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Abstract

Thousands of hours of video are recorded every second

across the world. Due to the fact that searching for a partic-

ular event of interest within hours of video is time consum-

ing, most captured videos are never examined, and are only

used in a post-factum manner. In this work, we introduce

activity-specific video summaries, which provide an effec-

tive means of browsing and indexing video based on a set

of events of interest. Our method automatically generates

a compact video representation of a long sequence, which

features only activities of interest while preserving the gen-

eral dynamics of the original video. Given a long input

video sequence, we compute optical flow and represent the

corresponding vector field in the Clifford Fourier domain.

Dynamic regions within the flow field are identified within

the phase spectrum volume of the flow field. We then com-

pute the likelihood that certain activities of relevance occur

within the the video by correlating it with spatio-temporal

maximum average correlation height filters. Finally, the in-

put sequence is condensed via a temporal shift optimization,

resulting in a short video clip which simultaneously displays

multiple instances of each relevant activity.

1. Introduction

Every day millions of hours of video are captured around

the world by CCTV cameras, webcams, and traffic-cams. In

the United States alone, an estimated 26 million video cam-

eras spit out more than four billion hours of video footage

every week. In the time it takes to read this sentence, close

to 20,000 hours of video have been captured and saved at

different locations in the U.S. However, the vast majority

of this wealth of data is never analyzed by humans. Instead,

most of the video is used in an archival, post-factum manner

once an event of interest has occurred.

The main reason for this lack of exploitation resides in

the fact that video browsing and retrieval are inconvenient

due to inherent spatio-temporal redundancies, in which ex-

tended periods of time contain little to no activities or events

of interest. In most videos, a specific activity of interest

may only occur in a relatively small region along the entire

spatio-temporal extent of the video.

There exists a large body of work that addresses the topic

of activity recognition which focuses mainly on detection in

short pre-segmented video clips commonly found in pub-

licly available, standard action datasets. In this work, we at-

tempt to move beyond only performing action detection in

an effort to provide a means of generating a compact video

representation based on a set of activities of interest, while

preserving the scene dynamics of the original video. In our

approach, a user specifies which activities interest him and

the video is automatically condensed to a short clip which

captures the most relevant events based on the user’s prefer-

ence. We follow the output summary video format of non-

chronological video synopsis approaches, in which differ-

ent events which occur at different times may be displayed

concurrently, even though they never occur simultaneously

in the original video. However, instead of assuming that all

moving objects are interesting, priority is given to specific

activities of interest which pertain to a user’s query. This

provides an efficient means of browsing through large col-

lections of video for events of interest.

2. Related Work

Action recognition and event classification in video have

been studied extensively in recent years; a comprehensive

review can be found in surveys on the topic [9, 1]. Most

of the existing work can be broadly categorized into ap-

proaches based on tracking [18, 4], interest points [11], ge-

ometrical models of human body parts [6], 3D information

[13], volumetric space-time shapes [21], action clustering

[10] and temporal-templates [2].

A common theme in all of these approaches is their fo-

cus on detection. That is, given a learned model of an ac-

tion class, emphasis is placed on detecting instances of the

learned action within small testing clips typically found in

standard action datasets. After performing detection, most

methods do not go beyond placing a bounding box delim-

iting the spatio-temporal extent of the detected action. Our

present work aims at moving beyond detection by examin-

ing the role of action recognition in efficient video repre-
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Figure 1. A frame from a video summary for the “picking up” action, along with the various steps of the action-specific video synopsis
process. Given a long input video sequence (spatio-temporal volume), we compute optical flow and represent the corresponding flow field
in the Clifford Fourier domain. Dynamic regions (Clifford worms) are identified within the Clifford domain, and a temporal optimization
shifts worms which contain activities of interest in the temporal domain to obtain a compact representation of the original video. Finally,
we see the resulting short clip which contains four instances of the “picking up” action of interest.

sentations. More specifically, we are interested in the gen-

eration of compact video summaries which contain specific

actions of interest.

Existing work on compact video representation and sum-

marization can be roughly categorized into static represen-

tations (which include key-frame-based methods [7, 22] and

mosaic-based methods [15]), and full motion video rep-

resentations (which includes non-chronological video syn-

opsis [16], bi-directional similarity [20] and smart fast-

forward approaches [14]).

