, seniors, and young/middle-ag

is selected as the position of the center of the mouth. adults, is used for this study. Figure 9 graphically explains the:
ratios.

Tables 1 and 2 show the calculated ratio results. Ratio 6
not included because it was difficult to obtain robustly. The dis

After the mouth is found, an area for the nose is determinezljssion of Ratio 6 is presented in the upcoming section title
guided by the vertical axis, the mouth, and the eye. The noséRatio 6.” Ratios 3 and 5 use the chin parameter and thus ha
searched for in a rectangular region bounded vertically by therresponding ratios 3b and 5b for when the chin is obtaine
middle 60% of the distance between the eyes and the mouth, &moan the initial oval. In these tables, “ochin” refers to oval-chin.
bounded horizontally by the 2 eye-centers. Similar to the mouthFor the five ratios, the individual column data from Tables :
stage, an averaging filter with mask size ¢3%) is convolved and 2 are used to obtain thresholds for classification. The fir
with the nose area to produce a nose image potebjigl From five ratios were recomputed after dropping the data evaluat
the nose image potential, each horizontal line is summed and &seunfavorable due to facial expression or rotation of the hez
one with the maximum is selected as the position of the bottohtne bimodal threshold for each ratio is calculated according
of the nose. The size of this mask varies with the size of the ov@ltsu’s method [22].
Figure 8 shows the outcome of locating the center of the mouth,Table 3 tabulates the statistics of each ratio. The results usi
and the bottom of the nose. The correctness of the outcomeRaitio 6 were not included as the virtual top of the head coul
both processes can be evaluated by human visual inspectioranly be computed for a small set of faces.

4.7. Finding the Nose
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(b) ()

FIG. 8. Mouth- and nose-fitting: (a) final mouth and nose fit shown over original image; (b) mouth potential (from image); (c) nose potential (from imac

5.1. Ratio 6—Eye—Chin: Taplead—Chin whether or not the person is bald, and to variation in the actus

Ratio 6 is the height of the eyes within the top and bottorsnh"’?loe of the I(_)wer part of the head. Th's rr_1easur_emen_t cou
. . L . . be improved with better methods for estimating hair configura
head-margins. For this ratio, it is not practical to obtain the trye

top of the head; hence, the virtual top of the head is used. T Qs

ratio makeg use of featu_res found in §tep§ 1 through 5 of tg%. Discussion of Ratios

overview. Itis the most reliable of the ratios, if the top of the head

could be found. It has low intraclass variance, and high interclassSeveral ratios have been examined above. The most promisil
variance. However, our method of measurement of the virtualRatio 1. This ratio uses features which are not affected by ar
top of the head is not robust to how the hair lies around the ediagial expressions or facial motions. However, it too is subject t«

left_eye - right_eye left_eye - right_eye left_eye - right_eye

eye - nose eye - mouth
—

@& O

(a) ratio 1 (b) ratio 2 (c) ratio 3

virtual_top_of_head - chin
eye - nose T
eye - mouth

O OO ]:

(d) ratio 4 (e) ratio 5 (f) ratio 6

FIG. 9. The six ratios used.
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TABLE 1
Results of the Ratio Computation with Real Images for Baby Class

