
An Object-based Video Coding Framework for Video
Sequences Obtained From Static Cameras

Asaad Hakeem, Khurram Shafique, and Mubarak Shah
School of Computer Science, University of Central Florida

Orlando, FL, 32816

{ahakeem,khurram,shah}@cs.ucf.edu

ABSTRACT
This paper presents a novel object-based video coding frame-
work for videos obtained from a static camera. As opposed
to most existing methods, the proposed method does not re-
quire explicit 2D or 3D models of objects and hence is gen-
eral enough to cater for varying types of objects in the scene.
The proposed system detects and tracks objects in the scene
and learns the appearance model of each object online us-
ing incremental principal component analysis (IPCA). Each
object is then coded using the coefficients of the most signif-
icant principal components of its learned appearance space.
Due to smooth transitions between limited number of poses
of an object, usually a limited number of significant prin-
cipal components contribute to most of the variance in the
object’s appearance space and therefore only a small num-
ber of coefficients are required to code the object. The rigid
component of the object’s motion is coded in terms of its
affine parameters. The framework is applied to compressing
videos in surveillance and video phone domains. The pro-
posed method is evaluated on videos containing a variety
of scenarios such as multiple objects undergoing occlusion,
splitting, merging, entering and exiting, as well as a chang-
ing background. Results on standard MPEG-7 videos are
also presented. For all the videos, the proposed method dis-
plays higher Peak Signal to Noise Ratio (PSNR) compared
to MPEG-2 and MPEG-4 methods, and provides compara-
ble or better compression.

Categories and Subject Descriptors
E.4 [Data]: Coding and Information Theory—Data Com-
paction and Compression; H.4.3 [Information Systems]:
Applications: Communications-Teleconferencing; I.4.2 [Image
Processing and Computer Vision]: Compression (Cod-
ing)

General Terms
Algorithms, Performance, Experimentation
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1. INTRODUCTION
Video compression is an area of research that has received

considerable attention over the last few decades. Various
compression techniques have been used to store, transmit,
and manipulate video data efficiently. Video compression is
commonly achieved by removing redundancies in the fre-
quency, spatial and temporal domains. Standard coding
techniques, such as predictive coding, transform coding, and
vector quantization, treat the image/video as random sig-
nals and exploit their stochastic properties to achieve com-
pression [2].

While most of the existing coding methods belong to the
above defined category, there is a major research effort un-
derway to produce video compression systems that use 2D
or 3D models of objects and/or scenes to succinctly de-
scribe them (in the form of model parameters) for compres-
sion. Due to the inability to segment objects from a general
scene and nonexistence of models for most real world objects
and scenes, the current methods are not suitable for general
videos and reduce the complexity of the problem by making
some assumption about the problem domain. Once a prob-
lem domain is selected, one can use prior knowledge about
the domain to construct models and to detect and segment
objects from the scene. The domains widely considered in
this regard include video telephony [2, 5], video surveillance
[12, 19], and medical imaging [13, 17]. One of the features
shared by the videos in these domains is that they are usu-
ally acquired by a static camera (which is the assumption
made in this paper).

In this paper, we present a video coding frame work for
videos that are acquired by a static camera. The proposed
system extracts arbitrary shaped objects in the video frames
using computer vision techniques and does not require ex-
plicit models of these objects. Instead, the system learns the
models online for each object using incremental principal
component analysis. The basic assumption here is that the
appearance space (that includes non-rigid motion, different
poses, and views of the object) of an object can be repre-
sented by a small number of principal components. Such
an assumption about appearance space is commonly used
in object recognition literature [18], and is also justified by
the experimental results presented in Section 4. Also note
that the transitions between different poses and views of an
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Figure 1: Sequence of a walking woman with different poses

are shown. Each pose has different local transformations for

each body part, therefore a single global motion compensa-

tion between frames is not sufficient to obtain a good object

estimate Ôt
i . Thus the key poses are retained in the form of

eigen vectors and a linear combination (a1, a2, ..., ak) of these

eigen vectors (e1, ..., ek) are used to estimate the new object

pose P̂ t
i . Further application of a global motion compensation

to P̂ t
i will result in a good object estimate Ôt

i .

object in a video are usually smooth, and thus, the appear-
ance of an object in the kth frame of a video sequence can be
generated by using the subspace of the object’s appearances
that were observed till frame k − 1. The object’s appear-
ance in the kth frame is coded in terms of the coefficients of
the principal components of this subspace. The rigid com-
ponent of the object’s motion is estimated by affine motion
parameters.

