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Abstract

Since the first shape-from-shading technique was developed by Horn in the early 1970s, different
approaches have been continuously emerging in the past two decades. Some of them improve existing
techniques, while others are completely new approaches. However, there is no literature on the
comparison and performance analysis of these techniques. This is exactly what is addressed in this
paper. A total of eight well-known shape-from-shading algorithms are implemented and compared
in terms of timing and accuracy, in order to analyze the advantages and disadvantages of these
approaches. The experiments were performed on five synthetic images with three different light
sources each, and five real images. The performance of the algorithms was analyzed using mean and
standard deviation of depth (Z) error, mean of surface gradient (p, q) error and CPU timing. The
comparison showed that all of them have some limitations. None of the algorithms has consistent
performance for all images, since they work well for certain images, but perform poorly for others.
In general, global approaches are more robust, while local approaches are faster. The implementation
of these algorithms in C, and images used in this paper, are available by anonymous ftp under the

pub/tech_paper [survey directory at eustis.cs.ucf.edu (132.170.108.42).
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1 Introduction

Shape recovery is a classic problem in computer vision. The goal in shape recovery is to
derive a 3-D scene description from one or more 2-D images. The recovered shape can be
expressed in several ways: Depth 7, surface normal (n,,n,,n,), surface gradient (p, ¢), and
surface slant, ¢, and tilt, §. The depth is the relative height of the surface. The surface
normal is the orientation of a vector perpendicular to the tangent plane on the object surface,
which is usually a unit vector. The surface gradient, (p,q) = (g—;, g—;), is the rate of change
of depth in the x and y directions. The surface slant, ¢, and tilt, 8, are related to the surface
normal as (ngz,ny,n,) = (Isin¢cosb,[sin ¢sinb,lcos¢), where [ is the magnitude of the
surface normal.

In Computer Vision, the techniques to recover shape are called shape-from-X techniques.
Shape-from-shading (SFS) deals with the recovery of shape from a gradual variation of
shading in the image. Artists have long exploited lighting and shading to convey vivid
illusions of depth in paintings. In SFS, it is important to study how the images are formed.
A simple model of image formation is the Lambertian model. According to the Lambertian
model, the gray level at a pixel in the image depends on the light source location, and the
surface normal. In SFS, given a gray level image, the aim is to recover the light source and
a surface normal at each pixel in the image.

Shape-from-photometric-stereo [37] is another method for shape recovery. The difference
between shape-from-photometric-stereo and shape-from-shading (SFS) is in the number of
input images. Shape-from-photometric-stereo recovers shape from multiple intensity images
of the same scene generated using a fixed viewing direction and different light source direc-
tions; while SF'S provides the shape estimate from a single intensity image.

SFS techniques can be divided into two groups: Global approaches and local approaches.
Global approaches can be further divided into global minimization approaches and global
propagation approaches. Global minimization approaches obtain the solution by minimizing
an energy function. Global propagation approaches propagate the shape information from
known surface points (e.g., singular points) to the whole image. Local approaches derive

shape only from the intensity information of the surface points in a small neighborhood.

One of the earlier global minimization approaches was by lkeuchi and Horn [15]. Since



each surface point has two unknowns for the surface normal, and each pixel in the image
provides one gray value, therefore image gray levels alone are not enough to recover the shape.
To overcome this, lIkeuchi and Horn introduced two constraints: The brightness constraint
and the smoothness constraint. The brightness constraint requires that the reconstructed
shape shall produce the same brightness as the input image at each surface point, while
the smoothness constraint forces the gradient of the surface to change smoothly. The shape
was computed by minimizing an energy function which consists of the above two constraints.
Also using these two constraints, Brooks and Horn [3] minimized the same energy function, in
terms of surface normal instead of surface gradient. Frankot and Chellappa [8] enforced the
integrability in Brooks and Horn’s algorithm in order to recover integrable surfaces (surfaces
for which z;, = z,). Surface slope estimates from the iterative scheme were expressed
in terms of a linear combination of a finite set of orthogonal Fourier basis functions. The
enforcement of integrability was done by projecting the nonintegrable surface slope estimates
onto the nearest (in terms of distance) integrable surface slopes. This projection was fulfilled
by finding the closest set of coefficients which satisfy integrability in the linear combination.
Their results showed improvements in both accuracy and efficiency. Later, Horn also [12]
replaced the smoothness constraint in his approach with an integrability constraint. The
major problem with Horn’s method is its slow convergence. Szeliski [33] sped it up using
a hierarchical basis pre-conditioned conjugate gradient descent algorithm. Based on the
geometrical interpretation of Brooks and Horn’s algorithm, Vega and Yang [36] applied
heuristics to the variational approach so that the stability of Brooks and Horn’s algorithm
was improved.

Instead of the smoothness constraint, Zheng and Chellappa [39] introduced an intensity
gradient constraint, which specifies that the intensity gradients of the reconstructed image
and the input image are close to each other in both the = and y directions. Leclerc and Bobick
[17] solved directly for depth by using a discrete formulation and employing a conjugate
gradient technique. The brightness constraint and smoothness constraint were applied to
ensure convergence, and a stereo depth map was used as an initial estimate. Recently,
Lee and Kuo [19] also proposed an approach to recover depth using the brightness and
the smoothness constraint. They approximated surfaces by a union of triangular patches.

Unlike Leclerc and Bobick’s method, this approach did not require the depth from stereo as



an initial value.

All of the above approaches deal with a single smooth surface. Malik and Maydan [20]
developed the first solution for piecewise smooth surfaces. They combined the line drawing
and shading constraints in an energy function, and recovered both surface normal and line
labelling through the minimization of the energy function.

The first global propagation approach was the characteristic strip technique by Horn [11].
A characteristic strip is a line in the image along which the surface depth and orientation
can be computed if these quantities are known at the starting point of the line. Horn’s
method constructs initial surface curves around the neighborhoods of singular points (Sin-
gular points are the points with maximum intensity) using a spherical approximation. The
shape information is propagated simultaneously along the characteristic strips outwards, as-
suming no crossover of adjacent strips. The direction of characteristic strips are identified
as the direction of intensity gradients. In order to get a dense shape map, new strips have
to be interpolated when neighboring strips separate too much.

Oliensis [23] observed that the smoothness constraint is only needed at the boundaries
if we have initial values at the singular points. Based on this idea, Dupuis and Oliensis
[6, 24] formulated SF'S as an optimal control problem, and solved it using numerical methods.
Bichsel and Pentland [2] simplified Dupuis and Oliensis’s approach and proposed a minimum
downhill approach for SF'S which converged in less than ten iterations.

Among the local approaches, two are by Pentland, one by Lee and Rosenfeld, and one
by Tsai and Shah. Pentland [27] recovered shape information from the intensity, and its
first and second derivatives. He used the assumption that the surface is locally spherical
at each point. Under the same spherical assumption, Lee and Rosenfeld [18] computed the
slant and tilt of the surface in the light source coordinate system through the first derivative
of the intensity. A later approach by Pentland [28] used the linear approximation of the
reflectance function in terms of the surface gradient, and applied a Fourier transform to
the linear function to get a closed form solution for the depth at each point. Similar to
Pentland’s method, Tsai and Shah [35] applied the discrete approximation of the gradient
first, then employed the linear approximation of the reflectance function in terms of the
depth directly. Their algorithm iteratively recovered the depth at each point without using

any global information.



Pentland’s linear shape from shading has problems with images of quadratic surface
reflectance. Therefore, Pentland [29] proposed photometric motion to solve for shape and
reflectance. The images needed in his approach were taken at different time frames while
the object was rotated. The quadratic component of the surface reflectance function was
factored out by subtracting two of the images. The ratio of one of the images and the
difference image was used to cancel out the albedo and obtain the surface shape. Therefore,
at least two images were required for the shape recovery. This approach was also extended
to three-image photometric motion by considering second derivatives in the discrete form.

None of the above methods deal with interreflections — the mutual illumination between
surface facets. Nayar, lkeuchi, and Kanade [21] addressed the shape-from-interreflection
problem using photometric stereo. They observed that the erroneous shape extracted by
shape-from-photometric-stereo algorithms in the presence of interreflections, was shallower
than the real shape. Therefore, they proposed a method to iteratively refine the shape.
Their formulation of interreflection was based on Forsyth and Zisserman’s result [7].

There is no literature on the comparison and performance analysis of these techniques.
This is exactly what is addressed in this paper. A total of eight well-known shape-from-
shading algorithms are implemented and compared in terms of timing and accuracy, in
order to analyze the advantages and disadvantages of these approaches. The experiments
were performed on five synthetic images with three different light sources each, and five
real images. The performance of the algorithms was analyzed using mean and standard
deviation of depth (Z) error, mean of surface gradient (p, ¢) error and CPU timing. The
comparison showed that all of them have some limitations. None of the algorithms has
consistent performance for all images, since they work well for certain images, but perform
poorly for others. In general, global approaches are more robust, while local approaches are
faster. The implementation of these algorithms in C, and images used in this paper, are
available by anonymous ftp.

The organization of the remainder of this paper is as follows: The next section introduces
background knowledge related to reflectance models. In section three, which deals with re-
covery of the light source location, we explain Pentland’s original approach for light source
computation, its refinements by Lee and Rosenfeld, and improvements of both methods by

Zheng and Chellappa. SFS approaches, which are divided into global and local approaches,



Figure 1: Lambertian Reflection Geometry.

are discussed in section four. Global approaches are further divided into global minimiza-
tion approaches and global propagation approaches. A total of twelve SFS methods are
summarized in this section. Section five is devoted to the description of the synthetic and
real images used in this study. We present our experimental results on eight different SFS
algorithms in section six. The error analysis is presented in section seven, where we compare
different methods using mean and standard deviation of depth (Z) error, mean of surface
gradient (p, q) error, difference images of absolute depth error, and histograms of percentage
depth error. Section eight summarizes the CPU timing of all eight algorithms for different
images. Section nine presents a general discussion of convergence and uniqueness. Finally,

conclusions and future research are covered in section ten.

