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We compare features and classification methods to locate decidu-
ous trees in images. From this comparison we conclude that a back-
propagation neural network achieves better classification results
than the other classifiers we tested. Our analysis of the relevance
of 51 features from seven feature extraction methods based on the
graylevel co-occurrence matrix, Gabor filters, fractal dimension,
steerable filters, the Fourier transform, entropy, and color shows
that each feature contributes important information. We show how
we obtain a 13-feature subset that significantly reduces the feature
extraction time while retaining most of the complete feature set’s
power and robustness. The best subsets of features were found to be
combinations of features of each of the extraction methods. Methods
for classification and feature relevance determination that are based
on the covariance or correlation matrix of the features (such as eige-
nanalyses or linear or quadratic classifiers) generally cannot be used,
since even small sets of features are usually highly linearly redun-
dant, rendering their covariance or correlation matrices too singu-
lar to be invertible. We argue that representing deciduous trees and
many other objects by rich image descriptions can significantly aid
their classification. We make no assumptions about the shape, loca-
tion, viewpoint, viewing distance, lighting conditions, and camera
parameters, and we only expect scanning methods and compression
schemes to retain a “reasonable” image quality.  © 1999 Academic Press

1. INTRODUCTION

detection of deciduous trees in unconstrained images. For o
work we use images found on line, like those in Figs. 10 anc
11. These images demonstrate that we cannot make assumpti
about the shape and location of deciduous trees in images, t
viewpoints or viewing distances, the lighting conditions, or the
cameraparameters. Likewise, we must allow imperfect scannir
methods, lossy compression schemes, and other postprocessi
with the only constraint that the resulting images retain a “rea
sonable” quality and are not unreasonably distorted.

1.1. Previous Work

Previous work can be grouped into four basic categories. Fc
each category we briefly mention representative approaches.

Remote sensing.The remote sensing community has a con-
tinuing interest in terrain classification [26, 27]. Their work is
similar in that they too have to deal with the fusion of multi-
modal information. On the other hand, their work differs in that
images are obtained by the same camera and through a fixed il
age formation process. Images are taken from a fixed viewpoit
and viewing distance. But most significantly, they use electro
magnetic waves from outside the visual spectrum to help in th
classification of terrain.

Texture-based classification Work by Haralicket al. ([16])
used texture measures to classify regions of aerial and satelli
images, photographed in the visual spectrum, into eight classe

Locating trees in images is useful for processing World Wideld Residential, New Residential, Lake, Swamp, Marsh, Urbar

Web images and image and video databases and in robot n&all, and Scrub/Wood. Scrub and wood were classified togetht
gation and may generally help us with the image understandiag “Scrod” due to their visual similarity.

problem. We will probably deny a robot the attribute “intelli- Color-based classification. Work by Fischler ([10]) dealt

ggnt unless it can act and reagt In our env!ronment. TO ?Ch'%h terrain classification solely based on the color of individual
this, robots may need to perceive their environment smﬂarlyg

th h q Most certainlv it Id helo if robots h xels. He classified natural scenes into five classes: Sky, Wate

ev;/_ay ijmar:jgﬁ osot.t 0S cefr ‘Z',n ytl wou dtipl rc(; 0_3 ocks, Ground, and Live Vegetation. Work in the area of imag
anotion ofthe dilierent lypes of objects around them, AeclduoliRy iqeo retrieval describes color-histogram-based methods f
trees being one such class of objects. si ;

. |5nple retrieval.

Over the past few years we got used to searching the Worl
Wide Web for textual information. Similarly the efficient loca- Image and video retrieval. With little processing per image
tion of visual information in images and videos on the Worleve can obtain relatively meaningless but fast image descriy
Wide Web is desirable. While interfaces already exist that allatoers like color histograms. With minutes, hours, or even day:
users to specify types and shapes of objects of interest [17, 38]processing, existing computer vision systems can be used
our contribution provides a reliable tool that enables the robustate and recognize one of a small number of known object:
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134 HAERING AND DA VITORIA LOBO

Image and video retrieval methods try to provide more informations in the objects themselves, the imaging conditions, al
tion about a larger number of objects faster. Recent approacieage compression complicate the classification task.
describe images in terms of blobs [3] of coherent color and tex-The appearanceandshapeof trees, even if unoccluded and
ture attributes to facilitate the interpretation of image content from only one deciduous species, vary greatly. Images of tre
a meaningful way, or they focus on dichotomies like indoor wgary inviewpoint(frontal views, views from below trees, pano-
outdoor scenes [37] or city images vs landscapes [38]. ramic views, or aerial or elevated viewsjewing distancéany-

W i thod that f the task of locati ing between a distant forest and a number of individual leave
€ presenta method nat focuses on the task otlocating §e<qngigered a tree)ighting conditions(natural vs artificial

_ciduqus treesz yvhile significar_nly relaxing the constr:_aints on trﬂf}hting, broad daylight vs sunrise/sunset, or clear vs overca
imaging conditions under which they can be recognized. vs foggy/misty). Additionally, we have no information about the
camera parameters, and images are obtained or transformec
noisy processes such as scanning and lossy compression. |
Much of object recognition research has concerned itself witompressed images, for example, only have 256 unigue colo
the problem of locating a small number of known objects in latexture features are based on grayvalue representations of i
scene containing one or more of these objects [18, 29]. Viewages, some of the colors may collapse to the same gray lev
and object-centered approaches to object recognition tend toTtre resulting severe quantization has complex consequen
cus on the geometric arrangement of simple features obtairied many texture measures. The range of JPEG compressi
using a unique method (edges/lines from edge detectors, “achemes, their lossy representations ef 8 blocks in the im-
terest points” from interest operators, etc). These feature val@ge, and the aliasing effects at the borders of these blocks furtl
are either taken directly as “signatures” for the depicted objeatsmplicate the task for texture measures.
[1] or taken indirectly through the derivation of “invariants” Hence, we believe that no one feature, such as texture, col
from them [18, 32]. An alternative approach uses Shape-fromsize, or inferred shape, can robustly locate trees in unconstrair
methods to infer the shape of the depicted objects before redgimages. We derived 51 features from seven methods based
tering 3D models to the inferred object shape. Such descriptidhe gray-level co-occurrence matrix [16], Gabor filters [25]
are then used to generate hypotheses as to the size and oher-counting-based fractal dimension estimators [6], Fourie
tation/viewpoint of the known objects. Apart from the “Shapedransform-based features [5], color, entropy, and steerable filte
from-X,"“point correspondence,” and “segmentation” problemg@1]. The underlying methods are described in detail in [6, 1
with these approaches, they mostly assume that one of the knd@n 22, 31, 39].
objectsis present and visible in the image. Therefore, objects We use a back-propagation neural network to combine tt
are even detected and recognized in images that do not sHeatures and to obtain a consistentand robust classification. Sit
them. The uniformity of the extracted features leads to an iaxtracting the feature space representation for images take
tractable number of possible alignments between noisy featlwag time we show how a greedy algorithm can improve on goc
points in the image and potential candidates from the model(gndom selections of features. This approach produces a sut
Our approach attempts to deal with all the mentioned problemf13 features which reduces the computation time significant
through the use of richer bottom-up descriptions of images awnthile retaining the classification accuracy and robustness.
by training a classifier to tell deciduous trees from everything
but deciduous trees. Admittedly the latter class (nondeciduous-
trees) is rather large and diverse, and the classifier must genetad- Deciduous, Coniferous, and Evergreen Trees

