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Abstract

Automatically understanding human actions from video
sequences is a very challenging problem. This involves the
extraction of relevant visual information from a video
sequence, representation of that information in a suitable
form, and interpretation of visual information for the
purpose of recognition and learning. In this paper, we first
present a view-invariant representation of action
consisting of dynamic instants and intervals, which is
computed using spatiotemporal curvature of a trajectory.
This representation is then used by our system to learn
human actions without any training.

The system automatically segments video into individual
actions, and computes view invariant representation for
each action. The system is able to incrementally learn
different actions starting with no model. It is able to
discover different instances of the same action performed
by different people, and in different viewpoints.

In order to validate our approach, we present results on
video clips in which roughly 50 actions were performed by
five different people in different viewpoints. Our system
performed impressively by correctly interpreting most
actions.

Keywords: Video Understanding, Action Recognition, View-
invariant Representation, Spatiotemporal curvature, Events,
Activities

1. Introduction

What do we mean by an action? Webster’s dictionary
defines action: the doing of something; state of being in
motion; the way of moving organs of the body; the moving
of parts: guns, piano; military combat; appearance of
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animation in a painting, sculpture, etc. More or less, hand
gestures, sign language, facial expressions, lip movement
during speech, human activities like walking, running,
jumping, jogging, etc, and aerobic exercises are all actions.
Consider a typical office scene, at a given time a person
can be performing either one of the following actions:
reading, writing, talking to other people, working on a
computer, talking on a phone, opening and closing
cabinets, leaving or entering the office.

Actions can be classified into three categories: events,
temporal textures, and activities [1]. Motion events do not
exhibit temporal or spatial repetition. Events can be low-
level descriptions like a sudden change of direction, a stop,
or a pause, which can provide important clues to the type
of object and its motion. Or they can be high level
descriptions like “opening a door”, “starting a car”,
“throwing a ball”, or more abstractly “pick up”, “put
down”, “push”, “pull”, “drop”, “throw”, etc. Motion verbs
can also be associated with motion events. For example,
motion verbs can be used to characterize trajectories of
moving vehicles [2], or normal or abnormal behavior of
the heart's left ventricular motion [3]. The temporal
textures exhibit statistical regularity but are of
indeterminate spatial and temporal extent. Examples
include ripples on water, the wind in the leaves of trees, or
a cloth waving in the wind. Activities consist of motion
patterns that are temporally periodic and possess compact
spatial structure. Examples include walking, running,
jumping, etc.

Recognition of human actions from video sequences is
very popular in computer vision. This work has
applications in video surveillance and monitoring, human-
computer interfaces, model-based compression, and
augmented reality. One standard approach for human
action recognition is to extract a set of features from each
frame of a sequence, and use those features to train Hidden



(a) (b)
Figure 1. Several trajectories of “opening
overhead cabinet” (a), and “closing overhead
cabinet” (b) actions.

Markov Models (HMMs) to perform recognition. The
features can be an image location of a particular point on
the object, a centroid of image region, moments of an
image region, gray levels in a region, optical flow in a
region (used as magnitude of optical flow, or concatenated
u and V in a vector), sum of all changed pixels in each
column (XT trace), 3-D locations (X,Y,,Z) of particular
point on the object, joint angels; how the parts of body
move with respect to time, muscle actuations, properties of
optical flow in a region like curl, divergence, etc,
coefficients used.in the eigen decomposition of above
features, etc. A HMM consists of a set of states, a set of
output symbols, state transition probabilities, output
symbol probabilities, and initial state probabilities. The
model works as follows. The features extracted from video
sequences are used to train the HMMs. Matching of an
unknown sequence with a model is done through the
calculation of the probability that a HMM could generate
the particular unknown sequence. The HMM giving the
highest probability is the one that most likely generated
that sequence.

