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Abstract

This paper presents a novel framework for matching video sequences using the spatiotemporal segmentation of videos. Instead of
using appearance features for region correspondence across frames, we use interest point trajectories to generate video volumes. Point
trajectories, which are generated using the SIFT operator, are clustered to form motion segments by analyzing their motion and spatial
properties. The temporal correspondence between the estimated motion segments is then established based on most common SIFT cor-
respondences. A two pass correspondence algorithm is used to handle splitting and merging regions. Spatiotemporal volumes are
extracted using the consistently tracked motion segments. Next, a set of features including color, texture, motion, and SIFT descriptors
are extracted to represent a volume. We employ an Earth Mover’s Distance (EMD) based approach for the comparison of volume fea-
tures. Given two videos, a bipartite graph is constructed by modeling the volumes as vertices and their similarities as edge weights. Max-
imum matching of this graph produces volume correspondences between the videos, and these volume matching scores are used to
compute the final video matching score. Experiments for video retrieval were performed on a variety of videos obtained from different
sources including BBC Motion Gallery and promising results were achieved. We present qualitative and quantitative analysis of retrieval
along with a comparison with two baseline methods.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The amount of digital content generated in the form of
video has seen tremendous growth over the last decade.
Key elements providing impetus for this growth are: prolif-
eration of inexpensive digital cameras, hand held devices,
popularity of web based video streaming, and adoption
of digital video by broadcast industry as a part of their dis-
tribution services. As a record number of video clips are
generated and added into digital libraries every day all over
the world, the need for management of this content by
means of efficient storage, indexing, and retrieval has never
been more pressing than today. Recent major search initia-
tives in video domain by companies such as Google,
Yahoo, MSN etc., show realization on part of the industry
1077-3142/$ - see front matter � 2007 Elsevier Inc. All rights reserved.
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for the proper management of this video content. Appar-
ently they want to build upon their experience of text based
search to develop video search engines. Pivotal to achieving
this goal will be a viable search methodology capable of
computing video content similarities.

Content based video matching is considered to be a
complex task. One main reason for this is the amount of
intra-class variation where the same semantic concept can
occur under different illumination, appearance, and scene
settings, just to name a few. For example, videos contain-
ing a person riding a bicycle can have variations such as
different viewpoints, sizes, appearances, bicycle types, and
camera motions. Most of the research in the area of con-
tent based video matching is therefore aimed at addressing
these challenges.

In this paper we present a content based video matching
framework that aims to address certain limitations of the
existing methods. The crux of the proposed approach is
to use features computed from spatiotemporal volumes as
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the basic building blocks. The intuition behind this repre-
sentation stems from the observation that there are several
factors that should be considered for deciding whether two
videos are similar or not. These factors include similarity of
the foreground objects, object motion, background appear-
ance, camera motion, etc. The method presented in this
paper addresses these issues by detecting important regions
in the (foreground and background) scene, extracting fea-
tures that are less sensitive to the aforementioned varia-
tions, and finally employing a volume correspondence
technique that handles partial video matches.

1.1. Related work

Image and video retrieval have been an active area of
research in the multimedia community and provides the
foundation for tasks like video similarity matching. Over
the year several methods and systems have been proposed
for the content based image retrieval (CBIR). Most of these
earlier systems like MIT’s Photobook [1], IBM’s QBIC [2]
etc., were based on global image features. However, in
most cases a user of a CBIR system is interested in search-
ing for images of a particular object (e.g. car, boat, airplane
etc.,) or a semantic concept which are functions of local
image features. Therefore, CBIR systems relying only on
global image features are expected to have limited perfor-
mance in such scenarios. To overcome this problem,
researchers proposed region based image features. Such
content representation and modelling approach has been
used in a variety of ways. See [3–7] for some of the region
based image retrieval (RBIR) systems. The RBIR systems
have been shown to perform better than the CBIR systems
that are based on only global image features.

A comprehensive video matching system should fuse
information from all available media types that can be
extracted from a video. This can include audio, video, cap-
tion, and text transcript. Some of the earlier video retrieval
system like [8–10] focused on the integration of these differ-
ent types of media. An important issue here is to ensure
that the content extraction and matching of the any indi-
vidual medium is accurate and robust. This challenging
aspect of Content Based Video Retrieval (CBVR) has been
addressed by several researchers [11–16]. Similar to the par-
adigm of RBIR, many CBVR approaches also rely on
region based features. Often these are spatial regions
belonging to keyframe the video [16]. However, since video
is a spatiotemporal entity, spatial region based approaches
can be extended to represent spatiotemporal regions of the
video volume. The approach described in this paper
belongs to this category of methods which rely on motion
based spatiotemporal segmentation.

Region based video retrieval starts by computation of
spatial regions for every frame which are then extended
to spatiotemporal regions. For instance, methods proposed
in [11,12,15,17] compute spatial color segmentation of
every frame in the video which is followed by the temporal
correspondence of these regions. However, in highly tex-
tured scenes these approaches are not able to perform ade-
quately due to over-segmentation which leads to incorrect
region matches. In addition, a complex video can have sig-
nificant variations in the appearance of the same object
throughout the video. Therefore, a simple color segmenta-
tion, which is known to give inconsistent results under
varying noise and illumination conditions, will not be a via-
ble option. This in turn, limits the effectiveness of several
CBVR methods that rely on color based spatial
segmentation.

In this line of research, few approaches also used global
and local motion information to recover coherent image
regions. For example, the motion segmentation and object
tracking method presented in [11] relies on color segmenta-
tion and optical flow computation. The accuracy and reli-
ability of optical flow is known to be limited in case of
large motion or textureless regions (aperture problem).
Region tracking in [17] also relies on appearance features
computed from regions. Again the performance of these
approaches is also limited due to the adverse quality of
color segmentation.