ize well to achieve good classification. Richer descriptions oftheThe appearance of deciduous trees during spring, summ

depicted object fofm “signatu_res” even bgfore they are relatedatﬂd fall is dominated by their foliage cover. Their branches al
each other by their geometric relationships (of course geomfnaij,’—%l
foli

1.2. Object Recognition

. L . ely hidden. During the winter season, on the other hand, tl
ric combinations of such signatures can be used to enhance ge of deciduous trees is not visible. Instead their appez
power of this approach further). For example, while many O ce is now dominated by the branches that were hidden duri
chts may be green, fewer objects bOt.h are greenand EXh_'b_'t I_' & other seasons. Visually deciduous trees during winter a
d!rect!onal energy, and even fewer objectsare green, exhibit li other seasons have little incommon. Therefore, their recog
dlrect|onf';1l energy, have high entropy, few collinear SteP edg%%n during the winter season should probably be treated asa s
appear similar at.a range of scales_, etc. Our approach ams t.o. ite problem. We believe that telling deciduous trees from e
ploitthe fact thatin many cases objects are more easily |dent|f|8 reen trees (including most coniferous trees) in winter shou
by an array of different observable measures than by the mea

. o : “easier than their detection during the remaining seasons,
surements of one kind of feature at a number of “key Iocatlon\ﬁle have not attempted this so far

Our intuitive emphasis on tree color turns out to be a rathe
week cue for the detection of deciduous trees. The followin

Thus, we argue that a single measure, observation, or mota observations may help to explain this somewhat surprisir
is unlikely to enable robust recognition of deciduous trees. Varesult:

1.3. Our Approach
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e Throughout the year their leaves may take on all colors
except blue.

e Areas exposed to direct sunlight appear slightly more yel-
low and orange than their surface hues. Areas that are not ex-
posed to direct sunlight often showsggnificant biastoward
blue. In absence of direct sunlight the ambient blue of the sky
becomes the second most powerful light source, coloring all
shaded objects.

1.5. Outline

We describe the features we extract from images in Section 2,
and the classifier, used to recognize deciduous trees, in Section 3.
We show the results of that classifier on a number of different
feature sets in Section 4.

In Section 5 we contrast the performance of a number of
different classifiers and we compare a number of alternative
methods to determine the relevance of features. Finally, Section 6
concludes with a summary of all our findings.

(d) 0.1376

2. THE FEATURES ()

We classify trees usina features extracted from color ima FIG. 1. Animage containing humanmade and tree areas (a) and its Fourie
g g?r%hsform (b). An image of leaves of a tree (c) and its Fourier transform (d)

_Some _Of these features are representqtions of individual pix@kg numbers associated with (b) and (d) are the structure measure (descrit
in the image, such as the hue, saturation, and value; othersiaBction 2.1) for images (a) and (c). Images (a) and (c) are copyright Gerha
the outputs of grayimage-patch-based filters. Ortner, with whose permission they are used.

2.1. Fourier-Transform-Based Features

) . obtained very similar results for patch sizesx 6, 32 x 32,
Some measures commonly used with Fourier-transfora 4 g4x 64 pixels.

based methods are (i) wedge sampling, (ii) annular-ring sam-
pling, and (iii) parallel-slit sampling. 2.2. Gabor Filter Measures

Many textures differ significantly in the domains of the an- ) ) ) . ) _ .
nular-ring and parallel-slit measures; however, for our purpose! N€ image (in the spatial domain) is described by its 2D inten

of discriminating tree and non-tree areas, angular wedge sat function. The Fourier transform of an image represents th
pling is most expressive. Fourier transforms (FTs) of images afi@™e image in terms of the coefficients of sine- and cosine-bas
image patches containing humanmade structures often have [{#ECtions at a range of frequencies and orientations. Similarly
or wedge-shaped areas of high spectral power that pass throfitfiMag€ can be expressed in terms of coefficients of other ba
the center as shown in the image/FT pairs in Figs. 1a and iyctions. Gabor [13] used a combined representation of spa
Summing the power in fixed angular intervals for all directions iind frequency to express signals in terms of “Gabor” functions

the FT of the image lets us separate common from uncommon n

orientations in th_e image. The shaded wedge in Fig. 2 shows Foo(X) = Zai(x)gi ©, v), 1)
such an angular interval. A circular mask has been imposed so o1

that the power in the diagonal directions is not unfairly biased.

Once the power in each angular interval has been determinatigred represents the orientation amdhe frequency of the
we obtain the minimum and maximum angular power and use

the normalized ratio (max min)/(max-+ min) to determine the

amount of structure in the patch.
Larger values for this wedge measure indicate greater “regu-

larity” in some direction in the image patch; smaller values indi-

cate less “regularity,” in terms of parallel lines, bars, and edges.

Since we are comparing the ratios between the maximum and L J
minimum values, this measure is rotation invariant.

Performing the above procedure on fixed-size image patchegs. 2. The sum of the power of the Fourier transform inside the shadec
we obtain local measures of the regularity of these patches. Weical angular intervalis a measure of the “structure” present in animage patc
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complex Gabor function are sufficient to find the orientation and power of step edge
In order to handle both kinds of edges, Freeman and Adels

] X2 +y? [12] use a quadrature pair consisting of the second derivati

g (6, v) = expv(x cosp) + y sin@))) exp(— o2 ) (2)  of a standard Gaussian (the even part of the filter pair) and
Hilbert transform (the odd part of the filter pair). Instead o

Gabor filters have gained popularity in multiresolution imfinding the outputs at all orientations, the concepstering
age analysis [11, 13], despite the fact that they do not form ¥§S mtr_oduced, in which the convolu_tlon with a _fllte_r at any
orthogonal set, which means that their coefficients cannot Béentation can be synthesized by a linear combination of tt
obtained by convolution of the image with the basis functions §8nvolutions with a small basis set of filters,
is done in the next section, where we employ steerable bar and N
step-edge detectors.. Gabor-filter-based wavelets have recently Fe[”] _ Z o8 ()b (6). 3)
been shown by Manjunath and Ma [22] to be fast and useful for —
the retrieval of image data.