The framework is applied to both surveillance and video
phone domains. The videos in these domains have different
characteristics and thus require different methods for detect-
ing and segmenting the objects from the background. The
videos in surveillance domains usually consists of objects
that are smaller in size (as compared to the background)
and are fast moving. There are usually multiple objects
in the scene and they have frequent occlusions with each
other. Background subtraction techniques [15, 7] are com-
monly used to detect objects in these videos. Due to the
presence of concurrent multiple objects in the scene, it is im-
portant to have consistent labelling of these objects through
out the video sequence. That is, given two frames and a set
of objects in each frame, in order to learn the appearance
model of each object, we must know which object in the first
set corresponds to which object in the second set. The prob-
lem becomes even more complex when these objects occlude
each other in the scene. Thus, in the surveillance domain,
a system must detect and track objects as well as handle
occlusion, entries and exits in the scene.

In contrast to surveillance domain, sequences in video
phone domain have large foreground to background ratio,
where foreground largely consists of the face and torso of a
person, and less occlusion. In addition, the motion in these
videos is usually the local motion of the human face and
global motion of the head. The objects typically do not
enter or leave the scene. The standard methods of detect-
ing objects in this domain include manual initialization [5],
deformable contours [20], shape constraints [4], and facial
feature extraction [24]. Both 2D generic models [14, 1, 11]
and 3D facial models [6] have been used in this domain for
video coding.

The significance of our method, compared to the above

mentioned methods, is to extract arbitrary shaped objects
from the video frame. The object extraction is based on
background modelling or contour-based tracking methods,
where object regions are compactly represented by motion
and appearance models. Our method estimates a single set
of motion compensation parameters for each object, and
thus has a significantly lower number of motion parameters
compared to other methods that encode arbitrary shaped
objects. Another major advantage of object-based video
coding is that it provides a semantic and structural descrip-
tion of the scene and may be use for the generation and
analysis of videos with similar semantics. In addition, it al-
lows the assignment of different priorities to different objects
and the background in terms of encoding bit-rate based on
their significance in the domain of concern.

The organization of the paper is as follows: In the next
section, we present the object-based compression framework,
where we discuss the encoding and decoding processes. The
object detection and tracking algorithms for the surveillance
and video phone domains are discussed in Sections 3.1 and
3.2 respectively. Finally, the results and discussion of our
experiments are demonstrated in Section 4.

2. OBJECT-BASED VIDEO CODING
FRAMEWORK

In this section, we present the proposed framework for
object-based video coding for videos acquired from a static
camera. We first assume that the objects in each frame
Fi are segmented from the background and the temporal
correspondences of these objects are known over the video
sequence. Consider a video segment of n frames and let
O1, O2, . . . , On be the sequence of observations of some ob-
ject O in F1, F2, .. ., Fn respectively. In this paper, we treat
each observation Oi as a vector in some (fixed) high dimen-
sional space. We want a parameterized and succinct repre-
sentation of each observation Oi, 2 ≤ i ≤ n of the object O
using its previous observations O1, . . . , Oi−1. One solution
is to apply motion compensation to the observation Oi−1 to
estimate Oi. This method works well for rigid objects such
as cars, trucks, and boxes that undergo a single in-plane mo-
tion in consecutive frames. However, for objects having out
of plane motion, such as a car taking a U-turn or non-rigid
objects, and for non-rigid objects, such a humans, applying a
single rigid motion compensation on Oi−1 does not result in
a good approximation of its appearance Oi in the frame Fi.
Another possible solution is to have a prior 2D or 3D model
of the object under question and use the model parameters
to represent the object. However, obtaining prior models of
all possible objects in a general scenario is a difficult task.
Even in the presence of prior models, parameter estimation
for these models (or model fitting) is by no means a trivial
problem.