Recently, vocabulary based text retrieval techniques
have been applied in [18] for object matching in videos.
However, their method did not perform explicit object
extraction before the matching step. In [19], spatiotemporal
volumes were extracted which were specific to faces in the
video sequence. This approach relies on the facial structure
and the appearance features related to it. In contrast, the
framework presented in this paper is more general and
applicable to a wide variety of objects and scenarios. Fur-
thermore, [20] presented a framework where specific
objects were recognized using the tracked salient regions.
However, they require to manually select the particular
object that is to be searched in the query video. The main
difference of the proposed approach from their technique
is that they focus on specific object recognition, whereas
our emphasis is more on object/scene category matching.
Moreover, in our method, we consider the entire content
of the query video and automatically compute the match-
ing between different foreground and the background vol-
umes. In short, we propose a more general framework that
can be used to match video shots with similar kinds of
objects and scenes. In another recent work, [21] addresses
the matching of similar shots and presents a solution based
on three-dimensional models of scene content, which are
built using affine covariant patches. Another interesting
work for matching background scenes in movie shots was
presented in [22]. Their matching technique relies on the
local similarity of features, an epipolar constraint, and a
temporal constraint. Unlike their approach, we consider
static as well as moving objects in the foreground to match
the video shots.

We feel that there is a need of a better content based
video matching approach that could handle partial
matches based on similar types of the foreground objects,
and the background scene. We consider motion informa-
tion as a strong que in a video and feel that it should be uti-
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lized to extract more reliable video contents. For the video
retrieval task, it is desirable to build a system that does not
require extensive training for each semantic concept. The
following section presents the proposed approach that
addresses these issues.

1.2. Proposed framework

The proposed framework comprises of two major com-
ponents: video volume extraction and video matching
using volume features. Unlike conventional approaches,
we utilize the interest point trajectories in the video
sequence to extract spatiotemporal video volumes. Interest
points and their correspondences are established using the
Scale Invariant Feature Transform (SIFT [23]) operator.
The point correspondences are used to generate trajecto-
ries, which are further refined by performing velocity pre-
diction to merge the broken trajectories. These
trajectories are then grouped into clusters based on their
motion similarity and the spatial proximity. The temporal
correspondence between the estimated motion segments is
then established based on the highest number of SIFT cor-
respondences. A two pass algorithm is used to handle
region noise, splitting, and merging. The tracked regions
are then stacked together to produce spatiotemporal vol-
umes. Each volume encompasses independently moving
region, which could either belong to the scene background
or the foreground object. This provides a more structured
information about the scene for the task of video matching.
A set of features including color, texture, motion, and
SIFT descriptors are extracted from each volume. The
weighted combination of feature similarities between two
volumes provides a measure of their similarity. The degree
of similarity between the features is computed through
Earth Mover’s Distance. Two videos to be matched are
modeled as a bipartite graph, where volumes are repre-
sented by vertices and similarities between them as edge
weights. The maximum matching of this graph is then used
to establish the correspondences between the volumes. The
score between each pair of matched volumes is then com-
bined towards the final video matching score. The pro-
posed video matching framework is tested on several
videos for the task of content based video retrieval.

It should be noted that our framework is not designed to
search for exact matches of an object observed in a video
shot as suggested by [20]. On the other hand, our approach
is more suitable for establishing similarity among videos
based on similar types of the foreground objects and the
background scene. The novelty of our approach for video
matching lies in (a) the extraction of spatiotemporal vol-
umes that correspond to meaningful foreground and back-
ground objects (b) a partial video matching framework
based on several strong features from the volumes.

The details of the proposed framework are discussed in
the following sections. Steps involved in the extraction of
volumes are described in Section 2. Section 3 discusses
the volume features used and their role in the matching
task. The graph based video matching technique is
described in Section 4. The experimental results and perfor-
mance analysis are presented in Section 5. Finally, the con-
clusions and future directions are discussed in Section 6.

2. Spatiotemporal volume extraction

In this paper we propose a framework that relies on spa-
tiotemporal regions (volumes) for solving the video match-
ing problem. For a given video, we first extract interest
point trajectories using SIFT correspondences (see Section
2.1). These trajectories are then used to recover different
motion segments in each frame (see Section 2.2). The cor-
respondence between the motion segments is then resolved
using a two pass algorithm (see Section 2.3). In this paper,
the term foreground refers to the moving objects in the
video and the term background refers to the physical envi-
ronment where the objects reside. They are used to assist
the reader of this paper to better understand the problem
that we address. Our framework does not distinguish
between the foreground and background volumes, and
are used in the same way for matching.

2.1. Trajectory generation

For a given video shot we generate a set of motion tra-
jectories based on SIFT interest points. Main steps
involved in this task are shown in Fig. 1 along with the
intermediate results after each step. The first step is to
detect SIFT interest points in every frame of the given
video shot. This produces a 128 dimensional feature vector
as a descriptor of each interest point. The second step is to
recover interest point correspondences in every pair of
neighboring frames. [23] presents a descriptor matching
method that produces robust interest point correspon-
dence. Output of this step produces the connection between
the corresponding interest points in any two neighboring
frames as shown by link (a) in Fig. 1. The third step is to
connect these corresponding links in the neighboring
frames and construct longer trajectories. Link (b) shows
the effect of trajectory generation after correspondence
merging. There can be some erroneous correspondences
with abnormally large displacement in image coordinates.
This is handled by the fourth step where these large dis-
placements are pruned out assuming locally uniform veloc-
ity. Link (c) represents the step where trajectory segments
with abnormally large acceleration have been removed.
At this stage there might be many broken trajectories that
can be merged across time to generate longer and more
meaningful trajectories. For this, a uniform local velocity
model is assumed. Each trajectory is projected forward in
time and a similar SIFT descriptor is searched within a
small spatiotemporal window. If a match is found and if
it is the start of another trajectory, then both of the trajec-
tories are merged. Link (d) shows that the length of the tra-
jectories can be increased after merging. Note that for
illustrative purposes we are only showing a subset of trajec-



Fig. 1. The steps for generating interest point trajectories are shown here. Dotted links in the figure connect the same image areas before and after a
particular step. The images contain blue diamonds representing SIFT interest points and the red lines showing the trajectory connection between them.
Following steps are highlighted by the mentioned links: (a) interest point correspondence, (b) initial trajectory generation by merging point
correspondences, (c) removal of irregular trajectory segments, (d) merging broken trajectories, (e) removal of small trajectories. (For interpretation of
color mentioned in this figure the reader is referred to the web version of the article.)
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tories that have points in the current frame. The last step is
to remove any trajectories that are not meaningful and
span less than three frames. Link (e) shows the removal
of these noisy trajectories. This generates a set of trajecto-
ries for the complete video and it is used to determine dif-
ferent motion segments in the video shot.