We convolve each image patch with Gabor filters tuned to fouising three basis and interpolating functions for the Gaussi
different orientations at three different scales. Next, the averggart and four for the Hilbert transform part of the filter, they
and range of the four measures at each scale are computedcéif locate both lines and step edges exactly (as opposed to
nally, to also make the measurements somewhat scale-invaridoyble edges detected at a line by using the methods of Car
we obtain the following four texture measures: and others). Since the standard Gaussian has a low orientat
selectivity, the kernels are only optimal in the presence of a sil
gle line or step edge in the image and blur the responses in t

resence of more than one edge or line. To improve the orient
§on selectivity, they suggested using higher-order derivatives |
Gaussians as kernels. However, even a fourth-order derivat
) of a Gaussian together with its Hilbert transform does not yiel
2.3. Steerable Bar- and Step-Edge Filters good results if Ii?1es or step edges cross each other at an

Since many humanmade structures exhibit a large amounogfier than 90. Perona [31] demonstrated a general constru
regularity in the form of parallel lines and bars, patches with fetive method to construct basis and interpolating functions ar
dominant orientations are less likely to represent trees. On #fegowed that all functions that are polar-separable with sint
other hand, the irregular leaf and branch structure of trees ofggidalé components are steerable. Examples of such functio
exhibits a greater variety of weak orientations. are shown in Fig. 3.

By binning orientations appropriately, we can userthember ~ We used this method to obtain a steerable function set for
andstrengthof different orientations in an image patch to distinquadrature pairGyy, Hyy), whereGy, is the second derivative
guish between patches belonging to humanmade scenes (whieing they-axis of an elongated Gaussian kerGgk, y, ox, oy)
usually have fewer but stronger distinct orientations) and thoseexp(—((x/ox)? + (y/oy)?)) shown in Fig. 4a andHy, is the
belonging to natural scenes. Hilbert transform ofGy, shown in Fig. 4b.

Steerable bar and step-edge detecting filters are used to obtairor multiple occurrences of lines and step edges, good angu
the dominant orientation for each image patch. The result of thigsolution (orientation selectivity) was obtained when the rati
routine is an orientation image indicating the orientation of thig was at least. Perona [31] showed an efficient method tha
predominant step or bar edge at each location. places the second derivative of the Gaussian in the real part

To measure the energy of an image (in terms of line ankde complex kernel and its Hilbert transform in the imaginan
step edges), the convolutions with two filters that are@@ of part.
phase (i.e., filters that form a quadrature pair) can be squared

and summed. To detect lines, one filter type is an even function

that can be decomposed solely into cosine terms, while for the
detection of step edges, the other is an odd function that can be .
decomposed solely into sine terms.

In order to obtain a good orientation resolution of lines and
step edges in the image, one could convolve the image with a

large number of orientations of the quadrature pair. However,
convolutions are slow, and the accuracy of such an approach
depends on (a) the sampling frequency and (b) the interpolation

of the sampled convolutions.

Canny showed [4] how the outputs of only two orthogonalic. 3. Examples of polar separable functions with sinusoidabmponent
filters (the first derivatives of a Gaussian in #@ndy directions) corresponding tay, . . ., ar.

e The average of the orientation responses at all scales.
e The average of the scales’ orientation response range.
e The range of the scales’ averaged orientation response
e The range of the scales’ orientation response range.
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distanced whose orientation i8 and whereR(-) is a normal-
ization constant that causes the entrie®¢) to sum to 1.

In texture classification, the following measures have bee
defined, see for example [5, 16]: Thagular second moment
(E) (also called the=nergy assigns larger numbers to textures
whose co-occurrence matrix is sparse,

Ny Ng

E.0) = 33 1Pl J.d.0)F

j=li=

FIG. 4. Filters used to measure the edge energy in an image. The second
derivative of an elongated Gaussian (left) is used to detect lines in the image. ItsThedifference angular second moment (DAS##8igns larger
Hilbert transform (right) is used to detect step edges in the image. numbers to textures containing only a few graylevel patches,

The n-term approximation of the function we want to steer g
can be written as DASMd, 0) = Z Pxy(n, d, 8)?,

n
=2, 03O, VeSIXCRL () ynerep, (n.d.6)= 3%, T pGi. j.d.6).

- The contrast (Con)is the moment of inertia around the co-
where thes; weight the product of thith filter basis functiom; ~ occurrence matrix's main diagonal. Itis a measure of the spree
(the coefficients of the 2D Fourier series) and the correspondifgthe matrix values and indicates whether pixels vary smoothl
interpolating functior; (note that théy; are the frequency basisin their local neighborhood,
functions of the Fourier series).

Thevaluesfos;, a;, andb; are obtained by finding the Fourier Ng—1 Ny N
series of the functioin(9), which is the integral of the product Cond. 8) = i.i.d. e
of the function with rotated versions of itself, "d.6) nX::O JX; ,X: pa.1.d.6)
li—jl=n
h(®) = /Rz Fo (X)Fo—o(x) dX, ©) Theinverse difference moment (IDM)easures the local ho-

mogeneity of a texture. It weights the contribution of the co-
where the integral ranges over all 2D spa8)(and(-) repre- Occurrence matrix entries inversely proportional to their distanc
sents the complex conjugate. Note tRat.o(x) = F(x). to the main diagonal,
Expandingh(6) as a Fourier series we can read off the fil-

ter's (2D) basis functiona and the corresponding interpolating Nt Ne!
functionsb; : IDM(d, 0) = Z Z [ p(, j,d, ).
oi = vh(v) (6) The mean (M)is similar to the contrast measure above but
b (0) = exp(v6) (7) Wweights the off-diagonal terms linearly with the distance from
the main diagonal, rather than quadratically as for the contras
a(x) = Ui_lf Fo(X) expve do). (8)
st
Ng—1 Ng Ny
Theo; terms are used only for error analysis. For details see M, 6) = Z ZZ p(, j, d, o)
[31]. n=0 j=1i=

These filters are used to obtain the oriented energy of both step li=il=n

and bar edges. Although we initially envisaged them as aiding_. . .
in the recognition of deciduous trees in winter, whenthelrleavesS imilar to the angular second moment, thetropy (H)is

all for textures that give rise to co-occurrence matrices whos
are missing, the orientation analysis also turned out to be usetll Y
for the recognition of leaves and trees in summer. sparse entries have strong support in the image. It is maxim

for matrices whose entries are all equally large,
2.4. Graylevel Co-occurrence Matrix Measures