2 Reflectance Models

Depending on their physical properties, surfaces can be categorized as pure Lambertian,
pure specular, hybrid, or more sophisticated surfaces. In this section, we will describe the

reflectance models and discuss their properties related to shape from shading.

2.1 Lambertian and Specular Reflectance Models

Lambertian surfaces are surfaces having only diffuse reflectance, i.e., surfaces which reflect



light in all directions. The brightness of a Lambertian surface is proportional to the energy of
the incident light. The amount of light energy falling on a surface element is proportional to
the area of the surface element as seen from the light source position (the foreshortened area).
The foreshortened area is a cosine function of the angle between the surface orientation and
the light source direction. Therefore, the Lambertian surface can be modeled as the product
of the strength of the light source B, the albedo of the surface p, and the foreshortened area
cos 8; as follows:

I, = R = Bpcos¥b,, (1)

where R is the reflectance map and 6; is the angle between the surface normal N = (g, ny,n;)
and the source direction S = (Sz, Sy, 82) (See Figure 1). If we let the surface normal and the

light source direction both be unit vectors, we can rewrite the above formula as:

—

I, = BpN -

W

: (2)

where ’-’ represents dot product.

Specularity only occurs when the incident angle of the light source is equal to the reflected
angle. It is formed by two components: The specular spike and the specular lobe. The
specular spike is zero in all directions except for a very narrow range around the direction
of specular reflection. The specular lobe spreads around the direction of specular reflection.

The simplest model for specular reflection is described by the following delta function:
Is = Bé6(0s — 20,), (3)

where [g is the specular brightness, B is the strength of the specular component, 6 is the
angle between the light source direction and the viewing direction, and 8, is the angle be-
tween the surface normal and the viewing direction. This model assumes that the highlight
caused by specular reflection is only a single point, but in real life this assumption is not
true. Another model was developed by Phong [30]. It represents the specular component
of reflection as powers of the cosine of the angle between the perfect specular direction and
the viewing direction. This model is capable of predicting specularities which extend be-
yond a single point; however, the parameters have no physical meaning. A more refined
model, the Torrance-Sparrow model [34], assumes that a surface is composed of small, ran-

domly oriented, mirror-like facets. It describes the specular brightness as the product of
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Figure 2: Specular Reflection Geometry.

four components: Energy of incident light, Fresnel coefficient, facet orientation distribution
function, and geometrical attenuation factor adjusted for foreshortening. On the basis of
the Torrance-Sparrow model, Healey and Binford [9] derived a simplified model by using the
Gaussian distribution as the facet orientation function, and considering the other components

as constants. It can be described as:

a)2

Is = Ke v, (4)

where K is a constant, « is the angle between the surface normal N and the bisector H of
the viewing direction and source direction, and m indicates the surface roughness (Figure
2).

Most surfaces in the real world are neither purely Lambertian, nor purely specular, they
are a combination of both. That is, they are hybrid surfaces. One straightforward equation
for a hybrid surface is:

]:(1—(.0)]L—|-w]5, (5)

where [ is the total brightness for the hybrid surface, Ig, I}, are the specular brightness and
Lambertian brightness respectively, and w is the weight of the specular component.

Nayar, lkeuchi and Kanade [22] proposed a reflectance model which consists of three
components: Diffuse lobe, specular lobe, and specular spike. The Lambertian model was
used to represent the diffuse lobe, the specular component of the Torrance-Sparrow model

was used to model the specular lobe, and the spike component of the Beckmann-Spizzichino
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model was used to describe the specular spike. The resulting hybrid model is given as:
ﬁ2

1= [(dl COS 92 + Ksle_ﬁ + [(55(5(02 — 97)5(¢r) (6)
where Ky, Ky and K are the strengths of the three components, 3 is the angle between
the surface normal of a micro-facet on a patch and the mean normal of this surface patch,
and o is its standard derivation. If we consider the surface normal being in the Z direction,
then, (6;, ¢;) is the direction of incidence light in terms of the slant and tilt in 3-D, (6,, ¢,)
is the direction of reflected light.

2.2 More Sophisticated Reflectance Models

Although the Lambertian model is widely used because of its simplicity, it is a poor ap-
proximation to the diffuse component of rough surfaces. For a rough surface, the radiance
increases as the viewer approaches the source direction. Oren and Nayar [25] derived a re-
flectance model for rough diffuse surfaces, taking into account complex geometrical effects
of masking, shadowing, and interreflection. Modeling rough surfaces as a collection of V-
cavities, they developed a functional approximation of rough surfaces for both isotropic and
non-isotropic surfaces, including uni-directional single-slope distribution, isotropic single-
slope distribution and Gaussian distribution. A simplified qualitative model was derived by

considering the relative significance of the various terms in the functional approximation:
I = cosb;(A+ BMax[0,cos(¢, — ¢;)]sinatan 3), (7)

where A & p(L — 0.09#20.4), B~ /)(0.05#;18), (0;, ;) and (0,, ¢,) are the same as in
the previous section, & = Max[0;,0,], 3 = Min[0;,0,], p is the albedo value, and m is the
surface roughness. This model reduces to the Lambertian model when m = 0.

Clark [4] used perspective, rather than orthographic, projection in modeling reflectance.
In his model, there is no requirement for the light source to be at infinity. Therefore, the
reflectance function is:
R(S)

() = K ,
&) = Kz

where ¥ = (x,y) is the image coordinate vector, K is a constant, R is the reflectance map,

§ — Zx+t

Tt which indicates the direction from the surface point to the light source, ¢ is the
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location of the light source with respect to the coordinate system centered on the focal point
of the camera, Y = (?, %, —1)T, f is the focal length of the camera, and Z is the depth. Since
the distances from surface to camera and from light source to surface are both considered in
this model, it yields a more realistic description of reflectance.

Hougen and Ahuja [14] have observed that the assumption of a single point source overly
simplifies the model of the light source distribution. They approximated the light source
distribution by a set of m distinct light source vectors, §1, §2, ey §m, where S, is the average
value of S over a neighborhood angle of S. By writing Sy as a product of its magnitude A
and unit direction 5,’6, the brightness equation can be expressed by:

I = p(AoRo + f: MeR(N,SL)), (8)

k=1
where pAg Ry is due to the contribution of ambient light, and R is the reflectance map, which
is independent of the magnitude of the light source.

Unlike the classical Lambertian reflectance model, Langer and Zucker [16] introduced
the concept of “Shape from Shading on a Cloudy Day”. They claimed that under diffuse
lighting, the radiance depends primarily on the amount of the diffuse source visible from
each surface element, with the surface normal of secondary importance. Assuming the effect
of mutual illumination can be ignored, the brightness at image point @ = (z,y) is described
as:

1(7) = plp~ / L V@) Sag, (9)

s

where p is the albedo, I is the illuminance from a uniform hemispheric light source, v(Z) is
the set of unit directions in which the sky is visible from #, and d? denotes an infinitesimal
solid angle.

The above reflectance models attempt to remove one or more of the following constraints

used in the simplification of the classical Lambertian model:
e The brightness is independent of the viewing direction,
e The illumination is from an infinite point source,

e The projection of the object onto the image plane is perspective.

Oren and Nayar’s, and Langer and Zucker’s models emphasized the important effect of

the viewing direction in the reflectance model. Hougen and Ahuja considered background



13

illumination and more realistic lighting as compared to a single point source illumination
widely used. Clark used the perspective projection in the shape recovery, and his model does
not even depend on any specific reflectance model. In short, all of those models overcome
the over-simplification of the traditional Lambertian model, which results in the elimination

of the modeling error.

3 Source From Shading

Most SFS algorithms require known light source directions. Since the light source is usually
assumed to be at infinity, the light source orientation is constant for all of the surface points
in the image, and one image can provide enough information to estimate the source. There
are two ways to describe a light source direction: One uses a 3-D vector, the other uses the
two angles — slant and tilt. If the image plane is parallel to the X-Y plane, slant is the angle
the illuminant vector makes with the Z-axis, and tilt is the angle the image plane component
of the illuminant vector makes with the X-axis.

Several techniques to estimate source orientation have been developed. The first one, by
Pentland [26], estimates the light source direction from the distribution of image derivatives.
By assuming an umbilical surface and isotropic surface normal, a maximum-likelihood anal-
ysis was performed to estimate the slant and tilt angles of the light source. The basic idea
underlying this approach is simple, since surface orientation is a random variable over the
whole image for most scenes, so both surface normal N and the change of the surface normal
dN are isotropically distributed. This means that if we consider any direction (dxy, dyr) on
the image plane, the z component of the expected value of dﬁ, dn,, is zero. Therefore, the

derivative of the brightness equation

I=BN-S

?

(here, B is a constant including the albedo term), gives:

EldI] = dI = B(s, dn, + s, dn,),

where F indicates the expected value.

For a sphere, Z(z,y) = /r*—ax*—y* Z, = —%, Z, = —%, hence (ng,ny,nz) =

—%(Jc,y,Z). Consequently, it can be shown that the x and y components of the deriva-
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tive of normal in any direction # are given by dn, = —%cos 0, and dn, = —%sin 0. Let
(cosf,sin) = (dzj,dy;), then k dz; = dn,, and k dy; = dn,, where k = L is the mean
projected surface curvature, which is the same in all directions using the locally spherical
assumption. Repeating the above process in m' different directions (dz;, dy;)(z = 1,...,m'),

the regression model can be described as:

dl dey dyy
dl, B dzy  dy, Sy

= : ,
dl,, Az, dy,.

where dI; is the average of the intensity change along the image direction (dx;,dy;), s, =
Bks, and s, = Bks,. A typical choice for the (dz;, dy;) are the eight directions in the image
plane: Two in the horizontal direction, two in the vertical direction, and four along the
diagonals.
Solving the above system by least squares, we get:
dl,
SNJ; _ djg
=@t (10)
dl
where 3 is the matrix of directions (dz;, dy;).