Most of these approaches are geared towards provid-

ing a compact representation of a video as a whole and do

not distinguish between different classes of events. There-

fore most of the existing approaches are best suited for un-

crowded scenes that contain periods of inactivity and where

events are sparse. We are interested in a compact repre-

sentation of long videos which is based on specific actions

of interest. Therefore, it may not be appropriate to rely

on static, frame-based or mosaic-based representations of

video, given that important events and actions which can

only be distinguished upon inspecting a sequence of frames

are lost in these static representations. Furthermore, gener-

ating a compact video representation based on all moving

objects in the scene may lead to the inclusion of irrelevant

moving objects. This is especially true in crowded scenes

were moving objects abound. Therefore, in this work, we

explore the role of action recognition as a means of gener-

ating condensed representations of long videos which can

efficiently convey only important events and actions of in-

terest which occur over a long period of time.

3. Compact Action-based Video Representa-
tion

Our approach to generating compact action-specific

video representations is composed of three main phases.

First, we begin by determining a set of regions in space-

time which contain dynamic objects. Subsequently, we de-

tect specific activities and actions of interest within the long

video sequence. Finally, we select dynamic regions which

contain events of interest and optimize the temporal shifts

of the video summary via an energy minimization. In the

following sections we describe each of these steps in more

detail.

3.1. Motion Representation

In this section we describe how we identify dynamic

regions of a video sequence as potential candidate spatio-

temporal locations to be included in the final video sum-

mary. For this purpose we begin by computing optical flow

for the entire sequence using the flow estimation method

described in [12]. However, instead of identifying dynamic

regions within the optical flow in the spatial domain, we

efficiently identify such regions in the frequency domain.

Given the fact that we seek to identify salient regions

within a 3D optical flow field, where at each point we have

more than one component (dx, dy , magnitude), we cannot

employ the traditional Fourier transform which is defined

on scalar values as a valid representation without losing

any information. In order to efficiently analyze a video se-

quence in the frequency domain we require an analog to



I1

 

 

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

(a) (b) (c) (d)

Figure 2. (a) The optical flow field for a long video sequence. (b) A 2D slice of the phase spectrum volume (PSV). (c) A 3D segment of
the PSV, high values indicate dynamic regions within the flow field. (d) Candidate dynamic regions (worms)

the classical Fourier transform for vector fields. For this

purpose, we follow the framework proposed in [3], in that

we apply an algebraic extension to the degrees of freedom

of a multi-dimensional Fourier transform by embedding the

spectral domain into a domain of Clifford numbers. This

class of Fourier transform is commonly referred to as the

“Clifford Fourier transform.” Using this embedding, we

preserve the full information of relative directions of our

vector field while identifying potential regions in space-

time which should be included in the summary video.

The Clifford Fourier transform (CFT) for multivectors-

valued functions in 3D is defined as:

F{F}(u) =

∫

F(x) exp(−2πi3〈x, u〉)|dx|, (1)

where i3 represents the analog of a complex number in Clif-

ford algebra, such that i3 = e1e2e3 and i3
2 = −1. The

inverse transform is given by:

F−1{F}(x) =

∫

F(x) exp(−2πi3〈x, u〉)|dx|. (2)

3.2. Dynamic Spatio­temporal Regions

Given a long video sequence, we compute optical flow

vectors and magnitude resulting in a 3D vector field. We

employ the Clifford embedding described in section 3.1 by

performing a 3D Clifford Fourier transform. In order to

identify regions of potential activity of interest and shift

them in time for an action-specific video summary, we seek

to to carve out a set of spatio-temporal regions, or “worms,”

from the input flow field which suggest areas of dynamic

events. Each worm is, in fact, an object, or group of objects,

which carves out a spatio-temporal volume as it moves

across the scene over time.

It is well known that the amplitude spectrum specifies

how much of each sinusoidal component is present in a sig-

nal [5] and the phase information specifies where each of

the sinusoidal components resides within the signal, which

in our domain corresponds to a flow field. Locations within

the flow field which have less periodicity or less homogene-

ity represent potential dynamic regions of interest in the re-

construction of the flow field, which indicates the location

of the worm candidates.