Ratiol Ratio2 Ratio3a Ratio3b Ratio4 Ratio5a Ratio5b

Subject nose-T mth-T chin-T ochin-T e-n-m e-m-c e-m-ochin
baby01 1.4857 0.9286 0.5843 0.5909 0.6250 0.6292 0.6364
baby02 1.5385 0.9836 0.6186 0.6250 0.6393 0.6289 0.6354
baby03 1.4167 0.8947 0.5763 0.5313 0.6316 0.6441 0.5938
baby04 1.5000 0.9333 0.5753 0.5833 0.6222 0.6164 0.6250
baby05 1.2941 0.9362 0.5789 0.5714 0.7234 0.6184 0.6104
baby08 1.3500 0.8710 0.5455 0.5510 0.6452 0.6263 0.6327
baby10 1.5556 0.9825 — — 0.6316 — —
baby12 1.5625 0.9434 — 0.5495 0.6038 — 0.5824
baby13 1.5862 0.9583 — 0.6216 0.6042 — 0.6486
baby14 1.4483 0.9130 0.6000 0.5833 0.6304 0.6571 0.6389
baby15 1.5152 0.9434 — — 0.6226 — —
baby16 1.5172 0.9778 — — 0.6444 — —
baby17 1.5429 0.9153 — 0.6000 0.5932 — 0.6556
baby18 1.3684 0.8387 0.5200 0.5361 0.6129 0.6200 0.6392
baby19 2.0769 1.0189 — — 0.4906 — —
baby20 1.6296 0.9565 0.6667 0.6377 0.5870 0.6970 0.6667
baby21 1.7333 0.9811 — — 0.5660 — —
baby22 1.4286 0.9302 — 0.5263 0.6512 — 0.5658
baby24 1.7333 1.1304 0.6047 0.6047 0.6522 0.5349 0.5349
baby25 1.8000 0.9818 — — 0.5455 — —
b02 1.5484 0.8727 — — 0.5636 — —
b06 1.3939 0.9020 0.5169 — 0.6471 0.5730 —
b07 1.4545 0.9057 — 0.5581 0.6226 — 0.6163
b09 1.7419 1.0588 — — 0.6078 — —
b18 1.7391 1.0000 — — 0.5750 — —
Sum 38.9609 23.7579 6.3870 8.6702 15.3384 6.8453 9.2819
Num elements 25 25 11 15 25 11 15
Average 1.55844 0.95032 0.58064 0.57801 0.61354 0.62230 0.61879
Std. deviation 0.16851 0.06086 0.04138 0.03434 0.04352 0.03988 0.03469
Variance 0.02840 0.00370 0.00171 0.00118 0.00189 0.00159 0.00120

imprecise localization. If it can be made robust to shading, shad-Since the resolution of a 256256 image does not capture
owing, and occlusion effects, it should serve as a good classifieamy wrinkle information, it is necessary to zoom in to the ar
Ratio 2 appears to be the ratio that can be measured reliably aad depicted by the wrinkle geography to capture further d
also shows promise in providing reliable classification. Ratiaail. For now, to prove our concept, the zooming-in process
3, 4, and 5 are not as promising. In theory, Ratio 6 is the most
reliable, but, in practice, suffers from errors in estimating the
virtual top of the head.

Ratios 1, 2, and 3 will suffer if the face is rotated in depth,
and, as such, some measure needs to be adopted to compensate
for this rotation, before the ratios are computed. Ratios 4, 5, and
6 are more robust to this occurrence.

Further research should explore enhancing this approach by
combining several ratios to make the final ratio classification.
Such combination could be based on statistical analysis.

6. WRINKLES

6.1. Finding Wrinkles

ane the primary feat"_”es have been foynd for the face, tl}—'\% 10. Wrinkle geography. This shows the regions that are searched f
wrinkle geography map is used to determine where snakelgigal wrinkles, after the eyes, nose, mouth, chin, and sides of the face have b
should be dropped to search for wrinkles (see Fig. 10). located.
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TABLE 2
Results of the Ratio Computation with Real Images for Adult and Senior Classes