The tilt, 7g, of the light source direction is given by:

Tg = arctan(SN—y), (11)
Sy

and the slant, og, of the light source direction is:

og = arccos y/1 — 5,2 — 5,2,

Taking the expected value of the square of intensity derivative F[dI?], and cancelling
out the common terms between E[dI]* and E[dI?] by subtracting one from the other, we

have the relation E[dI% — E[dI]* = B%k*. Since s, = Bks,, s, = Bks,, by introducing

k = Bk = \/E[dp] — E[dI]?, the equation for the slant of the light source can be simplified
to:
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~2 | -2
os = arccos {/1 — % (12)

Instead of taking intensity derivatives along a number of directions, Lee and Rosenfeld
[18] considered only the derivatives along the z and y directions. They approximated the
surface geometry by a spherical patch in a local region, so their method was also based on
an isotropic distribution of the surface orientation. Since the image of a sphere is symmetric
about the projection of the light source vector in the image plane, the average direction of
E(ly) _ Sy

B(L) = 5.7 80 We have,

the intensity gradient must be parallel to this projection. This gives

); (13)

7g = arctan(

where the expectations are taken over the given image region.
Considering the sampling distribution for the slant, and expected values of intensity and

intensity squared, the following equation can be used to solve for the slant, og:

E(I) _ 8(7r — 0g)cosog +sinog
VE(1?) 37r(1—|—c0s05)%
The expectation here is taken over the whole image.

Zheng and Chellappa [39] modified Lee and Rosenfeld’s method by considering not only
the area of the illuminated portion in the integral, but also the area of the portion in shadow.
Although the shadow does not contribute to the total intensity, it does contribute to the area
computation in order to correctly calculate the mean intensity value over the whole image.

After the modification, the computation for slant, og, became:

E(I) 42 (7 —os)cosos + sinog

E(1?) 37 (1 + cosos)

Under the assumption that the orientations of the surfaces are uniformly distributed in
3-D space, they also proposed two methods to estimate the tilt of the light source. One was
the local voting method, which assumes that each surface point and its neighbors can be
locally approximated by a spherical patch. If we consider small increments in the various
image directions, and intensities along these directions, the tilt of the light source is:

),

Bveol

Tg = arctan(
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where ($;, $,) is the same as given by Pentland’s method.

The other was the contour-based method, which uses shading information along image
contours. Under the assumption that the slant of the surface normals along the boundary are
constant, the tilt angle of a boundary pixel, «, is just the tilt angle of the boundary contour
in the image plane, and the summations )" cosa and }~ sin « over the closed boundary are
zero. This gives:

Tg = arctan(ﬁ),

£
where
I
1 _ jg
= (8"p)7'p" :
T2
I

and (3 is the same as in equation 10.

The slant of the light source og is estimated by:

1 2
o5 = m(ﬂ])ﬁ(v) +VEU?) (7)),

where E(I) and F(I?) are the ensemble averages of the image intensities, and the square of
the image intensities, v, can be solved by:
fal) =
VEI?)
Here, fi(7), f2(7) and f3(7) are three known seventh-order polynomials [39] in cos 7.

All three methods are similar. For example, for the estimation of tilt, if we take the
derivatives only in the x and y directions in Pentland’s regression model, it reduces to Lee
and Rosenfeld’s method.

In [39], Zheng and Chellappa tested the above methods on a set of three different images.
The results showed that for the estimation of tilt, all algorithms work almost perfectly for a
sphere without background. However, background and noise will degrade the performance
of both Lee and Rosenfeld’s and Pentland’s methods. Consequently, Zheng and Chellappa’s
method is more robust to background and noise in most of the cases. For the estimation
of slant, Pentland’s method is very sensitive to noise, but Lee and Rosenfeld’s and Zheng

and Chellappa’s methods are robust to Gaussian noise. If a uniform background is included,
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results for all three methods are degraded. In terms of the computation time, since m’ is
usually greater than 2, Lee and Rosenfeld’s is the most efficient, Pentland’s is the second,
and Zheng and Chellappa’s is a bit slower than Pentland’s as it needs to solve seventh-order
polynomials.

In the following sections, we assume the light source is known.

4 Shape From Shading

Once the light source direction is known, 3-D shape can be estimated. In this section, we
discuss two classes of SFS algorithms: Global and local. We have surveyed eight global

methods and three local methods.

4.1 Global Minimization Approaches

Global minimization approaches compute the solution which minimizes an energy function
over the entire image. The function can involve the brightness constraint, and other con-
straints, such as the smoothness constraint, the integrability constraint, the gradient con-
straint, and the unit normal constraint to ensure the correct convergence. In this subsection,

first, we briefly describe these constraints, and then discuss eight global SF'S methods.

The Brightness constraint is derived directly from the image irradiance (equation 2). It
indicates the total brightness error of the reconstructed image compared with the input
image, and is given by

//(I — R)*dzx dy, (14)

where [ is the measured intensity, and R is the estimated reflectance map.

The Smoothness constraint ensures a smooth surface in order to stabilize the conver-

gence to a unique solution, and is given by

//(p§+p§+qgf+q§)d:ﬂdy, (15)

here p and ¢ are surface gradients along the x and y directions. Physically, this con-
straint means that the surface can be approximated by a small facet in a close neighbor-

hood. Another version of the smoothness term is less restrictive by requiring constant
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change of depth only in x and y directions:

//(pi+q§)d:rf dy. (16)

The smoothness constraint can also be described in terms of the surface normal N:

JJ N2+ 18,12) d dy. (17)

This means that the surface normal should change gradually.

Although constraints (16) and (17) look alike, in reality, constraints (15) and (17) are
similar if we consider the relationship between surface normal, Z\_;, and surface gradient,
(p,q). Both (15) and (17) are more restrictive than (16) in terms of the smoothing
directions. They are more frequently used, since (16) tends to lead to excessively

flattened surfaces.

The Integrability constraint ensures valid surfaces, that is, Z,, = Z,,. It can be de-

scribed by either

//(py — z)* da dy, (18)

or

[z = p)* + (2, — %) da dy. (19)

The Intensity Gradient constraint requires that the intensity gradient of the recon-
structed image be close to the intensity gradient of the input image in both the x

and y directions:

J[((Re =1+ (R, ~ 1,)%) de dy. (20)

The Unit Normal constraint forces the recovered surface normals to be unit vectors:
JJUNI = 1) da dy. (21)

4.1.1 Ikeuchi and Horn

Ikeuchi and Horn [15] minimize the following energy function to estimate the shape (p, ¢q):

E= // (I(z,y) = R(p,q))" + ANp% + P + ¢2 + ;) de dy. (22)
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The first term is the brightness constraint, and the second term is the surface smoothness
constraint. Differentiating the above equation with respect to p and ¢, setting the resulting

equations to zero, and solving for p and ¢ we get:

OR
p(2,9) = p(2,y) + (2,92, 0) 5 (23)
OR
a(@y) = 4@ y) + T(e,y,p,0) 5 (24)
where T'(z,y,p,q) = w, p and ¢ are the local averages of p and ¢. The problem

with this approach is that it requires the complete gradient information, along the occluding

boundary and at the singular points, as initial values.

4.1.2 Brooks and Horn

Brooks and Horn [3] combined the brightness constraint, the smoothness constraint and the

unit normal constraint, and minimized the following energy function:
] = R+ AN + U 12 + IV = 1)) da dy, (25)

where N is the surface normal, A is a scalar that weighs the relative importance of the
smoothness term, and g is a Lagrangian multiplier. The first term in the equation is the
brightness constraint, the second term is the smoothness constraint, and the third term is
the unit normal constraint.

The minimization of the above function was done through variational calculus. In general,

the functional

[ Fla.y, XN, N, de dy, (26)
has the Euler equation
F 9 F 9 Fg =0 (27)
N9 Neo gy N

Therefore, the function given in equation (25) has the Euler equation:

- =

(I=N-S$)S+Av*N —uN =0. (28)

A discrete approximation to the Laplacian operator

VN~ —(Nij — Nyj), (29)

2

[}
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was used in order to change the Euler equation into the following discrete form:
(Lij = Nij - §) + — (Nyj = Nij) — iy Ny = 0. (30)

Here Z\_;Z-]- is the average of the normals in the neighborhood around the point (¢, j).
Assuming known light source direction, S , the iterative scheme for N was developed by
rearranging the above equation and taking only the direction of the vector by dropping the

constant term 1 EYZIVE The iterative scheme for S was derived by assuming N is known,

T+pi,;(e
then setting the partial derivative of the energy function (25), with respect to §, to zero and

solving it. The final iterative equations are:

mE) = B 2 - BB 5050

7] 27]
k41 k+1 k-|—1
N+ VIm{EH))

> k+1 k1)T k41
S+ = (Em’eﬂ A( ) Ni(,j T IEHGQI,JN( )
where € is the distance between adjacent pixels in the image.

Later, Horn [12] applied another variation of the smoothness constraint, which is similar

to the one used by Ikeuchi and Horn in [15],

/ﬂﬁ+g+ﬁ+ﬁmmw (31)

Depth and gradient were recovered simultaneously by combining this smoothness constraint
with the brightness and the integrability constraints.

Both versions of Horn’s algorithms require that the shape at occluding boundaries (either
the surface normal, or the surface gradient) be known. However, information at occluding
boundaries is difficult to obtain, especially for the surface gradient, since the surface gradient
at the occluding boundary has at least one infinite component. Another disadvantage is the

slow convergence of the algorithms.

4.1.3 Szeliski

Horn’s algorithms, discussed in the previous sections, both converge slowly. Szeliski [33] used
the same constraints as Horn did (see section 4.1.2) in his recent approach, with discretization
of the gradient using depth. By combining the conjugate gradient descent and a hierarchical
technique, Szeliski provides a faster solution; however, his algorithm needs the same initial

values as Horn’s algorithm.
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4.1.4 Zheng and Chellappa

Zheng and Chellappa [39] applied the intensity gradient constraint, instead of a smoothness

constraint, therefore, their energy function became:

JJ( = R+ M(Re = L)+ (B, = 1))+ 0(Ze = p + (2, — ) dwdy. (32)

The Euler equations were simplified by taking the Taylor series of the reflectance map and
representing the depth, gradient and their derivatives in discrete form. Then, a new iterative
scheme, which updates depth and gradients simultaneously, was derived. The algorithm was
implemented using a hierarchical structure (pyramid) in order to speed up the computation.
There was no special requirement for the initialization of the boundary. The initial values

for both depth and gradient can be zero.