Knowing that the phase spectrum of a flow field in the

frequency domain can provide insight as to where dynamic

events are occurring in the original video, we identify a set

of candidate regions in space-time as follows:

Given a flow field (u) of an input video:

f(x, y, t) = F{F}(u) (3)

p(x, y, t) = P (f(x, y, t)) (4)

W (x, y, t) = g(x, y, t) ∗
∣

∣

∣

∣

∣

∣
F−1{F}

[

ei3p(x,y,t)
]
∣

∣

∣

∣

∣

∣
(5)

where F{F} and F−1{F} denote the Clifford Fourier

Transform and inverse Clifford Fourier Transform respec-

tively. P (f(x, y, t)) represents the phase spectrum of the

vector field which is composed of the u and v components

of optical flow as well as the magnitude. g(x, y, t) is a 3D

gaussian filter (we use σ = 6). We obtain potential dynamic

regions in the video by converting the phase spectrum into

the spatial domain and convolving the resulting scalar field

with a gaussian.

The phase spectrum volume (Figure 2-c) contains the

“innovation” of a specific region in the flow field. Using

the Inverse Clifford Fourier Transform, we can construct the

output volume which contains primarily the non-trivial, or

unexpected spatio-temporal regions of the flow field, where

we expect to find events of interest.

Given the phase spectrum volume we threshold the

saliency values and segment out a set of “worms” belonging

to different objects which trace some movement across the

scene over time. We use the normalized cuts toolbox of the

algorithm described in [19] to obtain the tightest clusters in

this space-time volume. Each spatio-temporal location in

the phase spectrum volume (in the Spatial Domain) which

is above a threshold forms a node of a completely connected

graph. Edge weights are assigned using the Euclidean dis-

tance between connected nodes. Using normalized cuts on

this graph we obtain the optimum clustering of dynamic re-

gions in the flow field into a set of worms which can then

be shifted in time to generate a summary video. In the next

section we describe how we narrow the pool of potential

worms to be included in the final summary video by detect-

ing specific activities and actions of interest.
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Figure 3. (a) Frames from the original long video sequence. (b) A non-action-based video summary. (c) An action specific video summary
based on the “pickup” action of interest.

3.3. Action­Specific Summary

In this work we are interested in compact action-specific

video representations. For example, in a parking lot scene,

we may be interested in a brief video clip containing all the

people entering cars during some time period. Similarly,

we may be interested in a quick summary video containing

all people who were running through a given scene over the

course of a week’s worth of video.

In order to generate action-specific summaries we iden-

tify the most relevant activities based on pre-defined ac-

tion templates. Worms containing activities of interest are

assembled into a synopsis video of a specified temporal

length. In order to include as many activities as possible

in the short video synopsis, different action instances may

be displayed concurrently, even if they originally occurred

at different times. The resulting synopsis video will contain

events of interest in a short clip which can serve as an in-

dex into the original long video by keeping a pointer to the

original spatio-temporal location of the event.

3.3.1 Identifying Activities of Interest

We identify dynamic spatio-temporal regions which contain

specific activities of interest by correlating worms with a

pool of action templates. Actions such as “run,” “walk,”

“open car door,” and “load/unload car trunk” are captured

using templates synthesized using a recently proposed [17]

generalization of the traditional maximum average correla-

tion height filter to video (3D spatiotemporal volume), and

vector value data such as optical flow.

Action templates for activities of interest are generated

by computing temporal derivatives of a set of examples.

Subsequently, these examples are represented in the fre-

quency domain via a 3D Fourier transform. Given the re-

sulting volumes in the Fourier domain, we proceed to con-

vert the resulting 3D matrix into a column vector by con-

catenating all the columns of the 3D matrix, resulting in a

single column-vector (xi). This process is repeated for each

example of an activity of interest. Finally, the template for

a given activity of interest can be generated in the Fourier

domain by minimizing:

h = (αC + βDx + γSx)
−1mx, (6)

where mx is the mean of all the xi vectors, and h is the

template in vector form in the frequency domain. C is the

diagonal noise covariance matrix of size d × d, where d

is the total number of elements in xi vector. Given that

we do not have a specific noise model for a scene, we set

C = σ2I , where σ is the standard deviation parameter and

I is a d × d identity matrix. Dx is also a d × d diagonal

matrix representing the average power spectral density of

the training videos.