In previous research, the most emphasis has been on
discovering appropriate features. Therefore, not much
work has been done on HMMs; they have been treated as a
black box. There are several important issues related to
HMMS. First, since HMMs rely on probabilities they
require extensive training, therefore one needs to have a
large number of training sequences for each action to be
recognized. Second, for each action to be recognized, a
separate HMM needs to be built. Therefore, this approach
can only recognize some predefined set of action. It does
not have a capability to learn new action. Third, since
HMM is treated as a black box, it does not explain what a
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Figure 2: trajectories of “opening
overhead cabinet” (a), and “closing overhead
cabinets” (b) actions after converting them to the
normal view using affine transformation.

particular action is? It just outputs the probability an
unknown action is recognized as a model action.
Regarding features, the issue of representation of features
has mainly been ignored.

In this study, we focus our attention on human actions
performed by a hand. These actions include: opening and
closing overhead cabinets, picking up and putting down a
book, picking up and putting down a phone, erasing a
whiteboard, etc. While performing an action, a hand
essentially generates a 3-D trajectory in (x,y,z) space with
respect to time. Our aim is to first compute a compact
representation of 2-D projection of this trajectory from a
video sequence, and then to learn human actions using this
representation.

In this paper, we first present a new representation
scheme based on sptiotemporal curvature of a trajectory. A
trajectory is represented by a sequence of dynamic instants
and intervals. This representation is then used to
automatically learn human actions. The system starts with no
model, and incrementally builds and refines models by
watching people perform actions. Ultimately the system is
able to recognize new actions using the learned actions.
We present results on a video sequence depicting five
different people performing roughly 50 different actions.
The system is automatically able to segment the video into
different actions, and learn actions.

2. Hand trajectories

In this section, we discuss how to compute motion
trajectories from video sequences. In our method, hand is
located in each frame, and centroids of a hand in each
frame are connected to obtain a trajectory.



We apply skin detection [6] to locate a region
corresponding to the hand in an image sequence. Skin
detection uses pixel color value. Based on the. color
predicate, the system labels the incoming pixel as skin or
non-skin. During the training phase a color histogram is
generated. The pixels are manually labeled as skin or non-
skin, and a 3-D Gaussian function for every pixel is
generated. If the given pixel is a skin pixel, then a wide
Gaussian (¢ = 2) is added to the color histogram. If the
pixel is labeled as non-skin pixel, then a narrow Gaussian
(* = 1) is subtracted from the color histogram. At the end
of training, a threshold is applied to color histogram in
order to divide histogram bins into skin and non-skin. This
way, a predicate is generated, which takes a color pixel
value as an input, and outputs the skin or non-skin label,
based on which histogram bin the pixel color falls in. Then
during detection, we just check the pixel flags in color
predicate to decide its label. This process runs very fast,
since only lookup table operations are involved.

After skin detection, a connected component algorithm
is applied to obtain largest connected component, which is
hypothesized to be a hand. We assume that the only skin
color object is hand. However, if this is not the case, then
we can introduce some other constraint, for example
fastest moving skin region is a hand. Next, the centroid of
this skin region is computed for each frame, and trajectory
of hand is created by joining the centroids.

2.1. Smoothing trajectories

A trajectory is a spatiotemporal curve defined as:
O[1,y011, D),  ([21,¥(21,2),..., (x[nl,y[nl,n). There are
essentially two functions: x(f) and y(¢) in the definition of a
trajectory. The trajectory for action “opening overhead
cabinet” is shown in the Figure 2.a. This trajectory
contains some noise due to errors in skin detection, lighting
conditions, projection distortions, occlusion, etc. Also,
since the centroid of hand region is not always a true
centroid of a hand, the trajectory obtained by connecting
centroids of skin regions contains some errors. In order to
deal with this noise, we use anisotropic diffusion to smooth
x(t) and y(f) coordinates of trajectory. Anisotropic
diffusion was proposed in the context of scale space [4].
This method iteratively smoothes the data (I) with a
Gaussian kernel, but adaptively changes the variance of
Gaussian based on the gradient of a signal at a current
point as follows:

I =1+ Alcy oV I+cg o VI (1)

where 0 < A < 4. We choose A=0.2 in our experiments. ¢
represents the iteration number, and
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Figure 3:“Opening overhead cabinet” trajectory (a)
smoothed version of the trajectory (b) dynamic

instants (marked by “*") and intervals (c)
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The constant k can be fixed either manually at some
fixed value, or can be estimated from the “noise
estimator”. We choose k=10 in our experiments

Figure 3.b shows a trajectory after anisotropic diffusion
of x and y coordinates. Notice that now the trajectory is
much smoother.