9 9
Let p(i, j,d,0) = P(, j,d,0)/R(d,6), whereP(:) is the H(d,0)=—> "> p(. j.d.0)log(p(. . d.o)).
graylevel co-occurrence matrix (GLCM) of pixels separated by j=1i=1
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Other measures aseim entropy (SH) The principle of self-similarity may be stated as: If a bounde
setA (object) is composed dfl, nonoverlapping copies of a set
2+Ng-1 similar to A, but scaled down by a reduction factgrthen A
SHd, 0) = — Pxry(N, d, 0) log(px+y(N, d, 0)), is self-similar. From this definition, the fractal dimensibnis
n=0 given by
where pyiy(n.d,0) =321 5205 . p(i. j.d.6), differ- 5 _ logN:
ence entropy (DH) ~ Tlogr
Ng The FD can be approximated by estimatigor various val-
DH(d, 6) = = _px—y(n, d. 6) log(px_y(n. d. 6)), ues of and then determining the slope of the least-squares line
n=0 fit of (log N, /log(1/r)). The differential box-counting method

outlined in Chaudhurét al. [6] is used to achieve this task.

anddifference variance (DV) Three features are calculated based on

2Ny e The actual image patch(, j),
DV =— Z(n — DH)? Px-y(n, d, 6). ¢ the high-graylevel transform of
n=2
: o . R L N ) el = (R ) i |
Thecorrelation (Cor)measure is an indication of linear struc- L@, J), (i, j)= ,
) 0 otherwise
ture of a texture. This and the next two measures juge-
Dol Zj p(, j,d,0) anduy = Zj j>ipG,j.d,e), ¢ the low-graylevel transform of
_ _ . . 255— L, I(i,j)>255—-1L,
No—t5~Nodiin i, j — I (i (i, j) = 2
COI’(d,@): i=1 Zj:l ij(lvzjvd’g) MX*/’Ly- (’J)’ 2(’1) |(|,]) otherwise
(o2
whereL1 = gmin + (Javg/2), L2 = Gmax — (Qavg/2), andgmin,
Shade (S) Omax, @Nd gayg are the minimum, maximum, and average gra:
Ny N values in the image patch, respectively.
d.0) = i — e — uo)3p(i. . d. 6). The fourth feature is based on multifractals, which are use
S(d.9) ZI: Zj:( == py)7pd . d.6) for self-similar distributions exhibiting nonisotropic and inho-
mogeneous scaling properties. ketndl be the minimum and
Prominence (P) maximum gray levelin animage patch centered at positiop) (
letn:(i, j) =1 —k+ 1, and let\V; = (n,/N;); then the multi-
NQ Ng

. o fractal, D, is defined by
P, 0) = "> (i +] — 1x — 1y)*p(i, j.d,0).
P

Note that the directionality of a texture can be measured by r—0  logr
comparing the values obtained for a number of the above M3 umber of different values far are used, and the linear re-
sures a8 is changed. The above measures were computed atfo‘rjéssion of (lod", - A2)/ logr yields an estimate db
angles (0, 45, 90, and 135) usingd = 1. To make the mea- J Lieor gry 2
sures rotathn-mvarlant,_ we use the average and range overghe ~q 4 Measures
four orientations to obtain two features for each type of measure.

For further discussion of these graylevel co-occurrence matrixWhile the intensities of the red, green, and blue componen

measures, see [5, 16]. of a color image are highly correlated, the hue, saturation, ai
value decomposition offers a more independent representat
2.5. Fractal Dimension Measures that captures complementary information about the image.

The hue componen#) can be computed by finding the angle
between the color of a pixel and thed corner of the color
rr%riangle in Fig. 5a (see for example [19] for detalils),

The underlying assumption for the use of fhectal dimen-
sion (FD)for texture classification and segmentation is that i
ages or parts of images are self similar at some scale.

Various methods that estimate the FD of an image have been . ( x—g—b )

6 =cos ,

suggested: 2 -
r—o2+(r — -
e Fourier-transform-based methods [28], g g
e box-counting methods [6, 21], and wherer, g, andb are the intensities of the red, green, and blu
e 2D generalizations of Mandelbrot’'s methods [30]. components of the corresponding pixel.
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or nontree areas? What if a bush is actually a small tién?e

is no correct class for class border pixeldow should an image

o patch be labeled if roughly half of it depicts a tree and the othe
o half does not?

0 A related issue concerns the importance of the classificatio
result. Misclassifying a distant coniferous tree as a distant decic
uoustreeis notas severe as, for example, classifying humanma
s structures as trees.

% 6l 02 03 04 05 0f 07 08 08

3.1. The Back-Propagation Neural Net

(a) (b) We use a back-propagation neural network to arbitrate amor

FIG.5. The color triangle and the function mapping a pixel's hue to its probt—he d_lf_fere_nt features deSCI’.Iblng the_ |mage_. Some alternativ

ability of being a leaf pixel. classification methods are discussed in Section 5. Our back-pr
pagation neural network [8] has a single hidden layer and usestl
sigmoidal activation functiorb(act) = 1/(1+ exp(—act)) —

Thesaturation (Spndvalue (V)components are also definecy 5. whereactis the activation of the unit before the activation

in terms ofr, g, andb: function is applied. A single hidden layer in a back-propagatior
neural network has been shown to be sufficient to uniformly

S—1_ L min(r, g, b), approximate any function (mapping) to arbitrary precision [7].

r+g+b Although this existential proof does not state that the best ne

1 work for some task has a single hidden layer, we found on

V= §(r +g+b). hidden layer adequate. The architecture of the network is show

in Fig. 6. The back-propagation algorithm propagates the (inpu

The color-value discontinuity between magenta-red affignction values layer by layer, left to right (input to output) and
orange-red (which have maximally different feature values diaick-propagates the errors layer by layer, right to left (output t
the hue scale but appear very similar in images) complicaiegut) as shown in Fig. 6. As the errors are propagated back
the task unnecessarily. Therefore, each hue value is assignedhkénput units, part of each unit's error is being corrected.
corresponding value of a function that transforms the hue into
the likelihood of the pixel being a leaf pixel (see Fig. 5(b)). 3.2. Reducing Feature Redundancy

We also use opponent color measures that contrast the intenA
sities of red vs greemdd/(green+ «)), red vs bluered/(blue+
«)), and green vs blugy(eery (blue+ «)), where we used =
0.01 to bound the ratios.

n important consequence of our approach of combining
large number of different measures to locate tree regions in irr
ages is that it is very time-consuming if done sequentially. Par
allelism could be exploited easily at the feature and pixel leve
to produce speedier solutions.