2.2. Region detection

After generating a set of interest point trajectories for
the complete video, the next step is to perform initial
motion segmentation. Note that depending on the texture
on the foreground and background regions in a given
video, we will get the trajectories from both parts. Our
assumption is that a region’s motion can be approximated
by the motion of a plane. Hence, we can use a homography
to capture an object’s motion from one frame to the next.
We use the RANSAC based homography computation to
recover significant motion segments. Four interest point
correspondences are randomly chosen to generate a
homography transformation. The most dominant motion
segment is first chosen by selecting the homography with
the largest number of inliers. The rest of the correspon-
dences go through the same process to recover the next
most dominant motion segment and so on. This produces
a set of motion segments in one frame with respect to the
other. Note that our approach can only handle rigid body
motion. In case of highly deformable objects, we will
obtain separate homographies corresponding to consistent
local motions of the object parts.

Fig. 2c shows the output of motion segmentation, where
trajectories belonging to the foreground and the back-
ground are clustered into two separate segments. Note that
some small trajectories from Fig. 2b have been removed in
Fig. 2c and d. Since very small trajectories do not provide
much reliable information as compared to the longer ones
for volume extraction, they are hence removed during the
region detection stage. In case of a more complicated scene
containing multiple objects with the same motion as shown
in Fig. 3, four different motion segments are detected as
shown in Fig. 3a. Red and green colored trajectories repre-
sent two most dominant segments including five cars. In
frame 10 (first column of Fig. 3a) two cars (green segment)
are moving together in one direction while the other three
cars (red segment) are moving together in a different direc-
tion. This process is applied to all the frames and motion
segments are recovered in every frame.

Next, we use the initial motion segments to detect sepa-
rate objects moving similarly. These objects are separated
into detected regions by using the spatial proximity of the
interest points in each frame. Similar to the connected com-
ponents algorithm, we isolate different groups of neighbor-
ing interest points using a threshold on the distance from
the nearest neighbor. Fig. 3a shows the initial motion seg-
ments which are further refined to extract detected regions
as shown in Fig. 3b. These regions are shown by different
bounding boxes. Note that there are two regions detected
from the green initial motion segment and three regions
detected in the red segment shown in Fig. 3a. We apply this
process to all of the frames in the video and a set of motion
regions is generated for every frame in the video. These
detected regions are then tracked through the method
explained in the next section.

One possible drawback of using the spatial proximity
constraint, for region detection, could be over segmenta-
tion. However, we have observed that during tracking these
over segmented regions are assigned the same label because
the proposed algorithm addresses splitting-and-merging.
This will be further explained in the following section.
The detected regions are represented by the bounding
boxes that usually encompass main parts of the objects.
Although this representation does not provide a tight
boundary capturing the object shape, but we found during
experiments that this does not hurt the performance signif-



Fig. 2. Stages from trajectory generation to volume extraction. (a) Input video, (b) trajectories generated using method explained in Section 2.1, (c) two
initial motion segments in blue and red colors (see Section 2.2), and (d) red trajectory cluster produces a single region shown by the red bounding box. Blue
trajectory cluster is divided into one large (yellow), and two very small (white and pink) spatially coherent regions, (e) 3D volume for the region in red
bounding box. (For interpretation of color mentioned in this figure the reader is referred to the web version of the article.)

Fig. 3. Each column here presents the intermediate results for a specific frame. (a) Different motion segments (color coded) are determined using
homography based motion segmentation (see Section 2.2). (b) Within each of these segments, different objects are detected using a spatial proximity
constraint (see Section 2.2). (c) Common trajectory membership is used to solve the region correspondence that generates consistent labels. (see Section
2.3). (For interpretation of color mentioned in this figure the reader is referred to the web version of the article.)
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icantly. This is possible due to the type of the volume fea-
tures used. We compute features using both sparse (SIFT
descriptors and motion) and dense (color and texture)
video information. The former type does not depend on
the kind of the object boundary. On the other hand, color
and texture features are more sensitive to the type of
boundary. However, it has been observed that the actual
object is dominant in the region, so features extracted do
not change substantially. If extraction of tighter boundary
is desirable, then techniques like snakes [24] and level sets
can be used.

2.3. Region tracking

At this stage every frame has a set of detected regions
with local labels. We solve region correspondence across
frames by using maximum common trajectories between
the regions. The motivation for our approach is based on
the fact that multiple trajectories from a given region pro-
vide several constraints for tracking this region in the fol-
lowing frames.

We start with an initial set of region labels from the first
frame. These labels are propagated through the following
frames by using a trailing temporal window. For a partic-
ular region in the current frame, the member trajectories
vote for the labels in the previous frames. Each trajectory
votes for the most common label it belongs to. The label
with the maximum votes is chosen as the region label in
the current frame. Intuitively, one region is matched to
another based on the highest frequency of common trajec-
tories. A new label is generated if the maximum vote is by a
set of new trajectories starting from the current frame. This
is only the forward labeling pass of the correspondence
algorithm. A second pass of backward labeling is proposed
to handle split and merge scenarios explained in the follow-
ing. During the second pass, labels from the last frame are
propagates to the first frame similar to the forward
labeling.