To avoid using prior models for the objects in question,
we learn the appearance of each object online as shown in
Figure 1. The learned model is weak when the object is first
observed but becomes stronger and stronger as more ob-
servations of the object are available. We assume that the
transitions between different poses and views of an object
are smooth, and hence, the appearance Oi+1 of the object O
in frame Fi+1 can be represented as a linear combination of
its previous i appearances, i.e., Oi+1 =

∑i
j=1 ajOj . Thus,

the appearance Oi+1 of an object can be represented by the
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(a)

(b)
Figure 2: Flow chart of the object-based video compres-

sion framework. (a) Encoding process is shown where each

frame is encoded in a similar fashion to obtain the encoded

video. The output of the tracking component is the labels

and silhouettes of objects L∗ and the background model BC .

The silhouettes of the same object in two consecutive frames

are aligned using the affine motion parameters and the ap-

pearance is encoded in the form of the coefficients of principal

components. The encoded video for each frame consists of the

affine motion parameters and coefficients of principal compo-

nents of each object along with the JPEG compressed object

and background errors. (b) Decoding process is shown where

each frame is reconstructed in a similar manner to obtain

the decoded video. The initialization (not shown) creates a

background region and initializes the object models and then

inserts the objects in the background to reconstruct the first

video frame. The rest is simply the inverse of the encoding

process.

coefficient vector a1, . . . , ai. However, the size of this vector
increases over time and because of the linear dependence
among the appearance vectors O1, . . . , Oi, is not the best
succinct representation of Oi+1. Therefore, we compute the
basis of the appearance subspace of object O from the ob-
servations O1, . . . , Oi using Principal Component Analysis
(PCA) [10, 16], and the appearance vector Oi+1 (of d di-
mensions) is then represented by the coefficient vector zi+1

(of k dimensions, k � d) of the k most significant principal
components of this space as follows:

zi+1 = WOi+1

The appearance model is represented by the projection
matrix W , of dimensions k × d consisting of the k most
significant eigen vectors, v1(i), v2(i), . . . , vk(i);

The principal components v1(i), v2(i), . . . , vd(i) and the
corresponding eigen values λ1(i), λ2(i), . . . , λd(i) are the so-

lution of the following linear system:

(S − λj(i)I)vj(i) = 0, j = 1, ..., d (1)

where S is the sample covariance matrix, and is given by:

S =
1

i

i∑
j=1

(Oj − µi)(Oj − µi)
T , (2)

µi = 1
i

∑i
j=1 Oj is the sample mean.

To compute the principal components efficiently for each
object at each frame, we update the existing principal com-
ponents by using an incremental method (IPCA) based on
[21]. At each time frame Fi+1, the IPCA method itera-
tively computes the new principal components vj(i+1) (for
j = 1, 2, ...d), as follows:
1. u1(i + 1) = Oi+1.
2. For j = 1, 2, ..., min(d, i + 1) do,

(a) If j = i + 1,
initialize the jth eigenvector as vj(i + 1) = uj(i + 1);
(b) Otherwise,

vj(i + 1) =
i − l

t
vj(i) +

1 + l

i + 1
uj(i + 1)uT

j (i + 1)
vj(i)

||vj(i)||
(3)

uj+1(i + 1) = uj(i + 1) − uT
j (i + 1)

vj(i + 1)

||vj(i + 1)||
vj(i + 1)

||vj(i + 1)||
(4)

where l is the amnesiac parameter giving larger weights to
newer samples, and ||v|| is the eigenvalue of v. Intuitively,
eigenvectors vj(i) are pulled towards the data uj(i + 1), for
the current eigenvector estimate vj(i + 1) in (3). Since the
eigenvectors have to be orthogonal, therefore (4) shifts the
data uj+1(i+1) normal to the estimated eigenvector vj(i+1).
This data uj+1(i + 1) is used for the estimating the (j +
1)th eigenvector vj+1(i + 1). Note that the IPCA method
converges to the true eigenvectors in fewer computations
than PCA (see proof in [22]).