2.2. Computing spatiotemporal curvature

We use spatiotemporal curvature to compute view
invariant representation of an action. The spatiotemporal
curvature of a trajectory is computed by a method
described by Besl and Jain [5]. In this case, a 1D version of
the quadratic surface fitting procedure is used. The
spatiotemporal curvature, k is given as follows:

(7 +or+E))"

where €y
b t’ t’ x! x’ b/
A= yu n’B= " ||’C= " yn
y ot t y
The notation |0| denotes the determinant, and
X =x(t)-x@-D,x"t0)=x@)-x(t-1). (5)
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Figure 4. Spatiotemporal curvature, and detected
maxima (dynamic instants) in “opening overhead
cabinet” trajectory.

Since the time interval is constant, so =1, and ¢"=0.

Spatiotemporal curvature captures both the speed and
direction changes in one quantity. Moreover, a special case
of spatiotemporal curvature when ¢’ = ¢’ = 0, in the above
equation is the spatial curvature, commonly used in 2-D
shape analysis, so that the time information is ignored. The
sptiotemporal curvature of “opening overhead cabinet”
trajectory is shown in Figure 4.

3. Representation

Representation is very important and sometimes
difficult aspect of an intelligent system. The representation
is an abstraction of a sensory data, which should reflect a
real world situation, be view-invariant and compact, and be
reliable for latter processing. We propose a new
representation scheme based on sptiotemporal curvature of
a trajectory. A trajectory is represented by a sequence of
dynamic instants and intervals. A dynamic instant is an
instantaneous entity, which occurs for only one frame, and
represents an important change in motion characteristic:
speed, direction, acceleration, and curvature. An instant is
detected by identifying maxima (a zerocrossing in a first
derivative) in the spatiotemporal curvature. An interval
represents the time-period between any two dynamic
instants, during which the motion characteristics pretty
much remain constant. In our representation, instants and
intervals have physical meanings. Therefore, it is possible
to explain an action as a sequence of meaningful instants
and intervals.

Dynamic instants and intervals for “opening overhead
cabinet” action are shown in Figure 3.c.

A dynamic instant is characterized by a frame number,
the image location, and the sign. The frame number tells us
precisely in which frame, the dynamic instant occurs; the
image location provides the location of the hand in the
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image when the dynamic event occurs; and the sign
represents the sign of change of motion characteristic at
the instant. The intervals are described by an average
sptiotemporal curvature. Examples of dynamic instants
include: touching, twisting, loosening; and the examples of
intervals include approaching, lifting, pushing, and
receding. Consider an opening overhead cabinet action
(Figure 4.c). This action can be described as: hand
approaches the cabinet (“approaching” interval), hand
makes a contact with the cabinet (“touching” instant), hand
lifts the cabinet door (“lifting” interval), hand twists
(“twisting” instant) the wrist, hand pushes (“pushing”
interval) the cabinet door in, hand breaks the contact
(“loosening” instant) with the door, and finally hand
recedes (“receding” interval) from the cabinet. Similarly,
“picking up a phone” action can be explained by two
intervals and one dynamic instant as: hand approaches the
phone (“approaching” interval), hand touches the phone
(“touching” instant), and finally hand lifts up the phone
towards the ear (“lifting” inverval).

3.1. View invariance

It is very important for a representation of action to be
view invariant. Since an action takes place in 3-D, and is
projected on 2-D image, depending on the viewpoint of the
camera the projected 2-D trajectory may vary. Therefore,
trajectories of the same action may have very different
trajectories, and trajectories of different actions may look
the same. This may create a problem in interpretation of
trajectories at the higher level. However, if the
representation of action only captures characteristics,
which are view invariant, then the higher level
interpretation can proceed without any ambiguity. Instants,
which are the maxima in spatiotemporal curvature of a
trajectory are view-invariant. A dynamic instant in 3-D is
always projected as a dynamic instant in 2-D, except in
limited cases of accidental alignment. By accidental
alignment, we mean a viewpoint, which is parallel to the
plane, where the action is being performed. In that case,
the centroid of hand in all frames is projected at the same
location in image plane, resulting in a 2-D trajectory,
which is essentially a single point. In Figure 1.a, we show
trajectories of opening overhead cabinet action from
several viewpoints. Even though these trajectories look
quite different, in all cases three dynamic instants are
detected by the proposed method.