This two pass algorithm is able to assign the same label
to both boxes as they split from one region and later merge
into a common region. This kind of region split-and-merge
typically occurs for only a short number of frames at a
Split

Merge

Split-and-Merge

(a) Original (b) Forward Lab

Fig. 4. Effect of the two pass tracking algorithm on three scenarios of objects
video. (b) Forward labeling generates first set of labels by progressing the lab
applied in the reverse direction to produce another set of labels. (d) Two sets o
time. Split only and merge only are other two possible sce-
narios, which occur for instance when two objects moving
together move away from each other or two objects moving
separately come together. Fig. 4 shows an illustration of
these three types of scenarios. Recall that we used the spa-
tial proximity constraint to detect regions and that can
cause oversegmentation (see Section 2.2). An example of
this can be observed with multiple regions in the second
frame of the airplane video in Fig. 8. This can happen in
cases of objects with large size and sparse feature points.
The backward labeling is useful in handling these cases.
Labels from both labeling directions are merged into one
final set of labels. This is done at every frame by consider-
ing a pair of regions at a time. The rectangles are assigned
the same final label only if they have common local labels
in both the sets. This particular case signifies the split-and-

merge scenario. On the other hand, in case of split only the
two regions will not get the same final label because they
get a common label only in forward labeling. Similarly,
for split only the two regions will not get the same final
label because they get a common label only in backward
labeling. These scenarios, and the final labeling is shown
in Fig. 4. Note in this figure there is a merge only event
right before the split-and-merge event which is correctly
detected by the proposed two pass algorithm.

Fig. 3c presents consistent region correspondence across
frames. Fig. 2e shows a volume extracted using the tracked
region. Fig. 8 also shows the result of consistent object
tracking through various stages of the video sequence
and finally the spatiotemporal volume is extracted from
every video sequence.

3. Volume features extraction

Once the volumes are available for a complete video
shot, we extract features that are used for the video match-
ing step. We use features that capture interest point
descriptors, color, texture, and motion of video volumes.
The features are local for the video volume as opposed to
using the global video features. A common representation
of these features has been used in form of a group set of
clusters in the corresponding feature space. Each cluster
eling (c) Backward Labeling (d) Final Labeling

splitting and merging. (a) Types of relative motion of two segments in a
els from the first to the last frame of the video. (c) Backward labeling is
f labels are merged to produce the final labels. (see Section 2.3 for details).
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in this set is represented by the mean feature vector and the
number of feature points in the cluster. The latter value is
normalized to make these features invariant to volume size.
This form of feature representation has been found to be
more discriminative than the conventional forms like histo-
gram [25]. Details about the features and the method used
to compute similarities between them are presented in the
following.
3.1. Interest point descriptors

Motivated by the robustness of the interest point
descriptors we use SIFT descriptors (128 dimensions [23])
to generate a representation for this feature. Every volume
contains a set of interest point trajectories. The SIFT
descriptors from all the trajectories are represented as a
set of clusters in the 128-dimensional feature space. Clus-
tering in this higher dimensional space is performed using
isodata clustering [26]. Unlike K-nearest neighbors, the iso-
data clustering does not require the number of clusters to
be specified. However, the bandwidth of the clusters has
to be specified in form of the distance from the cluster cen-
ter. If the distance to the nearest cluster center is larger
than a threshold, then a new cluster is formed. The number
of clusters depends on the type and the amount of trajecto-
ries. This feature is used to capture a set of prominent inter-
est points observed within a volume.
3.2. Color

We use 3D HSV color values to compute the color fea-
ture for the volume. Every pixel belonging to the volume
contributes to this feature. The 3D color-space is then clus-
tered using isodata clustering [26] which generates a set of
clusters. Typically, representation like color histogram is
used along with histogram intersection for feature match-
ing. However, the color representation used here has pro-
ven to perform better in case of image retrieval
application [25]. This feature is also computed for the resid-
(a)

Fig. 5. For each volume we use gradient orientations from the Canny edges
Canny edges on the current frame from the car volume, and (c) representation
peaks correspond to the mostly horizontal edges in the car volume.
ual background region of the volume that does not belong
to any volume.
3.3. Texture

To capture the texture inside the volume we employ
edge orientation information. Canny edge detector is
applied to recover an edge map. The gradient directions
are computed for every pixel along these edges. This pro-
cess is repeated for every image region inside the volume
and individual orientations are accumulated. The edge ori-
entations are quantized into eight directions in the ½0; 2p�
range. The final representation of this feature is a set of
eight clusters formed using K-Means clustering. Fig. 5 pre-
sents an illustration of this feature in case of a volume cor-
responding to a car. Similar to a histogram, this illustration
presents normalized number of samples within each one of
the eight clusters. The approach for matching of these fea-
ture representations is presented later.
3.4. Motion

Along with the appearance based features we also use
the object motion features. Interest point trajectories
encapsulated within the volume are used for computing
this feature. Different trajectories belonging to a volume
start and end independently, but depict the characteristic
volume motion. The motion feature of a volume is cap-
tured by the direction of motion which is quantized into
eight directions in the ½0; 2p� range. Each point along a tra-
jectory is treated as a separate feature point when the quan-
tization is performed by K-Means clustering into eight
motion directions. Unlike a single representative velocity
for the complete volume, this feature is more robust to
noise in the velocity values and captures the dominant
direction of object motion. These directions are influenced
by both camera and object motion, hence, this feature
alone is not sufficient for volume matching. Fig. 6 shows
an illustration of this feature computed for a boat video.
1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(b) (c)

to captures texture information. (a) Sample frame with car’s segment, (b)
of the eight quantized gradient orientations of complete volume. The two
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Fig. 6. Motion of a volume is captured by eight quantized directions of motion of the member trajectories. (a) Rectangle captures a boat moving towards
bottom left in the video. (b) The peaks correspond to left and bottom directions (p to 3

2
p out of ½0; 2p� range). Interest point trajectories are shown in red

with blue end points. (For interpretation of color mentioned in this figure the reader is referred to the web version of the article.)
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The illustration for this feature is showing the population
in the eight clusters, similar to the texture feature.