4.1.5 Leclerc and Bobick

Leclerc and Bobick dropped the integrability constraint, and minimized the following func-

tion in the discrete domain
E =2 (1= M(B(pij: i) — Tij)* + Aug; + v75), (33)
7]

where

—SzPi; — Syqi,; + s,
R(pij, i) = e
V3t ta;

and (g, $,,$.) is the unit light source vector. The following discretizations, using central

(34)

difference approximation, were used: p;; = %(Zi-l—l,j — Zic1j)s Gij = %(Zi,jﬂ — Zii-1),
Uij = Zig1,j — 225+ Zicvyj, and v = Z; 1 — 225 + Ly

The depth was computed by assuming a known light source, and setting the derivative
of equation 33, with respect to depth, to zero. When the depth is known, the light source
direction can be estimated by differentiating equation (33) with respect to the three compo-
nents of the light source, setting them to zeros, then solving the three simultaneous linear
equations.

The approach used a conjugate gradient together with a hierarchical structure to solve

simultaneous equations. Initially, the weight of the smoothness term, A, was set to 1, and
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it was gradually reduced to zero. An object mask was used to eliminate the background,
boundaries, and regions with significant albedo changes. Since the central approximation
was not suitable on the boundary, the discretization of the boundary points was changed
into either a forward or backward approximation. The initial depth values were obtained

from stereo.

4.1.6 Lee and Kuo

Lee and Kuo [19] used the brightness constraint and the smoothness constraint. In their
approach, surfaces were approximated by the union of triangular surface patches. The ver-
tices of the triangles were called nodal points, and only nodal depths were recovered. Depths
at the pixels, which are not nodal points, were obtained through interpolation. For each
triangular patch, the intensity of the triangle was taken as the average intensity of all pixels
in the triangle, and the surface gradient of the triangle was approximated by the cross prod-
uct of any two adjacent edges of the triangle. This established a relationship between the
triangle’s intensity and the depth at its three nodal points. Linearizing the reflectance map
in terms of the surface gradient (p, ¢), a linear relationship between the intensity and depth
at the nodal points was derived. The surface depths at the nodal points were computed
using optimization. The optimization problem was reduced to the solution of a sparse linear
system, and, a multigrid computational algorithm was applied.

Although the combination of the linear approximation of the reflectance map and tri-
angular surface approximation resulted in a linear relationship between the reflectance map

and the depth, it also introduced an approximation error.

4.2 Global Propagation Approaches

Global propagation approaches start from the surface points where the shape either is known
or can be uniquely determined (such as singular points), and propagate the shape information

across the whole image. We present two algorithms in this section.
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4.2.1 Dupuis and Oliensis

Most of the approaches described above make use of the smoothness constraint; however, the
smoothness constraint sometimes leads to an over-smoothed surface. Oliensis [23] discovered
that the smoothness constraint is often unnecessary, since shading determines shape with
little ambiguity for a typical image. He also observed that while the occluding boundary
does not strongly constrain the surface solution, a singular point does. Therefore, the surface
should be reconstructed from the interior of the image outward, instead of from the boundary
inward. Since both singular points and characteristic strips are independent of the viewing
direction, and characteristic strips correspond to steepest ascent curves on the object, the
shape of a surface can be constructed strip by strip given the information at the singular
points.

Considering the importance of singular points, Dupuis and Oliensis [6, 24] developed
an iterative algorithm to recover depth using discretized optimal control and dynamic pro-
gramming. The proof of equivalence between the optimal control representation and SFS
was illustrated. At first, they required a vertical light source, and only one singular point,
then, they removed these restrictions and allowed for a general light source, and multiple
singular points. However, their initial algorithm [6] requires priori depth information for
all the singular points. A later extension [24] can determine this information automatically
by assuming twice differentiable depth, isolated singular points and nonzero curvature at

singular points.

4.2.2 Bichsel and Pentland

Following the main idea of Dupuis and Oliensis’s, Bichsel and Pentland [2] developed an effi-
cient minimum downhill approach which directly recovers depth and guarantees a continuous
surface. Given initial values at the singular points (brightest points), the algorithm looks
in eight discrete directions in the image and propagates the depth information away from
the light source to ensure the proper termination of the process. Since slopes at the surface
points in low brightness regions are close to zero for most directions (except the directions
which form a very narrow angle with the illumination direction), the image was initially
rotated to align the light source direction with one of the eight directions . The inverse rota-

tion was performed on the resulting depth map in order to get the original orientation back.
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Assuming the constraint of parallel slope, the surface gradient, (p, ¢), was precomputed by
taking the derivative of the reflectance map (34) with respect to ¢ in the rotated coordinate

system, setting it to zero, and then solving for p and g. The solutions for p and ¢ were given

by:

—sp5. £ /(1 — B?)(R? — s2)
n — 35
p R2 _ 33: _ 312/ bl ( )
PSySy — SyS.
R? — 512/

g (36)

One drawback to this approach is the requirement for singular points. When singular

points do not have the same depth, the algorithm will have trouble initializing their depths.

4.3 Local Approaches

Local approaches use only local intensity information around the current pixel to derive
shape. Here, we describe four approaches, two use linear approximations of the reflectance

function, and two uses the intensity derivative information and surface spherical assumption.

4.3.1 Pentland

Pentland’s first approach [27] solved for the surface slant and tilt, the radius of curvature,
and the light source direction through six equations obtained from the intensity, as well as
the first and second derivatives of the intensity. His approach can classify a surface into
planar, cylindrical, convex, concave, or saddle surface. However, it is limited to surfaces
with equal-magnitude principal curvatures. The use of the second derivatives also makes the
algorithm very sensitive to noise.

Pentland’s second approach [28] used the linear approximation of the reflectance map in

p and ¢g. By taking the Taylor series expansion of the reflectance function

—SzP — Syq + s,
R(p,q) = , 37
(p,q) T (37)
about p = po, ¢ = qo, and ignoring the high order terms, we have
R R
[(2,y) = R(po; q0) + (P = po) 5 (Po; 40) + (4 = 90) 5 (Po, 40). (38)

For Lambertian reflectance, the above equation at py = go = 0, reduces to

I(x,y) = cosog + pcos Tgsinog + ¢sin g sin og.
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Next, Pentland takes the Fourier transform of both sides of the equation. Since the first
term on the right is a DC term, it can be dropped. Using the identities:

0

() Falwn,wr)(—ic) (39)
a%z(;,;,y) — Fy(wr,wy)(—iws), (40)

where Fz is the Fourier transform of Z(z,y), we get:
Fr = Fz(w,wy)(—1wy) cos Tssinog + Fz(wy,wq)(—twy) sin 7gsin og, (41)

where Fj is the Fourier transform of the image I(x,y). The depth map Z(z,y) can be
computed by rearranging the terms in the above equation, and then taking the inverse
Fourier transform.

This algorithm gives a non-iterative, closed-form solution using Fourier transform. The
problem lies in the linear approximation of the reflectance map, which causes trouble when

the non-linear terms are large.

4.3.2 Lee and Rosenfeld

Lee and Rosenfeld [18] approximated the local surface regions by spherical patches. The slant
and tilt of the surface were first computed in the light source coordinate, then transformed
back to the viewer coordinate. They proved that the tilt of the surface normal could be

obtained from:
I,costs — I;sinTg

T = arctan (42)

zCOsTgcosog + [, cosogsinTg ’
where [, and [, are intensity derivatives along the x and y directions, og is the slant of the
light source, and 75 is the tilt of the light source.

If the surface has uniform reflectance, and if the reflectance map is given by I = pZ\_f .S ,
then the brightness point has its surface normal pointing toward the light source, and the
cosine value of surface slant can be obtained by the ratio of its intensity and p.

This approach is an improvement of Pentland’s first approach, since it involves only the
first derivatives of the intensity rather than the second derivatives. This makes it less sensitive

to noise. However, the local spherical assumption of the surface limits its application.
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4.3.3 Tsal and Shah

Tsai and Shah [35] employed the discrete approximations of p and ¢ using finite differences in
order to linearize the reflectance map in terms of Z. The reflectance function for Lambertian
surfaces is the same as equation (34). Using the following discrete approximations for p and

¢, p=12i;— Zi-1jand ¢q = Z;; — Z; ;_1, the reflectance equation can be rewritten as:

0= f(lij, Zijs Zio1,jy Zijj—1) = Lij — R(Zij — Zicvjy Zij — Zij—1). (43)

For a fixed point (¢, 7) and a given image [, a linear approximation (Taylor series expansion
up through the first order terms) of the function f (equation (43)) about a given depth map
Zm 1 s:

0 = f(Ii,Jin,Jin—LJin,J—l)
2]
-1 -1 -1 -1 -1 -1 -1 -1
R g 255 2000050 200 A (Zig = 2050 ) g F g 285 2055 Z50) + (Zieayy = 202 5)
L)
2 -1 -1 -1 -1 2 -1 -1 -1
—8Zi_17]f(1imz;rf] 72?—1,]723]_1)‘}'(2%]—1_Z:?]_1)—8Zi7]_1f(1imzsj 72?—1,]7Z:?]_1)' (44)

For an M by M image, there are M? such equations, which will form a linear system. This
system can be solved easily using the Jacobi iterative scheme, which simplifies equation (44)

into the following equation:

d

0=f(Zij) = f(Z7Y) + (Zig — Z15)
J W J dZZ'J'

27‘7

FZE). (45)
Then for Z; ; = Z., the depth map at the n-th iteration, can be solved directly:

1,77
—f(zrt
Zr =70 I Wn_)l .
dZ; ; f(Zi,j )

,J 1,J

(46)

The initial estimate of Zgj is set to zero for all pixels, Gaussian smoothing is applied
to the final depth map to get a smoother result. This is a simple but efficient algorithm.