The trajectories of the same action from different
viewpoints look different even though all of them contain
the same number of instants, because the location of
instants and intervals are different. In order to deal with



this view dependence, we propose a notion of .a normal
view. For each action, an arbitrary view is selected as a
normal view, and the representation consisting of instants
and intervals is computed. The trajectory of the same
action performed under the camera view different from the
normal view will still contain the same number of instants,
but the characteristics of intervals may vary. We propose
to use correspondence between instants in a normal and a
novel view to fit the affine transformation. Since the order
and number of instants in both trajectories are the same,
the correspondence can easily be determined. Once the
affine transformation is computed, the trajectory can be
transformed into the normal view using this affine
transformation. Figure 2 shows the trajectories of opening
and closing overhead cabinet, transformed to the normal
views. Compare these with trajectories shown in Figure 1.

Note that in order to use affine transformation at least
three point correspondences are needed. In our approach,
we do not employ the start and end instants, since they
may vary depending on the field of view of camera, and
the variations due to approach and receding intervals.
Therefore, the affine transformation can only be applied to
actions consisting of five or more instants. We also want to
mention here that the projective transformation will be
better than affine transformation, however we can only
apply the projective transformation to actions containing
six or more instants.

4. Learning -

Once representation has been defined, the next step is to
use this representation to learn human actions. As stated
earlier, our aim is to start with no model, and
incrementally build model of actions by continuously
watching. This is the way, we believe, how children learn
to recognize different actions by repeatedly observing
adults perform actions.

We assume the camera is fixed, however, people can
enter the field of view from any side. The system is
continuously analyzing video stream captured by the
camera. The system detects hand using skin detection,
determines hand trajectory, and computes a view invariant
representation of each action.

The continuous video stream can be easily segmented
into individual actions. One particular action begins as
soon as the hand enters the field of view, and ends when
the hand goes out of the field of view. When the system
detects the hand again, the second action begins, and so on.

For each action, the systern builds a view-invariant
representation, and places it into a corresponding category
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of actions, depending on the number of instants. The
system also compares each action with all other actions in

At the higher level of abstraction, the system also
determines sets of similar actions based on the match
scores. For example, different instances of ‘“opening
overhead cabinet” action can be automatically determined
to be similar. For each such set only one prototype
representation is maintained, since all other instances
convey the same information. For each prototype we
associate a confidence, which is proportional to the
cardinality of the set represented by this prototype. When
more evidence is gathered, the confidence of some actions
is increased, while the confidence of others remain the
same. The prototypes with small confidence can ultimately
be eliminated.

The smallest action consists of three instants. Since,
currently we are considering actions performed by a single
hand only, the actions consisting of three instants usually
are either “pick up an object”, or “put down an object”. As
we stated earlier we do not use beginning and end instant
in affine warping, therefore for a three instant action, we
are left with only one instant which is not enough for affine
warping. Consequently, we interpret “pick up” and “put
down” actions as follows.

We subtract the frame corresponding to the first instant
from the frame corresponding to the last instant, and
compute absolute difference for each pixel. Then we apply
Gaussian mask centered around the location of hand in the
image corresponding to the second instant This step will
emphasize the pixels in the neighborhood of the location of
hand during the pick up or put down. Then threshold is
applied to the weighted difference picture to identify
relevant pixels in the middle frame. The window enclosing
such pixels signifies the region in the image, which have
changed due to pick or put down action. Next, we need to
determine if this action is a pick up or put down. We apply
edge detector to pixels in the window in the frames
corresponding to the first and last instants, and compute a
difference of two edge images. Note that edge images are
binary images, the difference picture will consists of pixels
with value, 0, -1 or I. The sum of these pixels is
determined, if the sum is +ve then the action is pick up, if
it is —ve then it is put down, if it is zero then nothing was
picked up or put down. Please see Figure 6 and 7 for
representative examples of pick up and put down actions.