3.5. Feature matching

To compute feature similarity, we propose a common
approach for all the above-mentioned features. The feature
representation of set of clusters used here is similar to the
signature representation presented in [25]. A signature S is
defined as a set of C clusters fðmi;wiÞj1 6 i 6 Cg, where
each cluster is represented by the mean feature vector mi,
and the population of feature points wi. To determine the
similarity between these signatures, Earth Mover’s Dis-
tance (EMD) [25] has proven to be quite useful in finding
the dissimilarity between signatures. Previously, EMD has
been successfully used for region based image retrieval
[25,5]. More recently, EMD has been used for matching
the texture patterns [27] and for classifying texture and
object categories [28]. Optimal EMD is computed based
on a solution to the transportation problem [29] and pro-
vides the cost required to map one signature to the other.
For two signatures P and Q, this distance is given by,

EMDðP ;QÞ ¼
Pm

i¼1

Pn
j¼1dijfijPm

i¼1

Pn
j¼1fij

; ð1Þ

where, dij is the distance between two cluster representa-
tives mi and mj. This distance is computed as an L2-norm
of the difference between mean feature vectors. fij is the
flow which depends on the population wi and wj of the
clusters. These terms are governed by following
constraints:

fij P 0; 1 6 i 6 m; 1 6 j 6 n;Xn

j¼1

fij 6 wpi
; 1 6 i 6 m;

Xm

i¼1

fij 6 wqj
; 1 6 j 6 n;

Xm

i¼1

Xn

j¼1

fij ¼ min
Xm

i¼1

wpi
;
Xn

j¼1

wqj

 !
:

The cost computed by EMD is transformed to the similar-
ity by,

simðP ;QÞ ¼ exp �EMDðP ;QÞ2

2r2

 !
: ð2Þ

This feature matching approach provides the basis for
determining the degree of similarity between two volumes
from two different videos. The proposed feature matching
and the following video matching modules are not depen-
dent on the specific features we have used. Other types of
features like color correlograms, wavelet responses etc.,
can also be incorporated easily.
4. Volume based video matching

This section explains the method used to determine sim-
ilarity between two given videos. In this framework, it is
desirable that the matching technique should be able to
handle partial matches between videos. For instance, in
case of two very similar foreground objects observed in
two dissimilar backgrounds, the system should be able to
generate a high similarity score. Different parts of the scene
are captured by volumes and corresponding set of features
computed from each of these volumes represent its con-
tents. To generate the partial match between videos, we
can use the features similarities for volume correspondence.
These individual volume correspondences can then be com-
bined to recover the final video matching score. A model
based on maximum matching in bipartite graph is consid-
ered suitable for this problem because it directly maps to
the above-mentioned scenario of partial matching.

A video can be presented as a set of volumes given by,

fv11; v12; . . . ; v1mg � V 1;

fv21; v22; . . . ; v2ng � V 2;

where, v1i represents volume i in video V 1, and m & n rep-
resent the number of volumes in video V 1 and V 2, respec-
tively. Note that the set of volumes can be a proper
subset of the complete video shot. A part of the video
can be excluded from this set when there is very low texture
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in that section. We incorporate only the color feature of
that region. We have observed that this does not affect
the results severely in most cases. For every volume in a vi-
deo we compute a set of features as explained in Section 3.
Let there be K different types of features computed for each
volume. Then for any feature k ð1 6 k 6 KÞ, we have the
following two sets of descriptors, one for each video,

F k
1 ¼ ff k

11; f
k
12; . . . ; f k

1mg;
F k

2 ¼ ff k
21; f

k
22; . . . ; f k

2ng:

The size and dimensionality of each feature descriptor f k
ij

depends on the type of feature k. For every feature k, we
also have a function that provides a degree of feature
similarity

0 6 simkðf k
1i; f

k
2jÞ 6 1: ð3Þ

In case of EMD, Eq. (2) provides this similarity function.
For the current feature k and videos V 1 and V 2, this metric
is used to recover a complete similarity matrix Sk

12 of size m
by n. Note that every element of this matrix represents the
similarity between features of two particular volumes, one
from each video, such that

Sk
12 ¼ simkðf k

1i; f
k
2jÞ; i�f1; . . . ;mg; j�f1; . . . ; ng: ð4Þ

For K different features we have K corresponding similarity
matrices. We also improve the credibility of each entry in
the matrix Sk

12 by suppressing noisy volume matches. If
the two volumes have significantly different temporal
length, then we mark that entry as dissimilar. For volume
i in video V 1 and volume j in V 2, the condition is checked

jLðv1iÞ � Lðv2jÞj
maxðLðv1iÞ; Lðv2jÞÞ

6 e; ð5Þ

where, Lðv1iÞ provides the temporal length of volume i in
video V 1 and e is the maximum percentage of size difference
allowed.

The similarities from multiple features are combined
into a single similarity matrix S12 which captures the com-
plete similarity. This is done by computing a linear combi-
nation of of K different similarity matrices.

S12 ¼
XK

k¼1

Sk
12wk; ð6Þ

where, S12 is the final volume similarity matrix between vi-
deo V 1 and V 2, and wk represents the normalized weight as-
signed to feature k, such that

PK
k¼1wk ¼ 1. These weights

are computed through empirical evaluation and represent
the confidence in each feature. In our current experiments,
we manually assigned the weights as 0.3 for color, 0.25 for
texture, 0.3 for interest point descriptor, and 0.15 for mo-
tion feature. For a more extensive set of features along with
an annotated dataset one could use boosting techniques
[30] to learn the feature weights automatically.