However, self-shadows will break it down.

5 Experimental Images

It is very difficult to choose good test images for SFS algorithms. A good test image must
match the assumptions of the algorithms, e.g. Lambertian reflectance model, constant albedo
value, and infinite point source illumination. In this section, we describe the images chosen

to test the SFS algorithms.
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5.1 Synthetic Images

The synthetic images were generated using true depth maps, or range data obtained from
a laser range finder. We simply computed the surface gradient (p = %, qg = %) using
the forward discrete approximation of the depth, Z, and generated shaded images using the
Lambertian reflectance model. There are at least two advantages of using synthetic images.
First, we can generate shaded images with different light source directions for the same
surface. Second, with the true depth information, we can compute the error and compare
the performance.

We used five synthetic surfaces. The true depth maps of the first two surfaces, Sphere

and Vase, were generated mathematically:

e The Sphere was generated using the following formula:

T2 —y? i a4yt <l
Z(x,y) =

0 otherwise,

where r = 52, and —63 < z, y < 64.

e The Synthetic Vase was generated using the formula provided by Ascher and Carter
[1] as follow:

where

fly) = 015 =01y (6y+1)*=(y—1)** (3y — 2),

05 < <05, and 0.0<y<10.

This yields a maximum depth value of approximately 0.29. In order to generate a
depth map with the proper size and scale, we map the x and y ranges to [0, 127], and
scale Z by a factor of 128.

The depth maps for the other three synthetic images, Mozart, Penny and Sombrero,
were provided by Professor Kuo of USC.

The depth maps for all five synthetic surfaces are shown in Figure 3. The synthetic
images generated from these surfaces, with light source directions (0,0,1), (1,0,1), (5,5,7),
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(a) (b) (¢) (d) (¢)

Figure 3: Depth maps for the Synthetic Images: (a) Sphere. (b) Synthetic Vase. (¢) Mozart.

(d) Penny. (e) Sombrero.

are shown in Figure 4. The images are either reduced or expanded to make their sizes power
of 2. Here, the only image which has the convex/concave ambiguity is the Sombrero with

light source (0,0,1).

5.2 Real Images

Five real images, shown in Figure 5, were also used. The light source directions, given below,

either were estimated by the Lee and Rosenfeld method or provided with the images:

Lenna: Estimated light source direction is (1.5,0.866,1).

e Mannequin: Estimated light source direction is (—0.345,0.345,0.875).

Pepper: Estimated light source direction is (0.766,0.642,1).

David: Estimated light source direction is (—0.707,0.707,1).

Vase: Estimated light source direction is (—0.939, 1.867,1.0).

The Vase image was provided by Professor Woodham of UBC, and Mannequin by
Dr. Leclerc of Artificial Intelligence Center, SRI International. The rest of the images were

provided by Professor Kuo of USC.

6 Experimental Results

We implemented eight of the twelve algorithms discussed in this paper. Szeliski’s algorithm

was not implemented since it is a faster version of Brooks and Horn’s algorithm. We did
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(b)
(2)

(k) (1)

Sphere (1,0,1). (g) Synthetic Vase (1,0,1). (h) Mozart (1,0,1). (i) Penny
Sombrero (1,0,1). (k) Sphere (5,5,7). (1) Synthetic Vase (5,5,7). (m) Mozart
Penny (5,5,7). (o) Sombrero (5,5,7).

(
(

(b)

(d) (e)

Figure 5: Real images: (a) Lenna. (b) Mannequin. (c) Pepper. (d) David. (e) Vase.
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not implement Tkeuchi and Horn’s algorithm because it resembles Brooks and Horn’s. Since
Bichsel and Pentland’s algorithm is a simplification of Dupuis and Oliensis’s, we implemented
Bichsel and Pentland’s algorithm only.

The depth maps computed from both synthetic and real images by each algorithm are
shown in Figures 7 through 19. Below we discuss some important points about the imple-

mentation of each algorithm, and analyze the results using the 3-D plots of depth maps.

6.1 Brooks and Horn

Brooks and Horn’s approach requires occluding boundary information for the input image.
Their algorithm computes the shape in terms of surface normals. In order to reconstruct the
surface of the object, an integration step must be applied to compute the depth. However,
neither finding the occluding boundary from an image nor integrating the surface normals
are easy tasks. Since the primary objective of this survey paper is to study SFS algorithms,
we only tested two synthetic images, sphere and synthetic vase with light source (0,0,1), for
which the occluding boundary information was available. The results of the reconstructed
gray level images from the computed shape with the same light source are shown in Figure
6. We can see that the reconstructed gray level images closely resemble the input images.
A well-known problem of Brook and Horn’s method is the slow convergence rate. In our
implementation, we forced the algorithm to terminate when the error in the energy function
starts to increase, or the error is less than some threshold. It took at least 400 iterations to

achieve convergence for our test images.

6.2 Zheng and Chellappa

The implementation of Zheng and Chellappa’s method is very straightforward. We used
the forward difference approximation to compute the partial derivatives. For the boundary
points, where the forward approximation could not be applied, we switched to the backward
difference approximation for the first order partial derivatives and set the second order partial
derivatives to zero. This method is also very robust, since no parameters have to be tuned.

The results for synthetic images are shown in Figure 7, and the results for real images

are shown in Figure 14. Our implementation works well for most of the real images, except
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(a) (b)

Figure 6: The results for Brook and Horn’s method. (a)The reconstructed gray level image
with light source (0,0, 1) for Sphere. (b)The reconstructed gray level image with light source
(0,0,1) for Vase.

for Mannequin and Vase. This is due to the dark background in these two images, which
violates the uniform albedo assumption used in their algorithm. The basic shape for Lenna
and Pepper are recovered with enough details, however, some errors can be seen around
the mouth and on the cheeks in Lenna. Their method also has a problem with light source
(0,0,1), which will zero out most of the terms in the approximation equation of the iterative
method. In order to get reasonable results for the images with light source (0,0, 1), we used
(0.01,0.01,1) instead as the light source direction. Their results also showed some error
along the light source direction. This can be clearly observed in the result of the Mannequin
image (as shown in Figure 14(b)). We can see that there is a crevice on the face along the
light source direction,(—0.345,0.345,0.875). We think this is due to the use of the intensity
gradient constraint instead of the smoothness constraint used in their energy function, and

the discrete approximation used for computing the partial derivatives.

6.3 Leclerc and Bobick

Leclerc and Bobick’s approach was implemented without hierarchical structure, using the
conjugate gradient routine given in [32]. On the occluding boundary, the discrete approxi-
mations for the first order partial derivatives were changed from the central difference ap-
proximation to either the forward approximation or the backward approximation, and the

second order partial derivatives were set to zero. Their approach requires the output from
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stereo as the initial estimate for the conjugate gradient method. Since we do not have stereo
pairs for the test images, we used the true depth with £5% uniform random noise as the
initial estimate, and tested the algorithm on synthetic images only.

The results for synthetic images are shown in Figure 8. Their results depend heavily
on the initial estimate and the initial weight of the smoothness term, A. It can be seen
that the algorithm works well on two sets of images, Sphere and Mozart, even when the
light source is from the side. The initial value of the smoothness term was 0.25 for both
sets of images, which was progressively reduced to 0.01 by a factor of 0.7. The maximum
number of iterations for the conjugate gradient routine was set to 200. We do not report
the result for the Vase image (with light source (1,0,1)), Penny and Sombrero images (with
light source (5,5,7) and (1,0, 1)) here, because we could not find a good initial value for the
smoothness term, A, which would make the conjugate gradient method converge. We feel
that this may be due to two reasons: Large self-shadow areas in the images (especially in the
Sombrero image), and inadequate initial estimate of the depth map. This method is basically
a combination of stereo and shape from shading. It is hard to compare the performance of
this method with other SF'S methods. Because it heavily relies on the initial estimate from

stereo, one has to take into account the computation and accuracy involved in stereo as well.

6.4 Lee and Kuo

Lee and Kuo’s algorithm was implemented using the V-cycle multigrid scheme to solve
the linear system, as they reported in their paper. We used Gauss-Seidel relaxation as the
smoothing operator, and as the exact solver for the finest grid. Full-weighting restriction was
applied to transfer the residual from finer grids to coarser grids, and bi-linear interpolation
was applied to make the prolongation from the coarser grid to finer grids. The same stencil
was used for the smoothness term as given in their paper. The nodal points in the finest
grids were chosen to be the image pixels. Successive linearizations were done through a
maximum of 10 successive iterations, and the number of V-cycles was set to 10 for the first
iteration, 2 for the second, 1 for the rest. The initial values for depth of the finest grid,
and corrections for the coarser grids, were all zeros. Since the algorithm does not work for
light source direction (0,0, 1), we used (0.0001,0.0001,1.0) as the input light source direction

instead. This light source approximation is different from the (0.01,0.01,1) used in Zheng
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and Chellappa’s algorithm. The implementation of Zheng and Chellappa’s algorithm does
not work with (0.0001,0.0001, 1.0).

For most of the images, the smoothing factor was 2000, and the level of grids was com-
puted by L = log(M) — 1, where M is the size of the image. Therefore, we have T levels
for 256 by 256 images, and 6 levels for 128 by 128 images. However, to eliminate the ef-
fect of over-smoothing, we used 200 as the smoothing factor for Sombrero and David, and
we ran only 1 iteration for David, Mannequin and Penny. The depth maps, after the first
iteration, contain more detail but have a smaller range. After 10 iterations, details are
smoothed out, but the depth range is wider. This means that more iterations will provide
more low frequency information, which overtakes the high frequency information from the
initial iterations.

The results for synthetic images are shown in Figure 9, and the results for real images
are shown in Figure 15. It can be seen that the algorithm works well, even when the light
source is from the side, except in the cases of Sphere and Vase which create the most self-
shadows. The recovered surfaces are well outlined, but lack details and have a tendency to
be over-smoothed. Although different smoothing factors can be used for different images in
order to get the best results, small changes in the smoothing factor will not affect the results

very much.