To find the 51D feature space representation for an imag

Since leaves and branches appear as rough and “messy” aodaize 512x 512 takes just under 1 day on a 200-MHz Ultra-
at most scales at which trees can be identified, we can use the®PARC. Labeling each pixel of animage of this size as belongin
tropy of image patches to separate them from uniform, smooth,
and smoothly varying object surfacesMfax is the maximum
value in an image patch, the entropy is defined as

2.7. Entropy Measures

Vimax Feature |

Entropy= — > " h; log(h).
i=0

Feature2

Qutput 1

whereh; = n;/N is theith histogram count; divided by the =~ Feature?
total number of pixels in the image patcdR). We measure the
entropy in both the gray-value image and the orientation imag
described above; both measures are largely rotation-invariang.,qre

Output M

3. CLASSIFICATION

. Input Layer Hidden Layer Output Layer
Anumber of factors prevent zero error resulften the object

identity is unclearFor instance, should bushes be labeled as tree FIG.6. The network architecture.
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to a tree or non-tree region takes about 20 s. The eliminationfa¥m eliminating the error completely. This partly accounts fo
redundancy in the feature set is therefore an important tatthe fact that the exponential error curve does not approach ze
While finding the best set afi features for our classification as the number of features is increased. This is not to say th
problem is an intractable problem, we will present a method (irsing additional/alternative methods, we cannot reduce the er
Section 4) that can be used to determine good subsets of featuasher.

thus speeding classification.
4.2. Good Subsets of Features

4. RESULTS Transitivity does not hold for subsets of features: Given a

, . _.optimal subsetwitiN features we cannot expect that the additiol
As a means for comparison, we contrast the classificatigy,e “nest” feature not yetin the setwill produce an optimal se

results using all 51 features and those using various subsetap ize N + 1. Likewise, eliminating the “least useful” feature
features. In Section 4.4 we show how the architecture of the . - optimal set of siz&l + 1 need not produce the best
neural network affects the classification results. subset of sizeN. Determining an optimal subset df features
from the entire feature set hence requires the consideration
2N such subsets.

There is a prohibitively large number of subsets even for mod-4'2.1' A greedy algorithm. Since determining the set of fea-

erate numbers of features.. To e.stabllsh.a lower bound of perfRJrfes that enables the best classification performance is an
mance for subsets of varying size we first averaged the perff)rs

o ctable task, we have to settle for methods that can find
mance of the classifier on random feature samples. We assum . :
S 00d, but suboptimal, feature sets. One such method is a gret
that the discriminatory power of a set of features can be esti-

. . o 'Igorithm that starts from the empty set and includes the sing
mated by averaging over the differences due to initialization. ﬁqost suseful’ feature at each step (or its opposite, a greedy alg

F'g?- 7,9,17,and 18 the'averagg performance of agven featH ffim that starts with the entire set and discards the single le
setis represented by horizontal lines, while the variation Ofthe%eseful“ feature at each step). Since this strategy makes loc

solutions is shown by vertical lines. decisions it cannot be expected to find globally optimal solu
4.1.1. Random sets of featuregrigure 7 shows the errorstions. In fact we found that after a number of steps the greec
on the training set as the number of randomly selected featureglgorithm has made so many suboptimal decisions that the |
increased from 1 to all (51) features. Horizontal lines show tisllting set cannot be improved further by the inclusion of ne\
average error for the feature sets of the various sizes; vertitgatures.
lines indicate the range of errors for each feature set. ThesdVe can reduce this effect somewhat by addieteteandre-
results should form a lower bound on the performance of apjaceoperations to the algorithm that are used to check wheth
feature selection method. Difficulties with the correct label fdghe deletion or replacement of features in the current set ir
each pixel, problems with pixels on the border between tree api@ves the performance further (many classifiers perform wor:
nontree regions, and problems due to compression preveniruie presence of “distracting” and redundant features).

4.2.2. Combining random feature sets and a greedy alg

4.1. Subsets of Features

10° rithm. We ran the greedy algorithm from scratch (the empt
set) to produce a 15-feature set that achieved results equival

12f to about 31 randomly selected features. Since the performar
increases due to the greedy algorithm are significant during tl

10F first few steps of its execution we also started it from a goo

random collection of features.

The performance of a set of features varied strongly wit
the initialization of the search. Therefore, we averaged over t
performance of differently initialized searches. We generated :
o random sets containing six features. For each of the 30 sets

averaged the performance of the classifier over 10 runs. The

—|—_+_ thatachieved the best average classification results was taken

"7—4——‘—4__!__4__ starting point of an incremental greedy algorithm. As mentione

ol earlier we also checked at each step whether deleting a feat
or replacing a feature was helpful.

‘ , , , . ' , ‘ , . . Using this strategy we determined 13 features that achie

1 6 1t 18 zh}umberzg”eamsr;s % 4 46 51 a total error of 28,373 on the training set, which is only abou

3% worse than that found in the collection of all 51 feature

FIG.7. The performance of random feature sets of various sizes. ~combined (27,500). The error figures are the number

Error on training set
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o 2 3 4 5 6 7 8 9 1 1 1 absence of these features from the final 13-feature set indicat
- o L8 that without further processing they are not very useful.
Do oo ralMEmiE Efficient subsets of features, like the one used for this study
R (s [s] [ min e generally contain representatives of most types of feature e
~ 2] [2] [12] 12| 2] m s | _irf traction methods. We found that combinations of features o
21 e s P sl Tl s Bl 2] 21 different methods clearly outperform features based on only or
ST Tl el B %] [ [0] 20 50 1Y feature extraction method (e.g., using only Gabor filters).
1] ol (21 L2 ol el el 8] e 128 o Figure 9 compares the performance of random feature se
20 5ol Gel el 2 el 571 & 1 51 3 57 from Fig. 7 and the performance of the feature sets shown i
8| — — 36| — — [#] — Fig. 8 (the circles in the graph).
— |38 38 — | 37 42 42 42 40 . .
ea el B e L ! 2| — [«] — From Fig. 9 it can be seen that the performance of these 1
L0 L %] el ] 11 | 21 features is roughly equivalent to the performance of the entir
— %] L47] 1 a1 L] feature set. As we mentioned earlier, it also can be seen that t
- | Y71 performance increases taper off as the number of steps of ti
49 . ;
(£X3) — |#] greedy algorithm increases.
FIG.8. Stages of the greedy algorithm. 4.3. The Performance of the Resulting Feature Set

Figures 10 and 11 show previously unseen images with the
misclassified pixels in the entire training set of over half a miktlassification results horizontally adjacent to them. Brighter re
lion pixels. The execution time of the feature extraction staggions in the labeled images represent areas that are likely
on the other hand, is reduced from about 1 day to ubdefor depict deciduous trees and darker regions represent areas t
an image of size 512 512 pixels. are less likely to depict deciduous trees. Due to the filter widtt