11

Ratiol Ratio2 Ratio3a Ratio3b Ratio4 Ratio5a Ratio5b
Subject nose-T mth-T chin-T ochin-T e-n-m e-m-c e-m-ochin
snro1 1.1923 0.9118 — 0.6019 0.7647 — 0.6602
snr02 1.7333 — — 0.5778 — — —
snr03 — — — — — — —
snro5 1.4286 0.9434 — — 0.6604 — —
snro6 1.6800 0.9767 — 0.6176 0.5814 — 0.6324
snr07 — — — — — — —
snrl0 — — — — — — —
snr11 — 1.0000 — 0.5455 — — 0.5455
snr15 1.3621 0.7119 — 0.4468 — — 0.6277
snrls 1.1481 0.8158 — 0.5439 0.7105 — 0.6667
s01 1.4737 0.9333 0.5957 0.5657 0.6333 0.6383 0.6061
s10 1.3500 0.8710 0.5934 0.5934 0.6452 0.6813 0.6813
s11 1.4359 0.9492 — — 0.6610 — —
s12 1.5263 0.9355 0.6042 0.5979 0.6129 0.6458 0.6392
adulto1 1.4167 0.8718 0.5313 0.5440 0.6154 0.6094 0.6240
adulto4 1.2778 0.7931 0.5055 0.5111 0.6207 0.6374 0.6444
a01 1.1765 0.8333 0.5195 — 0.7083 0.6234 —
a02 1.2941 0.9362 0.5714 0.5789 0.7234 0.6104 0.6184
ao4 1.2121 0.9302 0.5405 0.5479 0.7674 0.5811 0.5890
a06 11111 0.8163 0.5263 0.5479 0.7347 0.6447 0.6712
al2 1.2000 0.8571 — — 0.7143 — —
al9 1.6296 0.9778 0.5867 0.5867 0.6000 0.6000 0.6000
Sum 23.2862 16.0644 5.5745 8.4071 10.7537 6.2718 8.8060
Num elements 18 18 10 15 16 10 14
Average 1.36977 0.89247 0.55745 0.56047 0.67210 0.62718 0.62900
Std. deviation 0.15074 0.05675 0.03475 0.02681 0.05445 0.02700 0.02971
Variance 0.02272 0.00322 0.00121 0.00072 0.00296 0.00073 0.00088
accomplished manually. Figure 11 shows how the area arour
an eye could be zoomed into to obtain a new 2586 im-
age. With an actively controlled zoom lens, the zooming-in tasl
TABLE 3 could be made automatic. Another possibility is to take highe

Results of the Ratio Computation with Real Images (47 Faces),

resolution images at the outset and search for wrinkles in the a

Indicating That It Is Possible to Computationally Distinguish be-

tween Baby and Nonbaby Images

eas depicted by the wrinkle geography. Recently, commerciall

Correctly Sample % %
Ratio Threshold labeled size Correct - :
1 1.48 Baby 14 21 67% |
Adult 9 13 69%
2 0.91 Baby 16 21 76%
Adult 7 13 54%
3a 0.57 Baby 7 9 78%
Adult 4 9 44%
3b 0.53 Baby 12 13 92%
Adult 2 13 15%
4 0.62 Baby 8 21 38%
Adult 8 12 67%
5a 0.64 Baby 6 9 67%
Adult 3 9 33%
5b 0.63 Baby 6 13 46% FIG. 11. Zooming in to increase resolution. While this could be automated
Adult 7 12 58%  with a camera that has software-controlled zoom capability, it is accomplishe

manually at this stage of the research.
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Side 1 Suml to detect individual features (in this case, individual wrinkle:
| candidates) and conduct geometric analysis of them to confil
La whether these features are wrinkles or not. As an embodiment
7 5 P el Sum2 the principles of geometric feature analysis, one could also e
amine an individual wrinkle-candidate for its curvature and hou
/ deeply it is embedded in the skin. Another embodiment woul

be to perform a match between a deformable template of a wri
Side 2 kle and the image. The elementary embodiment we use here

one where we simply confirm that the candidates for pieces

wrinkle are not all lying on just one underlying curve. As such
Ji if all the candidates for wrinkles-pieces lie on one curve (witl
very few outliers), the candidates are not labeled as wrinkles.
this manner, curves arising from shading marks, or noisy spec

FIG.12. Thisshows the directional derivative orthogonal to the snakelet cur@ Skin, are not mistakenly labeled as wrinkles.
for each side of the snakelet.