6.5 Bichsel and Pentland

In the implementation of Bichsel and Pentland’s algorithm the initial depth values for the
singular points were assigned a fixed positive value, and the depth values for the other
points were initialized a large negative value. Instead of computing the distance to the
light source, only the local surface height is computed and maximized, in order to select
the minimum downhill direction. This is based on the fact that the distance to the light
source is a monotonically increasing function of the height when the angle between the light
source direction and the optical axis (z-axis here) is less than 90 degrees. Height values are
updated with a Gauss-Seidel iterative scheme and the convergence is accelerated by altering
the direction of the pass at each iteration.

The results for synthetic images are shown in Figure 16, and the results for real images

are shown in Figure 10. All results were obtained after 8 iterations. The algorithm provides



34

the best results for the cases when the light source is on the side; even the sphere can be
recovered very well when the light source comes from the side. However, the algorithm
does not give good results for real images except for Pepper. This, we think, is due to the
inaccuracy of the initial singular points, and noise in the real images. The algorithm is very

fast; usually only 5 iterations are required to provide reasonable results.

6.6 Lee and Rosenfeld

The major part in the implementation of Lee and Rosenfeld’s algorithm is the rotation of
the image from the viewer coordinates to the light source coordinates, and the computation
of the intensity gradient in the light source coordinates.

The results for synthetic images are shown in Figure 11, and the results for real images
are shown in Figure 17. Their method estimates the depth of an image using local spherical
assumption and intensity derivatives. This makes the algorithm unsuitable for non-spherical
surfaces, and very sensitive to noise, which is clear from the depth maps obtained for the
real images and some synthetic images, such as Penny or Mozart. The intensity of the real
images varies slightly, causing the depth estimation to falter, while the synthetic images yield

good depth maps, due to the smooth surfaces.

6.7 Pentland

The implementation of Pentland’s algorithm was done using the fast Fourier transform and
the inverse fast Fourier transform (see equation 41).

The results for synthetic images are shown in Figure 12, and the results for real images
are shown in Figure 18. His algorithm produces good results on most surfaces that change
linearly, even if the surface has a naturally varying surface such as a person’s face. However,
this algorithm falls apart when the surface changes in a non-linear manner; this can be seen
clearly from the results of Sphere. For real images, the algorithm produces the best results
except for Vase. The details of Mannequin are not recovered and inaccuracy is high around

the eye regions in David and Lenna.
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6.8 Tsai and Shah

The implementation of Tsai and Shah’s algorithm is straight forward. The depth is updated
iteratively using equation 46. There is no special care needed for the boundary.

The results for synthetic images are shown in Figure 13, and the results for real images
are shown in Figure 19. From Figure 13, we can clearly see that their method works very
well on smooth objects with the light source close to the viewing direction. However, it
is sensitive to the intensity noise, such as the black hole on the nose of Mozart image or
the shadow areas. The problem of the convex/concave ambiguity ! is clearly shown in the
result for the Sombrero image with light source (0,0, 1) (see the Figure 13.(el)). The results
for real images are good for Mannequin, David and Vase, but noisy for Lenna and Pepper,
especially in the top and bottom regions of Pepper, and the nose, eyes, and hat regions of
Lenna. These are regions where there are sudden intensity changes, which cause roughness

in the depth estimate due to the relationship between depth and intensity.

7 Error Analysis

In the previous section, we reported results for synthetic and real images, and qualitatively
analyzed the results by considering the 3-D plots of the depth map. In this section, we will
quantitatively analyze the results for the synthetic images for which the true depth maps are
available by using some error measures. There are several ways to report the error behavior.

In this section, we use the following:

e Mean and standard deviation of depth error (Tables 1-2). For each algorithm,
we compared the recovered depth with the true depth from the range image. The
output depth from each algorithm was first normalized according to the range data,

then compared with the range data for mean and standard deviation of depth error.

e Mean gradient error (Table 3). This indicates the error in the surface orientation.
The standard deviation is not used here, since it does not have any physical mean-

ing. The forward discrete approximation was used to compute the gradient from the

!The convex/concave ambiguity is due to fact that for each convex surface, there exists a concave surface

which produces the same shading image as the convex one.
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recovered depth.

e Difference images of the absolute depth error (Figures 20 to 26), which provide
the depth error distribution over the images to show the dependence of error on the
underlying surface structure and image location. The depth error images are obtained
by first calculating the absolute depth error at each point, then rescaling it using the
minimum and the maximum value over the whole image. The regions which have
the least depth error and the regions which have the most depth error can be easily

identified from these images.

e The histograms of the percentage depth error (Figures 27 to 33), which show
percentages of depth errors with respect to true depths and distributions of these
percentages. The Y-axis of each plot represents the number of pixels. The X-axis of
each plot represents the percentage depth error which is computed pixel by pixel using
the following formula:

[true depth — estimated depth|

x 100%.
true depth ‘

There are some pixels with more than 100% error. This may happen at the points in the
shadow areas, the points with convex/concave ambiguity, or at the object boundaries.

All pixels which have more than 100% error are plotted as 101% error.

For those algorithms which compute the surface gradient together with the depth, we still
use the discrete approximation of the depth to calculate the surface gradient in the gradient

error table, in order to be consistent with the other algorithms.

7.1 Mean and Standard Deviation

From Table 1 (depth error), we can see that Lee and Rosenfeld’s method gave the best results
for the sphere; this is due to the spherical assumption used in the algorithm. However, it
provides poor results for the real images. Tsai and Shah’s approach produces very good
results for images with light source (0,0, 1), but not for images with the light source from
the side. This is due to the linearization of the reflectance function in terms of depth.

When the intensity cannot globally reflect the depth information, the algorithm falls apart.
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Pentland’s approach also has this problem when the surface shape changes nonlinearly, as
with spherical surfaces. Leclerc and Bobick’s conjugate gradient approach produces the least
depth error since the initial depth, used in our tests, is close to the ground truth. On the
average, Bichsel and Pentland’s minimum downhill approach gives good results even when
the light source is from the side, and the results of Lee and Kuo’s approach are close to the
results of Zheng and Chellappa’s approach.

The standard deviation of depth (Table 2) agrees with the average depth error in the
sense that the one with smaller average error would have smaller standard deviation in most
cases.

From the gradient error (table 3), we find that Pentland’s approach gave the best results
for most test images, except for Sphere and Sombrero images with light source direction
(0,0,1). This suggests that local intensity information is sufficient for a good shape estima-
tion.

From these three error tables, we can see that there is no strict ordering for the accuracy
of the algorithms, however, overall Leclerc and Bobick’s is the best, since it uses good initial
estimates. Lee and Kuo’s places second, especially in terms of the gradient error. Zheng
and Chellappa’s algorithm takes third place, followed by Bichsel and Pentland’s, Pentland’s,
Tsai and Shah’s, and finally Lee and Rosenfeld’s.

7.2 Difference Images

The depth error images are shown in Figures 20 to 26. From these images, we can see that
Leclerc and Bobick’s algorithm is still the best; most of errors occur at the boundaries of the
objects. Among the remaining six algorithms which do not require accurate initial values,
Lee and Rosenfeld’s algorithm only has errors along half of the object boundaries for spheres
with light sources (5,5,7) and (1,0,1). Bichsel and Pentland’s algorithm also has low error
distribution for these two images. The error is also very small in the center of all three vase
images for Bichsel and Pentland’s, and Lee and Rosenfeld’s algorithms, and in the center of
vase image with light source (0,0,1) for Tsai and Shah’s algorithm. For the Mozart images
with light source (5,5,7) and (1,0,1), Lee and Kuo’s, and Bichsel and Pentland’s methods
have the lowest error at the face areas. For Penny and Sombrero images, the errors for all

six algorithms are equally distributed over the whole image.
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7.3 Histograms

Figures 27 to 33 show the histograms of the percentage depth error. The histograms show
that Leclerc and Bobick’s algorithm gives the best results, since we used the truth depth
with £5% uniform random noise as the initial estimate. We can see that none of the other
algorithms give good results for Penny and Sombrero images, since there are large number
of pixels with more than 100% error in the histograms. For Mozart image, Lee and Kuo’s
algorithm gives the best results even for the image with the light source from the side. Lee
and Rosenfeld’s, and Bichsel and Pentland’s algorithms give better results for Sphere and

Vase images.

8 Timing

CPU timing (Table 4) is computed on a SUN SPARC 4. The disk I/O time is not included,
and only the computational time is considered. All the synthetic images are 128 by 128,
except for Mozart, whose size is 256 by 256. All the real images are 256 by 256, except
David, whose size is 128 by 128. From the timing table (Table 4), we see that the three
local approaches are significantly faster than the global approaches; their times depend
only on the size of the input image. For the global approaches, time not only depends
on the size of the input image, but also varies from scene to scene. Among the global
approaches, Bichsel and Pentland’s algorithm is the most efficient. Leclerc and Bobick’s
algorithm, without hierarchical structure,, takes the most time. Lee and Kuo’s algorithm is
also time consuming, since it involves multigrid iterations. Zheng and Chellappa’s algorithm
is reasonably fast with pyramid implementation. The order of the algorithms according to
CPU time, from the slowest to the fastest, is Leclerc & Bobick’s algorithm, Lee & Kuo’s
algorithm (in most cases, Leclerc & Bobick’s algorithm is slower than Lee & Kuo’s), then
followed by Zheng & Chellappa’s, Bichsel & Pentland’s, Pentland’s, Lee & Rosenfeld’s, and
Tsai & Shah.



Table 1: Average Z error for synthetic images.