The last step is to use the similarity matrix S12 to com-
pute the volumes correspondence between the two videos.
This is done by employing a graph theoretic solution where
we construct a weighted bi-partite graph as shown in Fig. 7
to model the two videos. The volumes form the vertices and
the feature similarities between them are used as edge
weights. These edge weights are obtained from the corre-
sponding entries of the similarity matrix S12. The volume
correspondence is obtained from the maximum matching
in this bi-partite graph. This is achieved by using the Kuhn
Munkres [31] algorithm. The mean of edge weights
between the corresponding volumes is used to compute
the final video matching score between videos V 1 and V 2.
5. Experimental results

Several experiments were performed to verify the effec-
tiveness of the proposed framework. Section 5.1 presents
some implementation details along with the results of vol-
ume extraction. An application of the proposed framework
for the task of content based video retrieval is presented in
Section 5.2. We also compare our approach with two base-
line methods, and present qualitative and quantitative
analysis of the retrieval.

We have performed experiments on a dataset of 337 vid-
eos obtained from TRECVID 2005 Explore BBC Rushes
[32] and online video archives including Google Video
[33] and BBC Motion Gallery [34]. There are four main
categories of objects present in these videos including
boats, cars, airplanes, and tanks. There are 74 boat, 80
car, 148 airplane, and 35 tank videos in the dataset. Key-
frames from these videos are presented in Fig. 19. There
is a significant amount of variation in viewpoint, motion,
size, and appearance of objects in these videos. In addition,
there is no restriction on type of camera motion, therefore,
stationary, moving, and zooming videos are used. All these
variations in the dataset makes it very challenging for the
task of content based video matching. Many of the original
videos contained multiple shots and there was no shot
boundary information available. As the proposed frame-
work is applicable to the individual shots only, therefore,
the shot boundary detection was performed manually for
the experiments. Automatic shot boundary detection is
outside the scope of this work and available specialized
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techniques [35,36] can be used for this purpose. Typically,
the length of video shots used in our experiments lies
between 150 and 250 frames. Also note that since our
method relies on motion segmentation, the contents of
the video should depict significant motion; otherwise, the
matching of videos reduces to matching of keyframes.
5.1. Volume extraction

The accuracy and reliability of video matching depends
on the quality of the volumes extracted by the method
explained in Section 2. The quality of a volume can be
gauged by the tracking accuracy of spatial regions detected
in each frame. Since the regions are tracked using reliable
interest point correspondences, the quality of region track-
ing was noticed to be good. Fig. 8 presents the tracking
results of the foreground object from three different videos
along with the corresponding volumes. The regions shown
in this figure are correctly tracked and they retain the same
label (color) until the last frame. Similar observation was
made for many other videos in our dataset. Fig. 3c shows
tracking of multiple regions in another video. The pro-
posed approach also handles the cases of region splitting
and merging. One such example is shown in case of air-
plane video in Fig. 8. In the second frame, two different
bounding boxes are shown on the airplane. This is because
two spatially isolated regions were detected. We are able to
Fig. 8. Volume extraction from three input video shots. Each row contains th
bounding box represents one of the several regions being tracked in each video.
tracking. We are also able to handle split and merge in case of two regions be
yellow label) contribute to the airplane volume shown on the extreme right. (F
the web version of the article.)
assign the same (yellow) label to both regions because they
split from one region in the earlier frames and then merge
again into a common region in the following frames. The
two pass correspondence algorithm presented in Section
2.3 discusses the details.
5.2. Video matching for retrieval

We have applied the video matching framework for con-
tent based video retrieval. The matching score is used to
rank the videos retrieved from the dataset. The method
presented in this paper is fully automatic and does not
require any training. This proves to be a great advantage
towards automatic structuring in a large database of unor-
ganized videos. These databases with no content annota-
tion or labeling can benefit from such kind of content
based matching for better organization and indexing.

In our experiments we initiate the retrieval using a query
by example. Other approaches using query by name, query
by expansion, etc. are out of the scope of this work. Given
a query video, volumes and corresponding features are
extracted using the proposed approach. In addition to
the features from the volumes a color feature from the
residual background is also used. It covers the low textured
background region of the video that does not belong to any
volume. The color feature from this region is handled like
that of any other volume during the matching stage. These
ree sample frames from the video along with the extracted volume. Each
The consistent color of the bounding box represents the accuracy of region
longing to the airplane (second frame). Both of these regions (with same
or interpretation of color mentioned in this figure the reader is referred to
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features are then compared against the features of other
videos in the dataset. The matching score generated from
each of these comparisons is used to rank the retrieved vid-
eos. Most similar video with the highest score is ranked
first followed by the next most similar one and so on.
The values of matching scores are normalized within the
[0,1] interval. The highest similarity is represented by 1
and the lowest by 0. In our experiments we have used the
top 100 returned videos for quantitative analysis of our
framework. We argue that an optimized indexing tech-
nique is outside the scope of this paper. The purpose of
our experiments here is to evaluate and prove the strengths
of the proposed content based matching approach. We per-
form volume and feature extraction for the dataset offline,
and at the retrieval time the feature matching and volume
correspondence is performed against the query video.

Fig. 9 presents a sample output of the video retrieval for
three query videos with the corresponding top 5 retrieved
videos. Most of the retrieved videos represent similar type
of foreground objects and background scenes. However, a
very few of the retrieved videos appear to have objects of
different types and that is because of high similarities in
object motion and the background appearance. For
instance, in case of the boat query video in Fig. 9, a tank
video is retrieved at the end due to this reason.