Once the object appearance is coded, we use the affine
motion model to compute its position along with other mo-
tion transformations such as rotation, scaling and shearing
from its previous position. Under the affine transformation,
the position of each point in the new frame is defined by the
six parameters as follows:

xi = a11xi−1 + a12yi−1 + Tx (5)

yi = a21xi−1 + a22yi−1 + Ty (6)

where a11, ..., a22 are the rotation, shearing and scaling pa-
rameters, and Tx, Ty are the translation parameters. These
parameters are estimated using least square method in a
hierarchical coarse to fine procedure as presented in [3].

For each frame, the transmitter encodes the estimated
objects Ôt

1, ..., Ô
t
n (in the form of coefficients of principal

components and affine parameters) and the reconstruction
error of background and objects as the base difference image
B∗

d and object difference image O∗
d respectively. The back-

ground error is not encoded in case the sum of squared differ-
ences (SSD = 1

width∗height∗3
∑width

i=1

∑height
j=1

∑3
k=1(Bijk −

Imageijk)2) is below a certain threshold Tb. The encoded
video stream, at each time instance, contains the compressed
base difference image B∗

d , object difference image O∗
d, la-

belled object silhouettes L∗, and the motion and appearance
parameters of each object. Note that L∗ contains only the
new object silhouettes, as motion compensation can be ap-
plied to the object silhouettes in previous frame, to obtain
object regions in the current frame. Also, the appearance
parameters only contain the eigen coefficients of each object,
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(a)

(b)
Figure 3: Sequence of frames from videos in the surveillance

and video phone domain where the red and blue contours are

the tracked objects. (a) Surveillance Video: Objects enter

and exit the field of view of the camera, therefore a back-

ground model can be learnt and utilized for tracking. (b)

Video Phone Scene: Objects persist inside the field of view

of the camera and thus parts of the background remain oc-

cluded during the complete sequence.

rather than the eigen vectors, since the principal components
can be estimated (and maintained) using the reconstructed
objects during decoding at the receiver end.

Decoding of the video is achieved by decompressing the
first frame and creating a background Bc. Also, each new
object’s appearance model is initialized using PCA. For the
subsequent frames, we obtain the estimated objects Ôt

1, ..., Ô
t
n

by their appearance and motion parameters, and remove the
object estimation error by adding the object difference image
O∗

d to obtain Ȯt
1, ..., Ȯ

t
n. Furthermore, the error in the back-

ground region Bc is removed by adding the base difference
image B∗

d . The video frame is reconstructed by inserting the
objects Ȯt

1, ..., Ȯ
t
n into the corrected background. Finally,

each object’s appearance model and silhouette are updated
by the IPCA and motion compensation (using motion pa-
rameters) respectively, and the above process is repeated for
all the frames. The object-based compression framework is
summarized in Figure 2.

3. DETECTION AND TRACKING OF
OBJECTS

Thus far in this paper, we have assumed that the segmen-
tation of objects in each frame and their temporal correspon-
dence throughout the video sequence is readily available. In
the next two sub-sections, we will present solutions to these
problems for both video surveillance and video phone do-
mains. Video surveillance systems track objects in indoor
and outdoor environments, where objects enter and exit the
field of view of the camera (see Figure 3a). Since the objects
do not persist in the field of view, one can use background
modelling techniques to detect and track the objects. In
contrast, video phone scenes have objects persisting in the
field of view of the camera and the complete background
region is not visible (see Figure 3b) during the entire se-
quence. Therefore the background subtraction techniques
are not suitable for tracking in these videos. Instead, we
utilize a contour-based tracking method that models a con-
tour using an energy functional, and tracks the object from
frame to frame by minimizing the contour energy. We now
describe both of these methods in detail.

3.1 Tracking in Surveillance Videos
In this section, we address some issues related to finding

the correspondence between objects at each time instant for
surveillance videos. There are several problems during de-

(a)

(b)

(c)

(d)

(e)

(f)

Figure 4: Car moving on a road with a perspective view

and taking a turn (Video1) (a) PSNR comparison of Object-

based compression with MPEG-2 and MPEG-4 (b) Sequence

of frames from original video (c) Object silhouettes using

background subtraction (d) Reconstructed images using the

object-based compression method (e) Difference images be-

tween original and object-based compressed (f) Difference

images between original and MPEG4 compressed. Note that

the object-based method has less error at the object bound-

aries compared to the MPEG-4 method. This is because

MPEG-4 approximates the objects using blocks, while our

method uses actual object silhouettes.

tection and tracking, inherent in the surveillance domain,
that include rapidly changing lighting conditions (due to
cloud cover), shadows, different types of occlusions (such
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as object to object, and object to background region), and
entry/exit of objects.