Images

Methods Sphere Vase Mozart Penny Sombrero

S1 | S2 | S3 S1 | S2 | S3 S1 | S2 | S3 S1 | S2 | S3 S1 | S2 | S3
Zheng & Chellappa 10.3 | 10.9 | 26.6 8.5 | 12.3 8.5 15.1 | 16.6 | 10.5 7.2 | 4.8 | 4.8 7.0 6.6 5.6
Leclerc & Bobick 2.1 3.6 3.7 1.8 3.0 ** 1.7 4.7 5.5 22 | ¥F | *¥HF 1.2 ** **
Lee & Kuo 16.0 | 10.3 | 10.9 10.0 7.5 7.9 16.0 8.8 | 114 7.6 | 4.7 | 44 6.9 5.4 7.7
Bichsel & Pentland 0.7 9.4 5.2 10.0 8.8 7.9 20.5 | 17.8 7.7 12.1 | 8.0 | 8.4 13.7 | 11.0 6.4
Lee & Rosenfeld 0.8 3.8 4.3 8.1 8.4 | 11.0 18.3 | 17.8 | 17.6 11.3 | 8.2 | 7.9 11.7 8.8 8.7
Pentland 17.3 | 20.1 | 14.0 11.2 | 13.6 9.0 15.7 | 22.5 | 19.7 74 | 6.4 | 6.6 7.3 7.6 7.3
Tsai & Shah 0.1 | 16.4 | 16.4 8.3 | 11.8 | 12.7 18.5 | 20.1 | 20.0 11.0 | 8.5 | 8.6 12.6 | 10.2 | 10.1

Table 2: Standard deviation of Z error for synthetic images.

Images

Methods Sphere Vase Mozart Penny Sombrero

S1] s2] S3 S1 ] Ss2] S3 S1 | S2] s3 S1] s2] S3 S1 | S2] s3
Zheng & Chellappa 13.1 | 15.9 | 174 11.1 | 17.0 13.9 18.4 | 17.2 | 15.9 13.5 7.4 5.5 11.9 | 10.5 | 10.4
Leclerc & Bobick 2.4 5.0 5.1 2.9 4.1 *k 2.1 7.1 7.7 3.1 * K *k 2.4 *k * K
Lee & Kuo 15.9 | 18.9 | 20.6 13.2 | 12.9 | 15.39 19.2 | 159 | 22.1 14.0 7.3 6.6 12.2 9.2 | 15.0
Bichsel €& Pentland 1.2 | 134 9.0 13.8 | 13.6 16.9 37.4 | 21.9 | 14.6 23.4 | 11.7 | 16.6 26.6 | 20.3 | 12.5
Lee & Rosenfeld 0.4 5.8 6.6 14.6 | 16.4 22.3 33.0 | 29.8 | 30.3 21.2 | 15.2 | 14.8 22.5 | 17.0 | 16.9
Pentland 17.5 | 18.3 | 19.3 12.6 | 18.9 11.1 18.2 | 24.2 | 20.5 12.2 | 10.6 | 11.1 12.2 | 12.6 | 12.6
Tsai & Shah 0.1 { 20.9 | 21.0 15.0 | 16.9 19.7 33.3 | 30.7 | 30.5 20.6 | 154 | 15.6 24.3 | 18.4 | 18.4

S1, S2, and S3 stand for three different light sources, (0,0, 1), (5,5,7), and (1,0,1), and “*.*’ stands for unavailable data.



Table 3: Average p-q error for synthetic images.

Images

Methods Sphere Vase Mozart Penny Sombrero

S1 | S2 | S3 S1 | S2 | S3 S1 | S2 | S3 S1 | S2 | S3 S1 | S2 | S3
Zheng & Chellappa 2.8 1.6 1.7 2.2 1.5 1.3 2.3 1.1 1.1 1.3 1.1 1.0 1.3 1.0 0.7
Leclerc & Bobick 0.8 4.5 4.4 1.2 3.1 ** 0.5 8.4 9.5 1.2 ** ** 0.6 ** **
Lee & Kuo 2.3 1.4 1.4 1.6 0.9 0.9 1.7 0.7 0.6 1.3 1.1 1.0 0.8 0.7 0.6
Bichsel €& Pentland 0.3 5.8 2.5 2.7 4.9 1.9 3.1 8.1 1.9 1.7 4.4 1.1 1.2 3.3 0.5
Lee & Rosenfeld 0.1 6.5 6.7 1.3 3.3 2.2 6.8 | 13.7 | 12.8 4.3 8.4 7.0 1.3 2.5 2.3
Pentland 2.2 2.9 4.7 1.8 1.3 1.2 1.3 1.3 1.3 1.3 1.3 1.2 1.1 1.1 1.0
Tsai & Shah 0.1 0.9 0.9 1.4 1.4 2.6 6.7 5.5 5.6 4.2 5.2 4.8 1.2 1.5 1.5

Table 4: CPU time (in seconds) for synthetic images.

Images

Methods Sphere Vase Mozart Penny Sombrero

S1 ] 52 ] S3 S1 ] 52 | S3 S1 ] S2 ] S3 S1 ] S2 ] S3 S1 ] S2 ] S3
Zheng & Chellappa 13.1 98.54 | 104.78 18.1 60.3 70.8 49.6 416.40 409.5 17.8 193.3 78.1 17.1 110.6 148.6
Leclerc € Bobick 2267.8 | 2337.8 | 2310.7 2343.3 | 1186.4 * K 14517.3 8477.1 | 17140.6 2864.2 *k *k 4258.9 ** **
Lee & Kuo 188.4 | 1195.8 | 1167.8 188.4 354.9 | 2584.9 771.5 | 18278.2 | 20249.5 42.3 | 2647.0 | 2429.9 188.3 | 8951.2 | 6642.9
Bichsel €& Pentland 6.9 6.7 6.9 7.3 6.7 6.1 27.6 27.4 26.9 7.3 6.9 6.7 7.3 6.9 6.7
Lee & Rosenfeld 1.6 1.8 1.7 1.5 1.9 1.7 6.2 7.4 6.9 1.7 2.2 1.9 1.7 2.4 1.9
Pentland 3.8 4.3 4.1 4.2 4.2 4.2 17.7 17.7 18.4 4.1 4.2 4.4 4.4 4.2 4.2
Tsai & Shah 0.8 1.3 1.2 0.9 1.2 1.2 3.8 4.8 4.8 0.7 1.2 1.2 0.8 1.2 1.2

S1, S2, and S3 stand for three different light sources, (0,0, 1), (5,5,7), and (1,0,1). “*.** stands for unavailable data.
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Figure 20: Depth error images for Zheng and Chellappa’s method: (a) Sphere. (b) Vase. (¢) Mozart. (d) Penny. (e) Sombrero. The
absolute depth errors were normalized between 0-255. Dark areas represent small error, and light areas represent large error. The
first row shows the errors for test images with light source (0,0, 1). The second row shows the errors for test images with light source
(5,5, 7). The third row shows the errors for test images with light source (1,0, 1).
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Figure 21: Depth error images for Leclerc and Bobick’s method: (a) Sphere. (b) Vase. (¢) Mozart. (d) Penny. (e) Sombrero. The
absolute depth errors were normalized between 0-255. Dark areas represent small error, and light areas represent large error. The
first row shows the errors for test images with light source (0,0, 1). The second row shows the errors for test images with light source
(5,5,7). The third row shows the errors for test images with light source (1,0,1). Depth error images for Vase with light source
(1,0,1), (b3), Penny and Sombereo with light source (5,5,7) and (1,0, 1), (d2, d3, e2 and e3) are not shown here, since we could not

find a good initial value for the smoothness term.
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Figure 22: Depth error images for Lee and Kuo’s method: (a) Sphere. (b) Vase. (¢) Mozart. (d) Penny. (e) Sombrero. The absolute
depth errors were normalized between 0-255. Dark areas represent small error, and light areas represent large error. The first row
shows the errors for test images with light source (0,0,1). The second row shows the errors for test images with light source (5,5,7).
The third row shows the errors for test images with light source (1,0, 1).
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Figure 23: Depth error images for Bichsel and Pentland’s method: (a) Sphere. (b) Vase. (¢) Mozart. (d) Penny. (e) Sombrero. The
absolute depth errors were normalized between 0-255. Dark areas represent small error, and light areas represent large error. The
first row shows the errors for test images with light source (0,0, 1). The second row shows the errors for test images with light source

(5,5, 7). The third row shows the errors for test images with light source (1,0, 1).
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Figure 24: Depth error images for Lee and Rosenfeld’s method: (a) Sphere. (b) Vase. (¢) Mozart. (d) Penny. (e¢) Sombrero. The
absolute depth errors were normalized between 0-255. Dark areas represent small error, and light areas represent large error. The
first row shows the errors for test images with light source (0,0, 1). The second row shows the errors for test images with light source

(5,5, 7). The third row shows the errors for test images with light source (1,0, 1).
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Figure 25: Depth error images for Pentland’s method: (a) Sphere. (b) Vase. (¢) Mozart. (d) Penny. (e) Sombrero. The absolute
depth errors were normalized between 0-255. Dark areas represent small error, and light areas represent large error. The first row
shows the errors for test images with light source (0,0,1). The second row shows the errors for test images with light source (5,5,7).
The third row shows the errors for test images with light source (1,0, 1).
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Figure 26: Depth error images for Tsai and Shah’s method: (a) Sphere. (b) Vase. (¢) Mozart. (d) Penny. (e) Sombrero. The absolute
depth errors were normalized between 0-255. Dark areas represent small error, and light areas represent large error. The first row
shows the errors for test images with light source (0,0,1). The second row shows the errors for test images with light source (5,5, 7).