The dataset used for our experiments did not have any
ground truth annotation available for the video similari-
ties. The idea of video similarity is dependent on many fac-
tors like appearance, type, and motion of foreground and
background regions. Different people might have different
perception of video similarity between two given videos.
Hence, we asked five users from different backgrounds to
Fig. 9. A snapshot of video retrieval. (a) Keyframes for three different
help us with the annotation of similarity between videos
in our dataset. They were asked to mark two videos similar
if they thought that they contained similar semantic con-
tents. For a given query video, the user annotates every
retrieved video shots as similar or not similar. After looking
at the query video, the user watches the retrieved videos
one by one and provides the respective annotation. A snap-
shot of the annotation tool used for this task is shown in
Fig. 10.

5.2.1. Qualitative analysis
For the qualitative analysis of the results of our experi-

ments we present the top 10 most relevant videos retrieved
for different queries. Fig. 11 shows one example where the
camera follows the car. Fig. 11c shows keyframes from the
top 10 ranked videos after the retrieval is performed. All of
these video shots were marked similar to the query video by
the users except for the airplane and boat videos. The video
containing a tank was marked similar by some but not by
others. Fig. 12a presents another query containing an air-
plane that has just taken off from the ground. Fig. 12c lists
the top 10 ranked results for this query. All of the retrieved
videos contain moving airplanes except for one. It should
be noted that in some of these videos the viewpoint of
the airplane is very different. For instance, in the third
ranked video here, also shown in Fig. 13, there is significant
variation in the airplane’s size and view. The SIFT descrip-
tors from different frames (views) contribute to the respec-
tive volume features and are very useful for matching
objects even when the views are similar only for a short
interval. This signifies the usefulness of our approach
where we extract complete spatiotemporal volumes instead
queries, and (b) the top 5 ranked retrieved videos for each query.



Fig. 10. Software tool used for annotation of videos. The user is first
shown a query video and then the retrieved videos are shown in a
sequence. The user labels each video as Similar or Not Similar to the
query.
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of relying on a single or multiple keyframes that could miss
some of the views. Fig. 16a shows the input query video
where a tank moves across the field in a stationary camera.
Fig. 16c presents keyframes of the top 10 ranked videos.
Note that our approach successfully matches the videos
Fig. 11. Video retrieval result. (a) Frames of the input query video. (b) A com
keyframes. The proposed volume based (blue) method produces higher precisio
videos. (For interpretation of color mentioned in this figure the reader is refer
with quite different types and views of the tanks. The use
of a wide variety of features including color and interest
point features helps make this possible. Interest point
descriptors capture the features on the object that help
identify the same type of objects. There are two incorrect
matches in this case and they occur because of background
similarities. Similarly, results for two more queries are
shown in Figs. 17 and 18.

5.2.2. Quantitative analysis

We also performed quantitative analysis of the video
retrieval experiments. For a retrieval system the most use-
ful performance measures include precision, recall, and
average precision. These measures are defined as:

Precision ¼ fSimilar Videosg
T
fRetrieved Videosg

fRetrieved Videosg ;

Recall ¼ fSimilar Videosg
T
fRetrieved Videosg

fSimilar Videosg ;

Average Precision ¼
Pm

i¼1PrecisionðrÞdðrÞ
fSimilar Videosg ;

where d is the binary function on the relevance of the given
rank r. The quality of retrieval ranking can be gauged by
the average precision value. This metric favors the relevant
videos to be ranked higher. It is an average of the precision
values obtained after every video is retrieved. For every
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red to the web version of the article.)
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Fig. 12. Video retrieval result. (a) Frames of the input query video. (b) A comparison of performance against two other approaches which are based on
keyframes. The proposed volume based (blue) method produces higher precision values. (c) Keyframes of the top 10 similar videos out of the 100 retrieved
videos. (For interpretation of color mentioned in this figure the reader is referred to the web version of the article.)

Fig. 13. Note the change in size and viewpoint of the tracked (red label) airplane through the video shot. The extracted volume corresponding to the
airplane captures all these different views and can be very useful in matching an airplane with only one of the views. (For interpretation of color mentioned
in this figure the reader is referred to the web version of the article.)
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retrieval query we compute the average precision value
using the similarity annotation marked by the user.

We randomly selected five query videos. As explained
earlier, five users provide similarity annotations between
the query video and the retrieved videos. Table 1 presents
average precision values computed for different users and
query videos. For each user we also compute the mean
average precision over the five queries that he/she has
annotated. This provides us a measure of the quality of
retrieval over a variety of query videos analyzed by differ-
ent users. Only average precision is not sufficient to per-
form a meaningful evaluation because it provides
information about only one query. For example, Table 1
shows that the average precision values for User4 varies
between 0.49 and 0.77. The mean average precision values
shown in the last column of the table are consistent for sev-
eral users. We get the final values between 0.68 and 0.70
which seem to be more reasonable for a retrieval system
than 0.49 average precision noted for video18. Fig. 17
shows query video 18 with 0.59 (by User1) average preci-
sion as shown in Fig. 14. The average precision falls to such
a low value mainly because of low quality of features from
the boat. Due to the strong similarity of the backgrounds,
some videos with airplanes are matched to this boat video.
Note that this is a more challenging query video and the
other two approaches perform even worse with 0.34 and
0.28 average precisions as shown in Fig. 14.