We use background subtraction for object detection, that
is based on an extension of Stauffer et al. [15] by Javed et
al. [7]. In their extension, they propose multiple levels of
processing during background subtraction. The first level
is the pixel level processing that separately uses color-based
and gradient-based distributions, to find pixels belonging to
the foreground or the background. The second level is the
region level processing that integrates the gradient and color
information. A connected component algorithm is applied
to group all foreground pixels into regions. Any foreground
region that corresponds to an object will have high values
of gradient-based background subtraction at its boundaries.
This will not be true for falsely detected regions and they
are added to the background regions. This method han-
dles the common problems in most background subtraction
algorithms such as quick illumination changes due to ad-
verse weather conditions, relocation of the background ob-
jects (e.g. repositioning of a chair), and initializing the back-
ground model with moving objects.

Once the object silhouettes are obtained, we use a track-
ing method proposed by Javed et al. [8]. In this method,
each object is modelled by the color and spatial probably
density functions pdfs. The color pdf is approximated by a
normalized histogram, while the spatial pdf is represented
by a Gaussian distribution, with the variance equal to the
sample variance of the object silhouette. For a new video
frame, the color and spatial probabilities (belonging to each
labelled object) are calculated for each pixel in the fore-
ground region. Each of those pixels will vote for that object
label, for which the product of the spatial and color prob-
abilities is the highest. Thus each foreground region is as-
signed that object label, which received the highest number
of votes. Object occlusion is also handled during tracking,
the details of which can be found in [8], and [9].

3.2 Tracking in Video Phone Scenes
Video phone scenes usually have objects present at the

start of the video and they persist in field of view of the
camera throughout the entire sequence. Since we cannot
model the background in such videos, we cannot use back-
ground subtraction techniques for tracking. Thus we use
the contour-based object tracking method as proposed by
Yilmaz et al. [23]. Object tracking is treated as a two-
class discriminant analysis of pixels into regions belonging
to object Robj and background Rbck, which depends upon
object features, energy functional, and the energy minimiza-
tion technique.

The object features under consideration are appearance
and shape, and the appearance features are composed of
color and texture. Pixels are clustered as object or back-
ground by the independent opinion polling strategy. The
shape of the object is learnt over time (t), based on the ob-
ject contour Γ and is given by Pshape = P (ϕ(Rt

i)|Γt), where
Ri are the object regions and ϕ is the partitioning operator
that divides the image into object and background regions.

Tracking the energy functional is formulated as a max-
imum a posteriori estimate (MAP) of the object contour
in the tth frame, and can be calculated by maximizing the
probability PΓ over the subsets Γ ⊂ Ω, where Ω is the space
of all object contours. The MAP estimate can be written in

(a)

(b)

(c)

(d)

(e)

Figure 5: Person walking on a road with a perspective

view and taking a turn (Video7) (a) PSNR comparison of

Object-based compression with MPEG-2 and MPEG-4 (b)

Sequence of frames from original video (c) Object silhouettes

using background subtraction (d) Difference images between

original and object-based compressed (e) Difference images

between original and MPEG4 compressed. Note that this

video sequence was used to compare the compression factors

of MPEG-4 vs. the object-based method.

terms of sub-regions (obtained from the Bayes’ rule) as:

Γt = arg max
Γ⊂Ω

∏
x1

[
∏
x2

PRΓ
obj

(It(x2))
∏
x3

PRΓ
bck

(It(x3))P
t
shape]

where x1 ⊂ Γ, x2 ∈ Robj and x3 ∈ Rbck. Converting this to
energy functional by considering the negative log-likelihood
of the probabilities, we obtain:

E =

∫
x1

[

∫ ∫
x2

Ψobj(x2)dx2+

∫ ∫
x3

Ψbck(x3)dx3−logP t
shape]dx1

(7)

where x1 ⊂ Γ, x2 ∈ Robj(x1), x3 ∈ Rbck(x1), and Ψα(x) =
−logPRα(It(x)) : α ∈ {obj, bck}.