4.1. Matching



Given two viewpoint invariant representations of some
actions, how can we determine if these are the same
actions? It is obvious that two actions with different
number of instants cannot be the same. Therefore, we
should only match representations, with equal number of
instants. We want to note that one action can be a sub-
action of the other. In this case, these actions won’t have
the equal number of instants, however, this match is
meaningful. At this point, we are not going to deal with it.

We propose to use a simple method for matching two
representations. We compute the average difference
between locations of instants. Assume actions we want to
match are represented by location of instants:

(¥ ) (x5, 5,)..0,(x,,y,))and
(EAIONCAN I RINEAN ')

Then the match score is computed:

n=3 (x, =2+ (v, =) ©

We compare each action with all other actions with the
same number of instants, and compute the match score 7.
For each action, we need to select closely matched actions.
All the matches, which are below some threshold are
eliminated first, and only three best matches for each
action are maintained. Also if a particular action does not
match closely to any action of its category then it is
declared as a unique action. Its label may change as more
evidence is gathered.

The best matches for individual actions are merged into
a compact list using transitive property. That is, if action 1
is similar to actions: 14, 21, and 29; and action 4 is similar
to actions: 43, 1, and 14; then actions: 1, 4, 14, 21, 29, and
43 are all similar actions due to transitive property.

5. Experiments

We digitized a 8-minute video clip recorded at 24 fps
captured by a stationary camera consisting of more than
11000 frames. Five people performed total of 48 different
actions in front of the camera, the complete list of actions
is given Table 2, and two representative video sequences
are shown in Figure 8 and 9. People were not given any
instructions, and entered and exited from arbitrary
directions. Therefore, the viewpoints of these actions were
very different. The system automatically detected hand
using skin detection, generated trajectories of actions.

The actions were segmented by the system into 48
actions, and are shown in Figure 7. Trajectories of these
actions were used to generate the view invariant
representation  proposed in  this  paper. These
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Table 1. Interpretation results. The bold face font in

column indicates incorrect match.

Action Three Best | Evaluation & comments
index matches

1 14 21 29 Correct

2 Pick up Correct

3 18 6 23 Correct

4 43 1 14 Correct

5 Unique action

6 318 23 Correct

7 colinear points.

8 colinear points.

9 Pick up Correct

10 Put down Correct

11 Pick up Correct

12 Put down Correct

13 Unique action

14 1 29 38 Correct

15 Unique action

16 38 21 29 Correct

17 Pick up Incorrect, object hidden

18 323 32 Correct

19 Pick up Correct

20 Unique random motion

21 16 38 29 Correct

22 Pick up Correct

23 3186 Correct

24 Pick up Correct

25 Put down Correct

26 Unique action

27 Unique action

28 42 5 16 Incorrect

29 38 16 21 Correct

30 39 Correct

31 36 16 38 Two incorrects

32 Unique action

33 Incorrect, colinear points

34 Random motion, unique

35 Put down The action is confusing

36 31 16 42 Two incorrects

37 Unique

38 16 29 21 Correct

39 30 Correct

40 46 15 One incorrect

41 Unique action

42 Unique action

43 14 29 1 Correct

44 Pick up Incorrect, object too small

45 Unique action

46 40 15 One incorrect

47 Unique action

48 36 31 42 Incorrect, colinear points.




representations were interpreted by the system to learn
these actions.

There were eleven actions consisting of three instants.
The system attempted to interpret these actions either “pick
up” or “put down” actions as describe in section 4. All
except two actions (35 and 44) were correctly interpreted.
Action 35 is quite confusing as it is clear from its
trajectory shown in Figure 7. In action 44, the object which
was picked up occupied too small region in the image,
therefore it was not detected.

The remaining actions contained four to thirteen
instants. Each of these actions, was matched using method
discussed in section 4.1. The results are shown in Table 1.
We are pleasantly surprised to see our simple matching
technique worked quite well. Only two matches were
completely wrong (actions 28 and 48). Five matches (31,
40, 36, 46) were partially incorrect. In action 48, the
instants were collinear, therefore they did not provide
independent constraint for the affine transformation.
Action 28, has an extra instant, which created problem.