Another interesting observation can be made from
Table 1 regarding the variation in the interpretation of
the video similarity by different users. For these five que-
ries, although there were some minor differences in the
interpretations, but we did not observe any significant dis-
crepancy in any particular user’s annotation. For instance,
the maximum variation in the average precision value for a



Table 1
Mean average precision computed for our method using several query videos shown in Figs. 11, 12, 16, 17, and 18. The ground truth is annotated by five
users for our experiments

Annotator ID Average precision Mean average precision

Video20 Video18 Video51 Video117 Video5

User1 0.69 0.59 0.75 0.71 0.74 0.70
User2 0.70 0.56 0.75 0.71 0.75 0.69
User3 0.68 0.61 0.72 0.69 0.76 0.69
User4 0.71 0.49 0.71 0.70 0.77 0.68
User5 0.71 0.55 0.77 0.72 0.76 0.70
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Fig. 14. The performance of the proposed and the two baseline
approaches is compared using the average precision values for five queries
shown in Figs. 11, 12, 16, 17, and 18. The proposed volume based
approach performs better for a variety of different queries as shown here
with higher average precision value.
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particular query video (video18) is 12%. This is a reason-
able amount of variation and tells us that the users perceive
the matching videos in our dataset similarly. We can also
use this degree of variation to detect any abnormal annota-
tion by a particular user and video combination. The out-
lier annotation will be detected if there is large (greater
than 50%) variation from other user’s annotation of the
same video.
5.2.3. Comparison

We have compared our approach with two baseline
methods to analyze the significance of using the spatiotem-
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Fig. 15. This figure presents the effects of different combinations of features o
chosen based on different weights of these features. It was found that the be
features.
poral volumes and their features. Both of these approaches
use a keyframe to represent the entire video shot and we
choose the middle frame for this purpose. The first method
is based on the global visual features computed for the
complete frame. The second method relies on color seg-
ments based visual features. Mean shift color segmentation
algorithm [37] is used for this purpose. The features com-
puted in both of these approaches include a 3D HSV color
histogram with (18,3,3) bins and an edge orientation histo-
gram in eight directions. For the second method we also
used the region size to prune out noisy region matches.
The technique for region correspondence is exactly the
same as the one used for volume correspondence as
described in Section 4.

Similar to our approach, we also compute the precision,
and average precision values corresponding to the retrieval
from these approaches. Fig. 11b shows the precision vs
rank curves for the three approaches in case of the car
query. Our approach (blue circles) clearly outperforms
the other two approaches by showing higher precision
and recall values. Similarly, the precision curves in Figs.
12b, 16b, 17b, and 18b clearly show the superior perfor-
mance of the volume based approach. Since our criteria
for better performance is the quality of ranking, it should
therefore be noted that the curves for the volume based
approach show more relevant videos in the top ranked
results. Fig. 14 clearly shows that the volume based
approach presents higher average precision values and out-
performs the other two approaches. This supports the
claim that the proposed approach is able to handle varia-
tions in object and background appearance, views, motion,
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0 20 40 60 80 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rank

P
re

ci
si

on

Color segments based
Global feature based
Volumes based

Fig. 16. Video retrieval result. (a) Frames of the input query video. (b) A comparison of performance against two other approaches which are based on
keyframes. The proposed volume based (blue) method produces higher precision values. (c) Keyframes of the top 10 similar videos out of the 100 retrieved
videos. (For interpretation of color mentioned in this figure the reader is referred to the web version of the article.)
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Fig. 17. Video retrieval result. (a) Frames of the input query video. (b) A comparison of performance against two other approaches which are based on
keyframes. The proposed volume based (blue) method produces higher precision values. (c) Keyframes of the top 10 similar videos out of the 100 retrieved
videos. (For interpretation of color mentioned in this figure the reader is referred to the web version of the article.)

374 A. Basharat et al. / Computer Vision and Image Understanding 110 (2008) 360–377



0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rank

P
re

ci
si

on

Color segments based
Global feature based
Volumes based

Fig. 18. Video retrieval result. (a) Frames of the input query video. (b) A comparison of performance against two other approaches which are based on
keyframes. The proposed volume based (blue) method produces higher precision values. (c) Keyframes of the top 10 similar videos out of the 100 retrieved
videos. (For interpretation of color mentioned in this figure the reader is referred to the web version of the article.)
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etc., in a better way and produces superior video matching
results.

5.2.4. Feature combinations

We also performed experiments to analyze the signifi-
cance of different types of features used for matching. As
described in Section 3, there are four different types of vol-
ume features we have used in this framework including
color, texture, interest point descriptor (SIFT), and motion
features. We observed that SIFT feature was very useful
for matching objects with variations in size and pose. Fea-
ture performance was initially analyzed individually and
then in combinations. Fig. 15b shows four precision recall
curves with the best rankings achieved by All features. The
features were combined using the method explained in Sec-
tion 4. Similarly, Fig. 15c shows that All features give the
best performance with the highest value of average preci-
sion. Individual precision recall curves for color and tex-
ture features have been omitted to make the figure clear,
however, average precision values are shown. It is clear
from the figure that the combination of conventional Color

& Texture features show limited performance. However,
after incorporating SIFT and motion features extracted
from the video volumes, we achieve a higher level of perfor-
mance in video matching. The usefulness of these features
have been observed and explained in the retrieval results
presented here.
6. Conclusions

In this paper, we have proposed a novel and robust
video matching framework by analyzing properties of spa-
tiotemporal volumes in videos. Volumes are constructed
based on the clustering of the interest point trajectories.
Multiple features are extracted to model the appearance
of the volumes, including color, texture, motion, and
interest point descriptors. Similarity between two videos
is computed by solving the maximum matching problem
of the graph formed by the volumes. Utilizing the pro-
posed video matching framework, we have achieved very
promising and competitive performance in video matching
for retrieval.

In the current form, our framework focuses on the
importance of spatiotemporal volumes and the related fea-
tures to match the videos. We feel that the particular com-
bination of the color, texture, motion, and interest point
descriptors based features can be crucial for different que-
ries. One possible approach for improving the feature com-
bination is relevance feedback by the user. In future, we
plan to explore relevance feedback for this task. In addition
to this, it can also be applied towards reducing the semantic
gap between low level feature matching and higher level
video matching. Another interesting future direction is to
study the interaction between different volumes within a
video. This can provide useful information regarding differ-



Fig. 19. A snapshot of our dataset that includes 337 videos comprising of 74 boat, 80 car, 148 airplanes, and 35 tank videos. The significant variation in
the object appearance within each category makes this dataset very challenging.
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ent types of events and activities being performed in a given
video.
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