Object tracking is achieved by evolving the contour in
each frame such that the energy functional given in (7) is
minimized. The minimization is achieved by finding the
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(a)

(b)

Figure 6: The difference image comparison for motion com-

pensation only vs object motion and appearance model en-

coded videos. (a) For a smaller video (video7) the difference

image sizes are almost equal. (b) For a larger video (caviar3)

the difference image sizes decreases for the object appearance

model encoded video as the new pose can be reconstructed

with existing model poses.

derivative of the energy functional, which is associated by
the Euler Lagrange equations of the functional given in (7)
by:

δE

δx
= −[

∫ ∫ m

−m

(−Ψobj(x)−Ψbck(x))dx− S]
δy

δs
(8)

δE

δy
= [

∫ ∫ m

−m

(−Ψobj(x)−Ψbck(x))dx− S]
δx

δs
(9)

where s is the contour parameter and S is the contour shape.
Once all the objects are tracked using contour evolution, the
background is obtained using Bt

i = It
i − (Ot

1 +Ot
2 + ...+Ot

n)
in the current frame It

i of n objects.

4. RESULTS AND DISCUSSION
We perform an online encoding of videos from a static

camera using the proposed object-based compression frame-
work. The encoding scheme is demonstrated on nine videos,
three are from traffic surveillance dataset, one is from stan-
dard Performance Evaluation of Tracking and Surveillance
(PETS) dataset [26], 3 are from the standard CAVIAR dataset
[25], while 2 videos are from the standard MPEG-7 dataset.
Vid-eo1 is of a car that crosses the railway tracks and then
turns left as seen in Figure 4. Video5 is of one car emerging
from behind the trees, while the other is occluded by the
tree. Video7 is of a woman walking on the road then she
turns and walk away from the camera as shown in Figure 5.
PETS video contains both people and cars that are moving

Figure 7: The average PSNR for the MPEG-4 method

with different compression ratios compared to object-based

method for video7. The horizontal axis portrays the com-

pression factor of MPEG-4 vs object-based method e.g. 0.25

depicts MPEG-4 is 4 times smaller than the object-based

video size.

with a changing background as detailed in Figure 9. Caviar
1, 2 and 3 are from the standard surveillance videos from
the shopping mall as shown in Figure 8. Akiyo is a video of
the Japanese newscaster as in Figure 10, while the mother
daughter sequence is shown in Figure 11. The objects in the
first seven videos are obtained using background modelling
techniques, while we use a contour-based object tracking for
Akiyo and mother daughter videos. This is because the ob-
jects occlude part of the background throughout the video
and background modelling techniques cannot be used for
tracking.

The decompressed frames are tested for the Peak Signal
to Noise Ratio (PSNR), and is computed using the Mean
Squared Error (MSE) that is calculated by:

MSE =
1

width ∗ height

width∑
i=1

height∑
j=1

(Aij −Bij)
2

where A is the original image, B is the reconstructed im-
age, and width and height are image dimensions. Note that
this difference is performed over three color channels (RGB)
and averaged for the channels to obtain a single value. The
PSNR is defined in terms of MSE as follows:

PSNR = 10× log10
(2n − 1)2

MSE
(10)

where the numerator term in the fraction is the peak sig-
nal value and MSE is the noise (error) in the signal. Also,
the mean PSNR for all the frames in the video is given by
µPSNR = 1

frames

∑frames
i=1 PSNRi.

There are twofold discussions on the results in the next
sections. First, the advantages of using an object appear-
ance model for object-based video compression is shown.
Compression ratios for compressing with and without an
object appearance model are compared. Second, the com-
pression of our method is compared to the leading commer-
cially available MPEG encoders. The next section details
the necessity of object appearance model for attaining bet-
ter compression.