Snakelet Points

6.3. Steps for Detection and Classification

available high resolution cameras (12802024) have become of Wrinkle-Candidates

available from manufacturers such as Kodak. Pursuing this apirst, snakelets [14] are dropped in random orientations alor

proach with such high resolution images is a topic for furthére nodes of a grid using the raw intensity image as the potent

research. for the snakelets. The bounding region for the grid is chosen |
the areas shown in the wrinkle geography map.

6.2. Possible Strategies for Finding and Analyzing Wrinkles 6.3.1. Steps for the detection of wrinkle-candidatethen

Once an image (zoomed-in) in which the presence or absetitese snakelets have stabilized, those snakelets that have fo
of wrinkles is to be determined has been obtained, the choictrallow valleys are eliminated. A shallow valley is detected ac
outlined at the start of this paper for face analysis can be krding to the following: For each point in a snakelet, the direc
applied. That is, one option is to treat the whole image as #ional derivative (of the raw image intensity) taken orthogone
input vector and conduct an algebraic analysis of the vectarthe snakelet curve is computed.
space to achieve classification (for example, Shackleton and-igure 12 shows the directional derivative orthogonal to th
Welsh [26] used this strategy for recognition based on eye isnakelet curve for each side of the snakelet. These are sumn
ages) into wrinkled and nonwrinkled areas. The other optiongeparately for each side of the snakelet and normalized f

N
S
e

FIG. 13. Wrinkle pattern test. This shows how pairs of snakelets are judged as to whether they are part of a wrinkle. The pairs on the left are classed as
reliable wrinkle patterns, as they both may belong to a single curve. The pairs on the right are taken as appropriate evidence for a wrinkle pattern.
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FIG. 14. Wrinkle-finding process for a region beneath the right eye. Top row shows data for an older adult, middle row for a young adult, and bottom rc
a baby. (a) Initial snakelets dropped in the image shown in 11. First column, except for (a), shows the original image. Second column (b, e, h)ligedws st
snakelets. Third column (c, f, i) shows results of snakelets that survive the steepness test. It is obvious that only the older adult data willripéces Bragtevn
Test.

the number of points in the snakelet, to obtain two sums the intensity valley is fortuitous; shading effects cause deepe
indicate the steepness of the valley the snakelet is occupyingwtinkles to appear darker.

these steepness sums do not exceed some preselected threshold,

the snakelet is eliminated. In this manner, only those snakelet$.3.2. Classification of wrinkle-candidates: Wrinkle pattern
thatlie in a deep enough intensity valley survive. The deepintaiest. Finally, the snakelets that survive the steepness test, a
sity valleys correspond to narrow and deep wrinkles. Note thetalyzed for their group pattern, to ensure that there are enou
the relationship between the depth of a wrinkle and the depthaffthem and that they do not all lie on only one curve. First,
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TUTUTTTT

P O S R I

- - -4
(i)
FIG. 15. Wrinkle-finding process for the forehead region. Top row shows data for an older adult, middle row for a young adult, and bottom row for a bab

column (a, d, g) shows the original image. Second column (b, e, h) shows stabilized snakelets. Third column (c, f, i) shows results of snakalits that su
steepness test. It is obvious that only the older adult data will pass the Wrinkle Pattern Test.

it is verified that there are more than five snakelets. Next, fourves. The region is classified as wrinkled if there is substanti
each pair of snakelets (there are a square number of pairs),elelence for multiple curves. The evidence is computed from
following is done. The line segmerWPj) joining the snakelets

is computed, and the average orientation for each of the two Z e—(\PT’J\Z/crz)(pl—pjl . fp\l)(pl—pjL . ﬂ;,-),

snakelets with respect to this line is computed. If either of the PP

two orientations is sufficiently orthogonal to the line, or if they

satisfy directional constraints indicating they could not belonghere P, and P; are centers of two sna@tﬁ;}. is the unit
to the same shallow curve, the snakes are taken to be multiglagent to the snakelet centered Bt, P, P;” is the unit
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(baby24fw - 44 snakes) (baby24fw - 1 snakes) (baby24fw - 43 snakes)

o -

. — 2

(baby25fw - 0 snakes) (baby25fw - 96 snakes)