Figure 8 illustrates the steps of the method for a particulaf the texture measures we do not generate labels around t
set of features. The initial six-feature set is shown in colunedges of the images where the filters have incomplete imac
0 of feature IDs (the features are numbered 1 through 51).dnpport.
the first step it was found that feature 20, which was not in the Measures of every seventh pixel of 25 training images wer
six-feature set, reduced the error the most among all features olotained and combined with labeled images to train the networl
in the six-feature set. The resulting seven-feature set is sholWate that from these 25 images we obtained well over half a mil
in column 1. In the next two steps, features 16 and 38 wedien data points. The 51D data setis about 119 MB; the 13D dat
replaced by features 15 and 37, respectively. In step 4 featasd is about 30 MB. Subsampling speeds up the training proce
8 was found to be the best addition to the existing set. In stepihout (noticeably) affecting its outcome, since neighboring
6 and 7, features 19 and 12 were replaced by features 47 ancekl locations are highly correlated.

11, respectively. The feature sets in steps 8 and 9 both achieved

roughly equally good classification. Therefore, both were kept as

possible expansions of the previous feature set. At the next ste  * 10°

(10), however, it turned out that reintroducing feature 38, which ,,|
was replaced with feature 37 in step 3, was not as beneficial &
adding feature 21 to the set. The dead Tamagotchi marks th
elimination of an alternative feature set. Finally, in steps 11 anc
12, features 40 and 32 were added to the set of features. 5

The first five of these features are based on the graylevel cc® &
occurrence matrix, the 6th is a Gabor filter measure; the 7th i
a multifractal measure; the 8th, 11th, 12th, and 13th are baseg s}
on color measurements; the 9th is based on entropy; and trg o
10th, is based on the Fourier transform. With the exception o™ | ° +
the steerable filter-based features all types of measures are re °o°° +~|—+_’_ i
resented. This confirms the need for the combination of feature |2 SURURUUOVSOIUUN URNSSUUN Flieves maveer: SEcs -
of different types for good classification.

The main reason for the inclusion of the steerable feature
measures was to facilitate the detection of branches and fork 53736 21 26 8 8 a1 6 &1
in images in the future (not used in this work). But we also Number of features
used the O_rlentat!on and edge typ'e. mfprmatlon to see if thE}@.Q. The circles in the graph show the average performance of seven featu
could contribute directly to the classification process, rather thadis obtained starting from the best six-feature set (the lower tip of the vertic:
just indirectly through the detection of branches and forks. Thee corresponding to the performance range of random feature sets of size 6

10
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FIG. 10. Test images and the corresponding classification results. The following images are from Compact Discs of Corel Professional Photos, ci
Corel Corporation, and used under license: row 1 right and row 4 left. The following image is used with the permission of the Corporation for N
Research Initiatives (http://www.cnri.reston.va.us/), with whose permission it is used: row 7 left. The following images are used with therpefdoss Frett
(http://bluehen.ags.udel.edu/homepage/plsc/plscstaff/frett. html) and Betsy Mackenzie (http://bluehen.ags.udel.edu/betsy) amsitheflel@vare Botanic
Gardens: row 9 mid left and mid right. The following images are courtesy Philip Greenspun (http://photo.net/philg): row 2 left and center, rowahcémight.
The following images are copyright Gerhard Ortner, with whose permission they are used: row 1 left and center, row 2 right, row 3 all, row 4 rightroow 5
6 left and center, row 7 center and right, row 8 all, row 9 extreme left and extreme right.
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FIG. 11. Testimages and the corresponding classification results. The following images are from Compact Discs of Corel Professional Photos, copyrigh
Corporation, and used under license: row 1 all, row 2 all, row 3 all, row 4 left, row 5 all, row 6 right, row 7 all, and row 8 all. The following image is u
with the permission of John Frett (http://bluehen.ags.udel.edu/homepage/plsc/plscstaff/frett.html) and Betsy Mackenzie (http:/Aludblesdagbetsy) and the
University of Delaware Botanic Gardens: row 4 center. The following image is courtesy Philip Greenspun (http://photo.net/philg): row 6 cdotieniFige
images are copyright Gerhard Ortner, with whose permission they are used: row 4 right, row 6 left.
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We would like to point out that some of the test images shawok significantly longer than for the back-propagation networ
trees in fall with the leaves’ colors ranging from green, throughith separate preprocessing and labeling stages, and the per
yellow, orange, and red, to a magenta-ish red. Thus the colorance on both the training and the test set was worse (see Figs
based features illustrate a typical problem the classifier hasatad 16). One of the motivating factors for the use of CNNs i
solve; color is often a useful cue, but leaves are not always grakat they provide a degree of translation invariance by sharir
and not everything green depicts leaves. weights among input units; at the same time this reduces t

The firstimage pair onthe second row in Fig. 10 shows the pewamber of free parameters (weights) and hence speeds con
formance of the approach for animage taken on a foggy day, wignce. In [20] a CNN is used for handwritten digit recognition
low contrast and low color saturation. The second image pair bnorder to reduce the number of weights in the network all unit
row four inthe same figure shows the approach’s robustness vatithe same level use a common set of weights (a convoluti
respectto scale and color. This fallimage shows trees at distankesiel) to connect them to the units of the next higher level of tt
ranging betwee 5 m and over 500 m whose colors range frometwork. Our comparison shows that this is not enough to obta
magenta to green. The output image shows that almost all geod classification results. Training a classifier on preprocess
gions were correctly labeled. Not all deciduous trees are greaaput therefore seems to be the better approach.
and not everything green is a deciduous tree; in fact deciduous
trees take most hues except those from a thin band around blu@. Linear Relationships between Pairs of Variables
The same is true for the other measures we use; they all perforna:

o : o : ovariance and correlation matrices only measoearrela-
poorly in isolation. The classifier combines these measures, to_ _ . . .
; g tionships betweepairs of variables. Therefore, methods basec
improve on the performance of the individual measures.

on them do not accurately capture (i) nonlinear relationships b
tween pairs of variables (see Fig. 12), and (ii) linear or nonline:

relationships between more than two variables at the same tin
While varying the number and kind of features has a strong

impact on the performance of the classifier, the architecture of

4.4. Neural Network Issues

the back-propagation neural network affects the performance 6
very little. The network we use for all our work has a single
hidden layer with 25 hidden units in it. This is a safe architecture. 5 o © ©,°° 0% o
Generally we found that adding more hidden layers or more oo % o ©
hidden units in the hidden layer slows the convergence while at . e S
producing little performance improvement. Twenty-five hidden ° .
units in a single hidden layer produced good results for feature T o, ° .
sets (input units) from the smallest (six-feature) set up to the full o o, o
(51-feature) set. o ° .
5. ALTERNATIVE METHODS FOR CLASSIFICATION r

AND FEATURE RELEVANCE ESTIMATION °

00 é 1‘0 1‘5 2‘0 2‘5 3‘0 3‘5 4‘0 45

Here, we discuss alternative classifiers and alternative ap-
proachesto the determination of the most relevant features. Since
the preprocessing stage is the slowest of the modules, we con-
sider classification without preprocessing in the first part of this
section.