4.1 Requirement of an Object Appearance Model
As discussed in Section 2, an object appearance model

is necessary to model the local motion in non-rigid moving
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Table 1: Difference image size comparison with and without object appearance modelling

Frames With Appearance Model Without Appearance Model

Size(KB) µPSNR Size(KB) µPSNR

video7 121 289.4 30.6 290.4 30.2

caviar1 212 287 31.5 294 31.1

caviar2 331 613.2 32.1 672.1 31.4

caviar3 293 443 31.9 508 30.5

Table 2: PSNR comparison of Object-based compression with MPEG-2 and MPEG-4

Frames Original MPEG-2 MPEG-4 Object-based

Size(MB) Size(MB) µPSNR Size(MB) µPSNR Size(MB) µPSNR

video1 188 46.4 7.83 28.2 1.85 28.8 0.64 28.4

video5 251 62.4 7.90 29.7 2.48 30.2 0.61 31.7

video7 121 29.9 5.21 28.4 0.97 30.2 0.45 30.6

pets 555 308.0 33.9 33.5 6.48 34.5 3.36 36.8

caviar1 212 30.5 6.92 29.9 0.92 31.3 0.43 31.5

caviar2 331 81.3 10.2 30.2 1.91 31.9 0.78 32.1

caviar3 293 68.0 8.54 30.1 1.43 30.1 0.64 31.9

akiyo 300 21.7 2.75 32.9 0.17 32.5 0.19 32.4

mother 301 21.8 3.06 32.5 0.23 32.4 0.21 31.4

objects. We conducted experiments for videos containing
non-rigid objects and encoded it without modelling its ap-
pearance (using motion compensation only). We then com-
pared the compression results with the object appearance
model being encoded. This is shown in Table 1 where com-
pression is equally good for smaller videos while it is better
for longer videos encoded with object appearance model.
The reason behind it is that, for smaller videos, the object
appearance model initially does not have large sample poses
to reconstruct the new object pose from the existing poses.
Hence, the error (difference image) is initially larger com-
pared to motion compensated encoding, which decreases as
more poses are available. This is also shown in Figure 6,
where the size of the difference image from the two encod-
ing methods is compared.

4.2 Comparison with the MPEG Encoders
We also show the results of the video frames compressed

using the MPEG-2 and MPEG-4 standards. The compres-
sion tool used for encoding the MPEG videos is Adobe
Premiere, where MPEG-2 encoding uses ‘Microsoft Win-
dows Media Video 9’ codec at ’One-Pass Quality VBR and
Main Profile’ setting and MPEG-4 encoding utilizes ‘XVid
MPEG-4’ codec at ‘1 Pass - Quality and Main Profile’ set-
ting. The summary of results for the different compression
methods is shown in Table 2. The proposed object-based
method’s compressed video contains the difference (error)
image, k largest eigen coefficients, labelled object silhou-
ettes, and the affine motion parameters of each object.

The average PSNR value is kept the same for object-based
and MPEG-4 compression, however it is not possible to con-
trol the PSNR quality for MPEG-2 using the current codec.
The compression ratios of the three methods are compared,
and our method outperforms the MPEG-4 compression by
a factor ranging from 1.6 to 5 (see Table 2), and MPEG-2
by a factor ranging from 9 to 17. The PSNR values are
better for object-based method, except at the I-frames of
MPEG-2 and MPEG-4 methods, where the actual images

are used rather than approximations, hence our method has
lower compression for those frames.

We have also compared the compression factors and µPSNR
of MPEG-4 vs the fixed object-based compression for video7
as shown in Figure 7. The µPSNR for object-based method
is 30.6db and is kept fixed, while the MPEG-4’s µPSNR
topped at 30.2db at maximum quality. The video was com-
pressed with different bit-rates for the MPEG-4 method to
portray the quality at different compression factors com-
pared to the object-based compression method. The hor-
izontal axis portrays the compression ratio of MPEG-4 vs
object-based method (e.g. 0.25 depicts MPEG4 is 4 times
smaller than the object-based video size). As shown in the
figure, our method has better quality even at the maximum
bit-rate of MPEG-4 video, at 2.5 times the size, compared
to the object-based compressed video.