(babyl4ew - 50 snakes) (babyldew - 0 snakes) (babyl4ew - 50 snakes)

FIG. 16. Wrinkle analysis process. First column: initial snakelets dropped into an image. Second column: wrinkle snakelets (including quantityurhird co
nonwrinkle snakelets.

perpendicular to the line joining and P;, ande (PPi*/2"  righteye. Figure 15 shows the outcomes of the process applied
is a decaying function of the distance between the two snakasenior,ayoungadult, and ababyinthe areaaround the forehe:
To be classified as a region with multiple curves, this computedin addition, Figs. 16 to 21 show how snakelets are detecte
evidence must exceed a preset threshold. (See Fig. 13 for relsunted, and used in confirming the presence of wrinkled skir
vant examples of wrinkle patterns.) In these figures, the first column shows the initial snakelet:

Figure 14 shows the outcomes of the process applied to a dmpped, the second column shows the snakelets that are fou
nior, a young adult, and a baby in the area beneath the image'®e candidates (the numbers in the columns are the quantiti
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akes) (adultOlfw - 112 snakes)

(adultO1fw - 112 snakes) (adultO1fw - 0 sn

FIG. 17. Wrinkle analysis process. First column: initial snakelets dropped into an image. Second column: wrinkle snakelets (including quantityurfihird c
nonwrinkle snakelets.

of snakelets), and the third column shows those snakelets that 7. COMBINING RATIOS AND WRINKLE
are not candidates. INFORMATION TO JUDGE AGE CATEGORY

6.3.3. Combining different locales of evidence for wrinkles. With only three age groups to be categorized, the combinatic
At this stage in the research, the different locales which argle is simple. If the ratios are baby-like and no wrinkles ar
inspected for wrinkles (e.g., forehead and area beneath efmind, the face is labeled a baby. If wrinkles are found, and tt
eye) are weighted equally in determining whether the face hagios are adult-like, the face is labeled a senior adult. For
wrinkles. other cases, the face is labeled a mid-aged adult. To decide
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(adultO4fw - 108 snakes) (adultO4fw - 0 snakes) (adultO4fw - 108 snakes)

%—h{;:\lﬁﬁ]x\‘ 2; “‘/‘%\M\)\?ﬁt‘b
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(adultO5ew - 88 snakes) (adultO5ew - 4 snakes) (adultO5ew - 84 snakes)

FIG. 18. Wrinkle analysis process. First column: initial snakelets dropped in an image. Second column: wrinkle snakelets (including quantity). Third co
nonwrinkle snakelets.

the ratios are baby-like, we use Ratios 1 and 2, as they yieldaestformed on all faces because the zoomed-in images were or
the greatest correct percentages in Table 3. They are alsodb&ined for 15 faces. For these 15 faces, the complete clas
two ratios with the widest spread between their averages for fiwation algorithm was run, and the classifications were 1009
groups. Thus, aface is considered baby-like if it had no wrinklesgrrect. The 15 faces contained five babies, five mid-age adult
and if either Ratio 1 or 2 indicates it is a baby. and five seniors.