Having obtained a one-dimensional template (h) for an

activity of interest, we proceed to assemble a complete 3D

filter by reshaping and then applying the inverse Fourier

transform. The resulting matrix constitutes the template,

H , for the particular activity of interest.

Once a set of action templates has been generated, we

can proceed to identify regions in the video which contain

activities of interest and should therefore be included in a

summary video.

We determine the likelihood that a spatio-temporal re-

gion contains a specific activity of interest by correlating

the corresponding template with input sequence:

c(l,m, n) =

N−1
∑

t=0

M−1
∑

y=0

L−1
∑

x=0

s(l+x,m+y, n+ t)H(x, y, t),

(7)

where s is the spatio-temporal volume of the long input

video, H is the action template (h is its Fourier trans-

form). P , Q, and R are the dimensions of the of the spatio-

temporal volumes.

As a result of this operation, we obtain a response, c, of

size (P −L+1)× (Q−M+1)× (R−N+1). We denote

this location by (l∗,m∗, n∗). Due to varying illumination
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Figure 4. We narrow the pool of potential worms to be included in
the final summary video by determining the likelihood that worms
contain specific activities and actions of interest.

conditions and noise in the scene, we optimize the response

of the filter by normalizing our correlation space:

c′(l,m, n) =
c(l,m, n)

√

EHES(l,m, n)
, (8)

where c(l,m, n) is given by equation 5. EH is a scalar value

which represents the energy of the filter, and Es(l,m, n)
corresponds to the energy of the test volume at location

(l,m, n), given by:

EH =

N−1
∑

t=0

M−1
∑

y=0

L−1
∑

x=0

H2(x, y, t), (9)

ES(l,m, n) =

N−1
∑

t=0

M−1
∑

y=0

L−1
∑

x=0

s2(l+x,m+y, n+ t). (10)

Each element in the response of the normalized correla-

tion lies within 0 and 1, a fact that can be used as a level of

confidence in a pseudo-probabilistic manner to determine

which spatio-temporal regions contain events of interest.

The peak value in the response of the filter is compared

with a threshold (τ). Thresholds for action classes are com-

puted during training as τ = ξ ∗ min(p1, p2, p3, ..., pNe
),

where pi is the peak value obtained from the correlation re-

sponse when ith training volume was correlated with the

3D MACH filter, ξ is a constant parameter, and Ne is the

number of all the training volumes.

3.4. Temporal Shift Optimization

The final synopsis video is generated based on a col-

lection of temporal shifts (S) which map the worms that

contain actions of interest to a different time in a summary

video such that a more compact representation of the orig-

inal sequence can be obtained. Given the locations of the

action detections, we are able to identify a pool of worms

(W ) that are likely to contain events of interest. We de-

fine an optimal action-based video summary as the one that

10:37 AM

11:51 AM

(c)(b)(a)

Figure 6. A video summary of “opening trunk” events in a park-
ing lot. (a) A two hour long video sequence is summarized in a
one minute clip (b) containing most of the instances of the event
of interest (“opening trunk”). The video summary displays multi-
ple instances of the event of interest (which may have occurred at
different times) concurrently (c).

minimizes the following energy function:

E(S) =
∑

w∈W

αEt(w) +
∑

w,w′∈W

Eo(w,w
′) (11)

where Et is the cost associated with the temporal extent of a

time shift configuration (maximum temporal location), and

Eo is the spatio-temporal overlap cost. The spatio-temporal

overlap cost Eo penalizes regions in the video which con-

tain events of interest that are mapped to new temporal loca-

tions which results in some degree of overlap between them.

It is given by the volume of their space-time overlap. This

energy function can be minimized using various optimiza-

tion techniques, in our experiments we employed simulated

annealing as well as the more efficient multi-label graph cut

method described in [8]. In the later, labels correspond to

time shifts of worms and a cut in the graph represents a

specific time shift. The result is an optimal set of time shifts

which minimizes the temporal extend of the summary while

also minimizing the amount of spatio-temporal overlap be-

tween worms.

4. Experiments and Results

We performed a number tests to better understand the

ability of the proposed method to cope with a range of video

sources. Details about the video sources used in generat-

ing the action-specific summaries and the experiments per-

formed are given below. Video samples of our results can

also be found in our supplemental material.