The third row shows the errors for test images with light source (1,0, 1).
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Figure 27: See caption on next page.
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Figure 27: The histograms of depth error for Zheng and Chellappa’s method. (a) Sphere. (b) Vase. (¢) Mozart. (d) Penny. (e) Sombrero. Each
bar in the histograms represents the summation of number of pixels for the depth error within the interval less than or equal to the indicated value.
All pixels with more than 100% error are counted as 101% error. In each row, 1, 2, and 3 indicate respectively light sources, (0,0, 1), (5,5,7), and
(1,0,1).
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Figure 28: See caption on next page.
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Figure 28: The histogram of percentage depth error for Leclerc and Bobick’s method. (a) Sphere. (b) Vase. (¢) Mozart. (d) Penny. (e) Sombrero.
Each bar in the histograms represents the summation of number of pixels for the depth error within the interval less than or equal to the indicated
value. All pixels with more than 100% error are counted as 101% error. In each row, 1, 2, and 3 indicate respectively light sources, (0,0, 1),
(5,5,7), and (1,0, 1). The histogram for the Vase image with light source (1,0, 1),(b3), Penny and Sombrero images with light source (5,5,7) and
(1,0,1),(d2, d3, €2, and e3) are not reported here, because we could not find a good initial value for the smoothness term.
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Figure 29: See caption on next page.
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Figure 29: The histogram of percentage depth error for Lee and Kuo’s method. (a) Sphere. (b) Vase. (¢) Mozart. (d) Penny. (e) Sombrero. Each
bar in the histograms represents the summation of number of pixels for the depth error within the interval less than or equal to the indicated value.
All pixels with more than 100% error are counted as 101% error. In each row, 1, 2, and 3 indicate respectively light sources, (0,0, 1), (5,5,7), and
(1,0,1).
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Figure 30: See caption on next page.
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Figure 30: The histogram of percentage depth error for Bichsel and Pentland’s method. (a) Sphere. (b) Vase. (c¢) Mozart. (d) Penny. (e)
Sombrero. Each bar in the histograms represents the summation of number of pixels for the depth error within the interval less than or equal to
the indicated value. All pixels with more than 100% error are counted as 101% error. In each row, 1, 2, and 3 indicate respectively light sources,

(0,0,1), (5,5,7), and (1,0, 1).
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Figure 31: See caption on next page.
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Figure 31: The histogram of percentage depth error for Lee and Rosenfeld’s method. (a) Sphere. (b) Vase. (¢) Mozart. (d) Penny. (e) Sombrero.
Each bar in the histograms represents the summation of number of pixels for the depth error within the interval less than or equal to the indicated
value. All pixels with more than 100% error are counted as 101% error. In each row, 1, 2, and 3 indicate respectively light sources, (0,0, 1),

(5,5,7), and (1,0, 1).
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Figure 32: See caption on next page.
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Figure 32: The histogram of percentage depth error for Pentland’s method. (a) Sphere. (b) Vase. (¢) Mozart. (d) Penny. (e) Sombrero. Each bar
in the histograms represents the summation of number of pixels for the depth error within the interval less than or equal to the indicated value.
All pixels with more than 100% error are counted as 101% error. In each row, 1, 2, and 3 indicate respectively light sources, (0,0, 1), (5,5,7), and
(1,0,1).
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Figure 33: See caption on next page.
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Figure 33: The histogram of percentage depth error for Tsai and Shah’s method. (a) Sphere. (b) Vase. (¢) Mozart. (d) Penny. (e) Sombrero.
Each bar in the histograms represents the summation of number of pixels for the depth error within the interval less than or equal to the indicated
value. All pixels with more than 100% error are counted as 101% error. In each row, 1, 2, and 3 indicate respectively light sources, (0,0, 1),

(5,5,7), and (1,0, 1).
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9 Convergence, Uniqueness and Existence

Unlike local approaches, which provide a closed form solution, most global approaches use
iterative schemes. A few schemes, such as Ikeuchi and Horn’s, Brooks and Horn’s, and
Zheng and Chellappa’s approaches, use variational calculus to derive a non-linear iterative
scheme. There is no guarantee of correct convergence for these algorithms because of the
convex/concave ambiguity in SF'S, the discrete formulation in these approaches, the linear
approximation of the reflectance map, and the noise in real images. In some cases, an
algorithm can give the correct solution by converging to the global minimum; in others, it
can get stuck at a local minimum. Sometimes, an algorithm can diverge and walk away from
the true solution, therefore, the initial value will greatly affect the speed of convergence and
the solution to which an algorithm converges. In order to enforce proper convergence, the
shape information at occluding boundaries are used as initial values in Brooks and Horn’s
algorithm as well as in Szeliski’s algorithm.

Recently, Oliensis [23] proved that even the complete shape information at an occluding
boundary does not well-determine the surface reconstruction. However, the surface orienta-
tion is uniquely determined at singular points. On the basis of Oliensis’s idea, Bichsel and
Pentland’s algorithm starts at singular points and propagates the depth through a minimum
downhill technique. The proper termination of the algorithm is guaranteed by propagat-
ing the depth away from the light source. The correctness of the solution depends on the
initialization at the singular points.

Ikeuchi and Horn’s, Leclerc and Bobick’s, Lee and Kuo’s, and Tsai and Shah’s algorithms,
essentially reduce the nonlinear minimization problem into a solution of a linear system. The
iterative techniques for solving linear systems, such as Jacobi, Gauss-Seidel, successive over-
relaxation or multigrid technique, are applied. ;From the results of matrix algebra, the

iterative scheme

2P = =1 4 ¢ ,(c#0) (47)

converges to the unique solution # = Tz + ¢, if and only if the spectral radius of T' (the
maximum absolute value of the eigenvalues of T'), p(7T'), is less than 1. Since real images do
not always satisfy ¢ # 0, and p(7T') < 1, the linear iterative schemes may not converge.

Little work has been done on proving the uniqueness or existence of a solution to SFS.
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The uniqueness of SF'S can be proven under the condition that the light source direction
is equal to, or symmetric around, the viewing direction [23]. With an initial known curve,
the method of characteristic strips yields a unique solution, if the first derivative of surface
depth is continuous. For other cases, the uniqueness is unknown. However, Lee and Kuo [19]
showed that, given the depth at a reference point, the addition of the smoothness constraint
and successive linearization of the reflectance map (based on the local gradients obtained
from the previous iteration) provide a unique solution for their approach, in most cases.

If we consider local uniqueness instead of global uniqueness over the entire image, the
uniqueness of a solution can be easily determined at singular points, and occluding bound-
aries, provided that the reflectance map is given. These are the points at which we can
determine the surface orientation directly from the image brightness. The brightness pattern
in any arbitrary region could arise from an infinite number of different surfaces. However,
the information at singular points and at occluding boundaries, can be used to constrain the
possible solutions.

In the cases where there is a unique solution, existence is clear. However, there are cases
where no solution exists. Horn, Szeliski and Yuille [13] presented some impossibly shaded
images that could not have originated from a smooth continuous surface with uniform albedo
and illumination. These cases can be detected through the examination of conditions for
impossibly shaded images, or by checking for the existence of singularities in the solution to

shape from shading.

10 Conclusions and Future Research

SFS techniques recover the 3-D description of an object from a single view of the object.
In this paper, we analyzed a total of twelve existing algorithms and grouped them into
three different categories: Global minimization techniques, global propagation techniques,
and local techniques, These groupings are based on the conceptual differences among the
algorithms. Eight representatives out of the twelve were implemented in order to compare
their performance in terms of accuracy and time. This comparison was carried out on five
synthetic surfaces, each was used to generate three synthetic images using different light

source directions, and five real image, where light source directions were estimated.
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To analyze the accuracy, the output for the synthetic images were compared with the
true surface shapes and the results of comparison were shown in the forms of the average
depth error, the average gradient error, the standard deviation of depth error, the difference
images of absolute depth error, and the histogram of percentage depth error with respect to
the true depth. Due to the lack of true shapes, the output for real images were only analyzed
and compared visually. The conclusion drawn from the accuracy analysis is that all of the
algorithms have their limitations. None of them has consistent performance for all images,
since they work well for certain images, but perform poorly for others. Overall, the global
minimization techniques are more robust to different scenes and noise. Among them, Leclerc
and Bobick’s algorithm yields very good results due to the use of good initial estimates from
stereo. Lee and Kuo’s algorithm produces the second best results. The global propagation
techniques provide almost perfect results if the estimates for singular points are accurate.
The local approaches tends to have more error for real, noisy images, especially for Lee and
Rosenfeld’s approach which is based on intensity derivatives and the spherical assumption.

To analyze the time, CPU time was measured for all of the algorithms on the same
machine. Among all of the algorithms, Tsai and Shah’s is the fastest, while Leclerc and
Bobick’s is the slowest. The conclusions from the timing is that the local approaches are
faster than the global approaches, and the global propagation approaches are a lot faster
than the global minimization approaches. The execution times for local appraoches depend
only on the size of the input image. While for the global approaches, time not only depends
on the size of the input image, but also varies from scene to scene.

There are several possible directions for future research. As we noted, reflectance models
used in SFS methods are too simplistic; recently, more sophisticated models have been
proposed (see section 2.4). This not only includes more accurate models for Lambertian,
specular, and hybrid reflectance, but also includes replacing the assumption of orthographic
projection with perspective projection, which is a more realistic model of cameras in the
real world. The traditional simplification of lighting conditions, assuming an infinite point
light source, can also be eliminated by either assuming a non-infinite point light source, or
simulating lighting conditions using a set of point sources. This trend will continue. SFS
methods employing more sophisticated models will be developed to provide more accurate,

and realistic, results.
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Another direction is the combination of shading with some other cues. One can use the
results of stereo or range data to improve the results of SFS (such as [17] and [31]), or use
the results of SF'S or range data to improve the results of stereo. A different approach is to
directly combine results from shading and stereo (such as [5]).

Multiple images can also be employed by moving either the viewer (as in [10]) or the
light source (as in [38]) in order to successively refine the shape. The successive refinement
can improve the quality of estimates by combining estimates between image frames, and
reduce the computation time since the estimates from the previous frame can be used as
the initial values for the next frame, which may be closer to the correct solution. By using
successive refinement, the process can be easily started at any frame, stopped at any frame,
and restarted if new frames become available. The advantage of moving the light source over
moving the viewer is the elimination of the mapping of the depth map (warping) between
image frames.

One problem with SFS is that the shape information in the shadow areas is not recovered,
since shadow areas do not provide enough intensity information. This can be solved if we
make use of the information available from shape-from-shadow (shape-from-darkness) and
combine it with the results from SFS. The depth values on the shadow boundaries from
SFS can be used either as the initial values for shape-from-shadow, or as constraints for
the shape-from-shadow algorithm. In the case of multiple image frames, the information

recovered from shadow in the previous frame can also be used for SFS in the next frame.
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