Note that these matches are based on only single instant
of an action, therefore the performance of our approach is
remarkable.

The system was able to learn that actions 1, 14, 16, 21,
29, 43, and 38 are the same. Note that even though
trajectories of these actions shown in Figure 7, are
different, but due to the strength of our representation, the
system was able to learn they represent the same action.
Similarly, the system was able to discover that actions 3,
18, 6, 23, and 32, which represent “put down the object,
and then close the door”, are all the same using matching
and the transitive property. Therefore, the confidence for
this action is quite large.

Several actions were identified as unique, because they
did not match well with other actions having the same
number of instants. Therefore, their confidence is quite
low. Since we assume that the system is continuously
watching in its field of view, if more instances of these
unique actions are performed , the system will be able to
increase the confidence.

6. Related work

Siskind and Morris [7] use HMMs to classify 6
gestures: pick up, put down, push, pull, drop, and throw.
This requires training, and features used are not view
invariant. Kojima et al [10] propose an approach to
generate a natural language descriptions of human
behavior from real video images. First, a head region of a
human is extracted from each frame. Then, using a model-
based method, 3-D pose and position of head are
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estimated. Next, the trajectory of head is divided into
segments, and the most suitable verb is selected. Bobick
and Davis [8] describe a method to recognize aerobic
exercises from video sequences. They need training, and
multiple views to peform recognition. Stauffer and
Grimson [9] use simple classification based on aspect ratio
of tracked objects. Seitz and Dyer [11] proposed an affine
view-invariant trajectory matching method to analysis
cyclic motion.
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Table 2: List of actions.

1" open the cabinet

2" pick up an object (umbrala ) from the cabinet.

3" put down the object in cabinet, then close the door.

4" open the cabinet, with touching the door an extra time.

5" pick up an object (disks) with twisting hand around.

6" put back the object (disks) and then close the door.

7" open the cabinet door, wait, then close the door.

8" open the cabinet door, wait, then close the door.

9" pick up an object from top the of the cabinet.

10" put the object back to the top of cabinet.

11" pick up an object from the desk.

12" put the object back to the desk.

13" pick up an object, then make random motions.

14" open the cabinet.

15" pick up an object, put it in the cabinet, then close the door.
16" open the cabinet.

17" pick up an object (umbralla) from the cabinet.

18" put the object (umbralla) back to the cabinet.

19" pick up a bag from the desk.

20" make random motions.

21" open the cabinet.

22" pick up an object ( a bag of disks).

23" put donw an object ( a bag of disks) back to the cabinet, then
close the door.

24" pick up an object from the top of the cabinet.

25" put the object back to the cabinet top.

26" make random motions with two hands.

27" continue the action 26.

28" close the door, with some random motion.

29" open the cabinet.

30" pick up an object (remote controller) from the cabinet, put it down
on the desk, pick up another object (pencil) from the desk, put it in the
cabinet, then close the door.

31" open the cabinet door, with the door half pushed, pick up an object
(pencil) from the cabinet.

32" pick up an object (remote controller) from the desk, put it in the
cabinet, then close the door.

33 open the cabinet door, wait, then close the door.

34" open the cabinet door, make random motions, then close the door.
35" pick up some objects.

36" open the door, pick up an object, with the door half opened.

37" close the half opened door.

38" open the cabinet door.

39" pick up an object, move it within the cabinet, pick up another
object, move it, then close the door.

40" open the cabinet door, wait, then close the door.

41" pick up an object from the top of the cabinet.

42" close the cabinet.

43" open the cabinet.

44" put down a disk.

45" close the half closed door.

46" open the door, wait, then close the door.

47" open the cabinet door, pick up an object, then put it back, then close
the cabinet door.

48" open, then close the cabinet door.
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Figure 7. Trajectories of all 48 actions. The instants
are shown with red “*”.
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Figure 6: Action 10, put down. From left to right: first image, last image, the difference picture of two
images, difference of two edge images (the blue pixels represent —1 and red pixels represent +1, white is 0.),
small window (white box) shows the object.
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