4.1. Ground Camera Videos

In the first round of experiments a collection of videos

obtained from ground cameras which included parking lot

scenes and street scenes was used to generate video sum-

maries of activities of interest. The video corpus contained

several hours of video divided across six different clips. Ac-

tivities of interest in these experiments were defined to be

“running,” “picking up an object,” “entering vehicle,” and

“loading/unloading trunk.”

Each activity of interest occurs multiple times at differ-

ent points within the collection of long video sequences.
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Decreasing spatio-temporal overlap weights

Figure 5. Decreasing the weight of the spatio-temporal overlap cost leads to increasingly compact summaries at the cost of additional
overlaps. (a) α = 0.6, (b) α = 0.5, (c) α = 0.4, (d) α = 0.3

“Running” occurs 28 times, “picking up an object” occurs

19 times, “entering vehicle” occurs 28 times, and “load-

ing/unloadding trunk” occurs 23 times.

Figure 1 demonstrates the effect of generating a video

summary based on the “picking up object” activity of in-

terest. A long video which contains only five instances of

the action of interest is represented by a short, one minute

clip, containing most of the instances of the event of inter-

est. In this example of our results we see how four different

instances of the “picking up object” action are displayed

concurrently, despite the fact that they have occurred over a

long period of time. The video of this summary and of other

results can be found in our supplemental material.

The value of an action-specific video summary is evident

in Figure 3. In this experiment we generated a 10 second

video summary based on the most dynamic spatio-temporal

regions (worms) which results in a short yet cluttered video

clip (Figure 3-b) given that all of the spatio-temporal dy-

namic regions are treated equally. When we employ the

action-specific video summary framework using the “pick-

ing up” action of interest the resulting clip consists of rel-

evant events (two people picking up an object) and is con-

siderably less cluttered. In long videos of crowded scenes

where moving objects abound action-specific video sum-

maries provide a means of distilling the long sequence into

a short clip that clearly depicts events of interest that oc-

curred over a period of time. Both of these videos can be

found in our supplemental material.

A more challenging scenario is seen in Figure 6, where

we have a busy parking lot scene which contains many mo-

tions which can potentially be irrelevant to a given user.

Therefore, it may not be appropriate to generate a synopsis

based on all moving objects in the scene. In this experiment,

we generated a video synopsis of a long video clip based on

the “open vehicle trunk” event of interest. Despite the fact

that instances of the event of interest are relatively small as

compared to the rest of the scene, our summary includes

seven out of the total eight instances of the event of interest

in a one one minute clip. Searching for this particular event

manually would require careful observation as the video is

fast-forwarded, a time consuming and inefficient process.

Long input video Summary query Summary video

(a) (b) (c)

Figure 8. Summary by example: given a long video sequence (a),
we specify a spatio-temporal region as a query (b) which contains
an event of interest. A video summary (c) which includes events in
the scene which match the query is then automatically generated.

A similar cluttered scenario we consider is depicted in

Figure 10, where we condense all of the instances of the

running action which occur throughout a long traffic se-

quence into a one minute clip. Given that in this particular

scene, running pedestrians tend to occur in one particular

region in the video (the crosswalk), we increase the weight

of the spatio-temporal overlap cost term (by setting α to 0.3)

in order to avoid artifacts caused by multiple running activ-

ities which are mapped to the same spatio-temporal region.

The effect of varying the spatio-temporal overlap cost

is depicted in our experiment in Figure 5, in which a ten

second summary of the “running” action is obtained from a

long input video. As we lower the weight (α) of the spatio-

temporal overlap cost we observe how additional instances

of the running action are included in the video summary

resulting in additional clutter.

4.2. Aerial Videos

A second round of experiments was based on aerial video

sequences obtained using a UAV equipped with an HD cam-

era mounted on a gimbal. Videos were recorded at a fly-

ing altitude of over 400 feet. The collection contains a di-

verse pool of events such as people getting into vehicles,

and people running, which occur over the course of one

hour. These videos are divided into sequences which typ-

ically average 5-12 minutes in length. In these experiments

our goal is to evaluate the ability to generate video synopses

based on moving aerial camera video sequences. Given an

aerial video sequence obtained by a UAV hovering over a re-
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Figure 7. (a) Frames of a long aerial video sequence shot from an R/C helicopter flying at 400 feet. (b) A non-action based video
summary.(c) A video summary of the “digging” action.