The performance of our object-based video compression
method depends upon the size of the object and change in
the background. The difference image at the boundary of
the object will be small in size for our method compared to
the MPEG-4 method that approximates the object bound-
ary, thus the compression depends upon the size of the ob-
ject. If the object size is small (about 30x50 pixels) then the
compression will be almost the same as MPEG-4, since the
size of the object compared to the size of the frame is rela-
tively small. On the other hand, if the object size is large
(greater than 50x80 pixels) then our method will have far
better compression compared to MPEG-4 as shown in Ta-
ble 3, where Compression Factor = (Size of MPEG-4 com-
pressed Video)/(Size of Object-based compressed Video).
We also compare the compression of the background dif-
ference image for our object-based vs MPEG-4 encoding.
The background image sequence is generated by the back-
ground model for video7 and caviar1, and the results are
illustrated in Table 4. Our method outperforms the MPEG-
4 method since our method only updates the background
when it has a significant change, where as MPEG-4 updates
the background at each frame. Though our method has
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Table 3: Comparison of Object-based with MPEG-4 compression at different object sizes

Frames Object Size Object-based Size(KB) MPEG-4 Size(KB) Compression Factor

pets 555 Small (30x50) 3360 6480 1.9

video7 121 Small (30x50) 450 970 2.1

caviar3 293 Medium (45x70) 645 1434 2.2

caviar2 331 Large (50x80) 779 1910 2.4

video1 188 Large (75x65) 640 1850 2.9

Table 4: Comparison of Object-based with MPEG-4 compression for background difference images

Frames Object-based MPEG-4

Size(KB) µPSNR Size(KB) µPSNR Size(KB) µPSNR

video7 121 15.4 30.2 74.4 30.7 19.6 18.3

caviar1 293 23.9 30.8 178.0 31.1 48.0 20.4

worse µPSNR than MPEG-4 (at higher bit-rate) as can be
seen in Table 4, visually the changes in the background are
insignificant (e.g. small tree with moving leaves), and hence
can be ignored for surveillance purposes.

5. CONCLUSION
This paper presented a novel object-based video coding

framework for videos obtained from a static camera in surveil-
lance and video telephone domains. As opposed to most
existing methods, the proposed method does not require
explicit 2D or 3D models of objects and hence is general
enough to cater for varying types of objects in the scene.
The proposed system detects and tracks objects in the scene
and learns the appearance model of each object online us-
ing incremental principal component analysis (IPCA). Each
object is then coded using the coefficients of the most signif-
icant principal components of its learned appearance space.
The rigid component of the object’s motion is coded in terms
of its affine parameters. The proposed method is evaluated
on videos containing a variety of scenarios such as multiple
objects undergoing occlusion, splitting, merging, entering
and exiting, as well as a changing background. Compression
results are demonstrated using standard MPEG-7 as well as
other videos and the proposed method displays higher Peak
Signal to Noise Ratio (PSNR) compared to MPEG-2 and
MPEG-4 methods and also provides comparable or better
compression.
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Figure 9: Standard Performance Evaluation for Tracking

and Surveillance (PETS) video containing people walking and

cars moving with changing background (Video8) (a) PSNR

comparison of Object-based compression with MPEG-2 and

MPEG-4 (b) Sequence of frames from original video (c) Dif-

ference image sequence between original and object-based

compressed (d) Difference image sequence between original

and MPEG4 compressed. Note that this sequence is quite

complex as it has a changing background (addition and re-

moval of cars from the background model). Also, people walk

to the car, sit in it and drive away. Thus our method is able

to track objects, and update and learn the background, and

is able to compress the video with better quality compared

to the MPEG-4 method.
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Figure 10: Standard Japanese newscaster Akiyo video (a)

PSNR comparison of object-based compression with MPEG-

2 and MPEG-4 (b) Sequence of frames from original video

(c) Object layers obtained using contour-based object track-

ing (d) Reconstructed images using the contour-based ob-

ject tracking and object-based video compression (e) Differ-

ence image sequence between original and object-based com-

pressed (f) Difference image sequence between original and

MPEG4 compressed. Note that the objects in this video are

tracked by the contour-based method, as the background was

occluded by the newscaster.
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Figure 11: Standard mother daughter video (mother) (a)
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2 and MPEG-4 (b) Sequence of frames from original video (c)

Difference image sequence between original and object-based

compressed (d) Difference image sequence between original

and MPEG4 compressed.
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