Our complete database contains 47 faces comprising babieslable 4 summarizes the measurements and computed infe
seniors, and young/mid-aged adults. Wrinkle detection was restces for the 15 faces. In it, column 2 shows Ratio 1, alon
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(snr02ew - 54 snakes)

(snr09ew - 120 snakes) (snr09ew - 77 snakes) (snr09ew - 43 snakes)

FIG. 19. Wrinkle analysis process. First column: initial snakelets dropped in an image. Second column: wrinkle snakelets (including quantity). Third c
nonwrinkle snakelets.
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(snrl3ew - 135 snakes) (snr13ew - 102 snakes) (snrl3ew - 33 snakes)

(snrl4fw - 108 snakes) (snrl4fw - 51 snakes)

(snrlbew - 120 snakes) (snrl5ew - 59 snakes) (snrlSew - 61 snakes)

FIG. 20. Wrinkle analysis process. First column: initial snakelets dropped in an image. Second column: wrinkle snakelets (including quantity). Third co
nonwrinkle snakelets.

with the threshold used to decide if the ratio is baby-like or not. 8. DISCUSSION AND CONCLUSION

Column 3 similarly shows Ratio 2. Column 4 shows the number

of dropped snakelets that passed the steepness test and are thifs have outlined a computational theory for visual age classi
wrinkle snakelets. Column 5 shows the result of applying thHiation from facial images. For now, only three age-groups wer
wrinkle pattern test to these wrinkle snakelets. Column 6 showsnsidered: babies, young adults, and senior adults. First, pi
the final inference that combines the information from colummeary features of the face, namely the eyes, nose, mouth, chi
2, 3, and 5, in the manner described in this section. and virtual top of the head, are found. From these, ratios ar
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TABLE 4
Results of the Complete Classification Scheme Applied to 15 Faces: 5 Babies, 5 Mid-age Adults, and 5 Seniors
Ratio 1 Ratio 2 Wrinkle Decide Computed

Subject threshole: 1.48 threshold=0.912 snakelets found wrinkled? label
Baby14 1.45 0.913 0 No Baby
Baby17 1.54 0.915 0 No Baby
Baby22 1.43 0.930 3 No Baby
Baby24 1.73 1.13 1 No Baby
Baby25 1.80 0.982 0 No Baby
Adultol 1.41 0.872 0 No Adult
Adulto4 1.28 0.793 5 No Adult
Adult05 1.30 0.731 4 No Adult
A02 1.29 0.936 0 No Adult
Al12 1.20 0.857 0 No Adult
Snr01 1.19 0.911 56 Yes Senior
Snr09 1.39 0.78 77 Yes Senior
Snrl3 1.25 0.81 102 Yes Senior
Snrl5 1.36 0.71 59 Yes Senior
Snrl8 1.14 0.81 114 Yes Senior

Note Column 2 shows Ratio 1, along with the threshold used to decide if the ratio is baby-like or not. Column 3 similarly shows
Ratio 2. Column 4 shows the number of dropped snakelets that passed the steepness test and are thus wrinkle snakelets. Column 5
shows the result of applying the wrinkle pattern test to these wrinkle snakelets. Column 6 shows the final inference that combines
the information from columns 2, 3, and 5, in the manner described in this section.

(snr15fw - 100 snakes) (snr15fw - 50 snakes)

(snrl18fw - 133 snakes) (snr18fw - 114 snakes) (snrl18fw - 19 snakes)

FIG. 21. Wrinkle analysis process. First column: initial snakelets dropped in an image. Second column: wrinkle snakelets (including quantity). Third c
nonwrinkle snakelets.



AGE CLASSIFICATION FROM FACIAL IMAGES 21

computed that permit the distinguishing of babies from others. R. CorsonStage MakeugPrentice—Hall, Englewood Cliffs, NJ, 1986.
Next, secondary features, namely wrinkles, are detected asd 1. Craw, D. Tock, and A. Bennett, Finding face featuresPinc. ECCV,
analyzed. This step permits the distinguishing of seniors from Europe, 1992pp. 92-96.
those in the two younger categories. 9. A.J. Golomb, D. T. Lawrence, and T. J. Sejnowski, Sexnet: A neural net
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. . . ... Processing Systen391991), 572-577.

presence of wrinkles can yield age categorization. These criteria ) : L _ _

ted by cranio-facial research and the observation %ﬁa \/. Govindaraju, D. B. Sher, and R. Srihari, Locating human faces in news
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