(a)

(b)

Figure 9. (a) Frames of a 13 minute aerial video sequence. (b) A
video summary of the “running” action.

gion of interest, we begin the summary process by perform-

ing frame-to-frame registration across the sequence. Subse-

quently, we identify dynamic regions within the registered

aerial video, identify events of interest, and perform tem-

poral optimization using the methods described in Sections

3.3.1, and 3.4 respectively.

Figure 11 depicts an example of a 30 second video sum-

mary generated from an aerial video sequence (which is 9

minutes long) based on the “running” action of interest. The

short summary clip contains four out of the seven running

events which occur in the scene over the entire duration of

the longer clip.

Another aerial action video summary is depicted in Fig-

ure 7. In this experiment two video summaries are gener-

ated from a aerial video. The first is a 30 second non-action

video summary. As can be seen in Figure 7-b, this results

in a cluttered video clip that contains various movers that

originate from different spatio-temporal regions. Figure 7-c

depicts an action-based video summary of the same length,

that contains five instances of the digging action which oc-

cur at different point in time in the original video. Due

to small out-of-plane parallax errors which are propagated

over time, a modest amount of drift in alignment is accumu-

lated which results in some visible artifacts around some of

the shifted action instances.

In our experiments we observed that the main issues re-

lated to generating video summaries of aerial sequences are

noise in the flow field which is caused by slight errors in

the motion compensation. This leads to noisy dynamic re-

gions which are sometimes included in the final summary

video. This effect can be observed in Figure 9 in which a ten

second video summary of the running action is generated

from a 13 minute aerial video. Due to nosy worms individ-

ual instances of an action have been segmented into disjoint

events which are then shifted in time independently. As can

be seen in Figure 9-b two seperate running instances have

been segmented into four small running segments which are

depicted concurrently in the short summary clip.

4.3. Summary by Example

It is not always possible to obtain a large training set for

a collection of events of interest. Nor is it feasible to as-

sume that we are only interested in video summaries of a

static set of pre-defined events (such as running, opening

car door, etc). Therefore, in our last round of experiments

we introduce the concept of “summary by example.” That

is, given a long video sequence, a user can select any in-

stance of a particular event of interest by specifying a spa-

tial region in the video and the temporal extent of the event.

Subsequently, a short video summary which contains all the

events that match the selected query is generated for the rest

of the long sequence.

Summary by example can be accomplished without any

major changes to the overall approach described above.

This is due to the fact that we treat the example of the event

of interest as a single instance spatio-temporal template. In

order to account for the possibility of observing the event of

interest at different scales across the long video, we synthe-

size templates at three scales by resizing the original exam-

ple. Aside from employing this special case of the spatio-
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Figure 10. (a)Frames from a long cityscape video. (b) A frame
from a short clip generated by our system which captures instances
of running in the scene over an extended period of time.

temporal template, the remaining steps of our approach re-

main the same. Figure 8 depicts a summary by example, in

which an event of interest consisting of a moving golf cart

is selected within a long video sequence. Based on this ex-

ample of an event of interest, our method generates a short

thirty second video summary which condenses six separate

instances of a moving golf cart event which occurs at differ-

ent times within the long video.

5. Conclusion

We have explored the role of template-based action

recognition methods in generating short video summaries

of long ground camera videos and aerial videos. We do

not consider all moving objects in the long video sequence

to be of equal importance when generating a given video

summary. Instead we focussed on generating video sum-

maries based on a set of events of interest which can be

specified when generating a summary. We found that these

activity-specific video summaries provide us with a more

meaningful way of quickly reviewing a long video for par-

ticular events of interest in the form of a short video clip

which condenses all activities of interest that have occurred

across some time span. Furthermore, by focusing on events

of interest instead of moving objects we were able to gener-

ate meaningful summaries of crowded scenes. As future

work we intend to explore multi-agent events with long-

range spatio-temporal dependencies. We also intend to use

confidence values of action detection to draw attention to

specific areas in the summary.
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Figure 11. UAV aerial video summary containing the “running”
action. Four instances of the running action which occur at differ-
ent time instances across a long video are displayed concurrently.
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