Since the “relevance” of a feature depends on the method used
for classification, there is little benefit in using one approach
to decide on the importance of features and another approach
to classify images given these features. Therefore, we consider
linear, quadratic, and eigenanalysis techniques to both the de-
termination of good subsets of features and classification. We
show how other approaches to feature selection compare to the
greedy approach presented in Section 4.

-2 -15 -1 -05 0 05 1 15 2

5.1. Classification without Preprocessing

Wi id del ificati ithout . dt FIG. 12. The upper plot shows two variables on theandy-axes that have
€ considered classincation without preprocessing and traljz, «oyariance and yet are dependent. The lower plot shows how the sa

ed a convolutional neural network (CNN) [20] on raw imag@near relationship between the variables on xh@ndy-axes might represent
data. Unfortunately the results were discouraging. The trainingy different nonlinear properties between the variables.
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Since the values of covariance and correlation matrices do hob. Eigenanalyses
even reflect the true relation between pairs of variables, clas- . . : . .
e : A global or class eigenanalysis of the covariance matrices i
sification methods that are based on these matrices are funda- . . ; .
. useful to describe the features but it is not designed to classi
mentally flawed and we should not be surprised to see that their . . .
C . eature vectors into their corresponding classes and hence, oft
performance is inferior to that of the suggested nonlinear classi- . e
. . : . . erforms poorly as a basis for classification. Recent successf
fier (see Fig. 14). For example, a cubic relationship between twg

variables might make them linearly dependent even though t%pep_llcanons of eigenanalyses for classification, e.g., [29], nor

. . . . . ; alize images of training and test objects prior to the classifice
nonlinear relationship might contain valuable and exploitable 2 S . . .
: . o fon to maximize the likelihood that differences in the description
information for the classification problem at hand.

are indeed due to differences in the identity of the objects. In ou
case it is unclear how to standardize/normalize the appearan
of an arbitrarily shaped tree of unknown size in arbitrary images
If we restrict ourselves to linear classification methodgspecially if it has not already been segmented or recognized
Fisher's Linear Discriminant Functions (LDF) [9], Maximally In classification, therefore, we are mainly interested in finding
Discriminating Functions [24], or the Best Linear Discriminanthe features that maximize thigferencedetween the individ-
Function [35] can be used. To determine the redundancy and caats of the different classes. For this purpose the most discrin
tribution of features we can use thetest or the Wilks test [34] inating features can be obtained by maximizing the ratio of the
or the discriminant functions themselves. Fisher’s Linear Digetweenandwithin-class sums of squares and products matrice
criminant Function is widely used to classify an observation inf@etails in [2, 15, 23, 34]). Unfortunately, this method degener
one of two classes. An observation is taken to belong to class &iiés to Fisher’s Linear Discriminant Function in the two class
case (e.g., trees and non-trees, as in our case). Therefore, -
— —\Te-1 1_  _ 2 roblems of Fisher’s LDF with the inverse of near-singular ma-
(X1 = X2) Sy (X B E(Xl + X2)> g In(‘_> 'lcarices are inherited by the eigenanalysis of the class d%fference

5.3. Linear Analysis

1

and to belong to class 2 otherwise. Harelenotes the mean of
clasd, Sis the pooled sample covariance matkixs the obser-
vation to be classified, and feflects the prior information we  From the previous sections it is obvious that the discusse
have about the likelihood of the observation belonging to élassalternatives all suffer the same problem when (as in our case) tf
Linear classifiers are inferior in power to nonlinear classifiersprrelation/covariance matrices are nearly singular. Therefor
and both the linear classifiers and the tests for redundancy requiee asked the question: How powerful are features that allov
the calculation of the inverse of the class or pooled covarianitee stable calculation of the inverse of the data set’s correlatio
matrices. Since our set of features is véinearly redundant, matrix?
the associated covariance matrices are too singular to enable thEhe answer is “Not very.” Features for which linear classifiers

5.6. Minimally Correlated Features

stable computation of their inverse. can be used perform roughly as well as randomly selected featu
sets of the same size.
5.4. Quadratic Analysis We estimated the condition number of the correlation matrice

g_sing the 1-norm LINPACK condition estimator. This measure
is an indication of the relative distance from a given correlatior
matrix to the set of singular matrices. The condition numbel
_ _ _ — = estimate is a defensive approximation; i.e., the actual conditio
XS = S )X = 2X(S; e — 5, a) + (S, e — Sy ) number is likely to be at Igzst as bad.
< || ) <7?2> Figure 13 contrasts the performance (error on the training se
>In| — ) +2In| = . .
ISy 1 of the feature sets that have the least singular covariance mati
and the average performance of random feature sets of sizes
and to belong to class 2 otherwise. As befaredenotes the 3, 6, and 11. The numbers in the right graph are the estimates
mean of clas$, S; and S, are the pooled sample covarianceéhe covariance matrices’ condition. Estimates near one indica
matricesx is the observation to be classified, andeflects the sets of (linearly) uncorrelated variables, while larger estimate
priorinformation we have about the likelihood of the observaticspproach the set of singular covariance matrices. The rapid il
belonging to class. crease in the singularity measure indicates that combinations
While quadratic discriminant functions [36] generally yiel®0 features or more will cause even the set of features with th
better results than linear discriminant functions, they too réeast singular covariance matrix to become too singular to allov
quire the calculation of the inverses of the near-singular clabe stable computation of its inverse.
covariance matrices. Therefore, they too are computationallyFrom the left graph, we can see that features for which lin:
too unstable to allow their use for a feature redundancy analyear classifiers can be used perform slightly better than random
or classification. selected feature sets of the same size. Increasing the feature

According to the quadratic discriminant function an observ
tion is taken to belong to class 1 if
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x10* tion results on this training image that are equivalent to thos
1000 —_— . :
achieved by the back-propagation neural network.
When comparing the performance of both networks on ar
other training image, as in Fig. 15, and a previously unseen (te:
image, as in Fig. 16, we can see that the performance of t

12
...................................... 1 S00F

8001

""" oo 8 ‘§ 700¢ convolutional neural network is inferior to that of the back-
u‘g; 8t } E eool propagation neural network. _ _ 3
P Jr £ Since the performance of the linear and quadratic classifie
E’ B 6 & 500 is significantly worse than that of the nonlinear classifiers, w
§ 1 » £ ol did not include their classification results in these figures.
............ ++ 5
(&)
2 s00r 5.8. Each Method in Isolation

200¢ As indicated in the Introduction the 51 features are obtaine

using seven different methods. Since any single feature on
own has very little discriminatory power we compare each c
o 5 10 15 20 O =2 @ 41 s theunderlying seven methods in turn. Figure 17 plots the cla
Number of Features Number of Features sification error on training images on tlgeaxis for each of the
FIG. 13. The performance of feature sets most suitable for linear analyégve'n underlying feat.ure extraction methOds in isolation on tt
(left) and the corresponding estimates of their covariances’ singularity meas¥ré@Xis. The numbers in parentheses indicate the number of fe
(right). tures derived from each feature extraction method. We can s
that the methods in isolation are all inferior to feature sets of tf

. ) same size drawn at random from the entire feature set (dott
size to more than 10 features yields no further performance in-

crease. Note that the peak performance of sets selected this way
is about 20% worse than that of the nonlinear classifier (the min-
imum average error on the training set is 33,798). Dotted lines
show the performance of random feature sets of the indicated
size. The solid horizontal lines show the average performance
of the feature sets corresponding to the least singular covariance
matrices; the solid vertical lines show the performance variation
due to initialization.

Fortunately we can circumvent the problems with singular
covariance and correlation matrices by using methods that do not
require their use (such as a back-propagation neural network).

The 13-feature set that produced the results in Figs. 10 and 11
have a condition number estimate 09307x 10.5, indicating
that the 13-feature set is highly linearly redundant. Since the
set achieves good classification and deleting any of the features
from it deteriorates the results noticeably, we see that linear re-
dundancy is not useful for deciding on the importance of features
for a nonlinear classifier.

100}

?L ’

5.7. A Comparison of Classification Methods Iincurelssifer Quadratic classifier

Figure 14 shows the performance differences between linear,
quadratic, and nonlinear methods for a sample training image.
The results for the linear and quadratic classifiers in Fig. 14 are
based on the 20-feature set determined in the redundancy anal-
ysis described earlier. While other sets might theoretically have
better discriminatory powers, the inverses of their covariance
matrices cannot be computed stably and their performance is 5
thus unreliable (and likely to be worse). Back-prop. NN

The .results of the Imeajr. and quadratic clg55|f|er§ Ir_1 Flg' HG. 14. Asample training image and the segmentation results obtained usi
are typical for these classifiers and reflect their discrimininatog¥rious classifiers. The image is copyrigt Gerhard Ortner, with whose permissi
power. The convolutional neural network achieves classificiais used.

Convolutional NN
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Back-prop. NN Convolutional NN
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FIG. 17. Performance of each method is isolation.

lines). The performance of the different methods is roughly pro
portional to the number of features derived from them, giving
rise to the apparent strength of the 28 GLCM-based feature se
Comparing its performance with that of random feature sets c
similar size we can see that the 28 GLCM features are inferio

FIG.15. Another training image and the corresponding segmentation resul@. & random collection of 26 features. Therefore, it is obvious

Courtesy Philip Greenspun (http://photo.net/philg).

Back-prop. NN Convolutional NN

that this approach does not allow us to determine good featu
subsets and to optimize our classification performance. Since v
are interested in the best classification given all features we ca
not judge the importance of features and methods by measurit
their power in isolation.

5.9. Leaving One Out

It would therefore make more sense to consider a large fe:
ture set and to measure how much the performance of the enti
set of features deteriorates as various features are left out. Sin
the presence or absence of a single feature is virtually unnotici
able, we measure the change of the performance if all feature
derived from one method are omitted (the horizontal axis o
Fig. 18 shows the omitted method). Although from Fig. 18 it
seems that the omission of the GLCM-based features causes
largest deterioration in the error rate, this effectis almost entirel
due to the large number of features based on that method. T!
performance of random sets shows that the GLCM features a
neither particularly useful nor particularly redundant. Another
observation that can be made from this graph is that the elin
ination of the features of some types of measures improves c
the performance of the entire set of features. While this indi
catesthatthe complete set is redundant it does not skdvich
features to omit in order to maximize the performance.

6. CONCLUSIONS

FIG.16. Atestimage and the corresponding segmentation results. The imageVVe represent images using 51 measures from seven func

is copyright Gerhard Ortner, with whose permission it is used.

mental feature extraction methods based on color, the graylev
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x10* 6.3. Random Feature Sets

For k features we havek2possible subsets of features anc
transitivity cannot be used to build optimal sets of site-1
from optimal sets of siz&\ (likewise we cannot eliminate the
least important feature to obtain sets of side- 1 from sets
of size N). However, we have shown how to find good featur
sets by using a greedy strategy on good random collections
features (see Section 4.2.2).
2t The best 13-feature set, found using a greedy strategy, sp:
all but one feature extraction method and outperforms all tf
methods in isolation (even the combined set of 28 GLCM-base
features). Generally, random collections of features from diffe
ent methods out perform equally sized feature sets of one tyy

@) Gy 4y e @) B @ @) (50 6.4. Back-Propagation Neural Networks
GLCM FT Color Intensity Entropy Edge  Gabor FD  Orientation

The use of a back-propagation neural network offers a simp
FIG. 18. Performance of features from the Leave-One-Out method. ~ solution to the laborious task of finding a good combination ¢
the available features, thus solving our senso fusion problel
We have shown that feature sets like the one presented h:
co-occurrence matrix, Gabor filters, fractal dimension, steeratskfficient expressive power to allow good generalization fror
filters, the Fourier transform, and entropy. only a few training images. An analytical approach, on the othe
We present a method that extracts good subsets of featutgsd, is difficult to conduct since the interactions even betwes
from the set of 51 features. The resulting subset is almostragdest numbers of dependent features is complex.
powerful as the entire set but reduces the time for the featuréNatural scenes and objects often have signature colors &
extraction phase by 75%. The fact that representatives fromtgiktures, which is why we expect the presented approach to
but the steerable filter method are present in this subset letgngst useful in this domain. Humanmade structures and obje
conclude that the mixture of methods and features provides figten do not exhibit the same degree of color and texture co
better classification than the use of features derived from jancy between instances and our approach hence appears
one method (as was shown in Fig. 17). The 13-feature solutioiell suited to them.
we have found outperforms all the methods in isolation (even
the combined set of 28 GLCM-based features). ACKNOWLEDGMENTS
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