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ABSTRACT

Multiple cameras are needed to cover large environments
for monitoring activity. To track people successfully in
multiple perspective imagery, one needs to establish
correspondence between objects captured in multiple
cameras. We present a system for tracking people in
multiple uncalibrated cameras. The system is able to
discover spatial relationships between the camera fields of
view and use this information to correspond between
different perspective views of the same person. We employ
the novel approach of finding the limits of field of view
(FOV) of a camera as visible in the other cameras. Using
this information, when a person is seen in one camera, we
are able to predict all the other cameras in which this
person will be visible. Moreover, we apply the FOV
constraint to disambiguate between possible candidates of
correspondence. We present results on sequences of up to
three cameras with multiple people. The proposed
approach is very fast compared to camera calibration
based approaches.

Keywords:  Tracking in multiple cameras, multi-
perspective video, surveillance, camera handoff, sensor
fusion

1. INTRODUCTION

Tracking humans is of interest for a variety of applications
such as surveillance, activity monitoring and gait analysis.
With the limited field of view (FOV) of video cameras, it
is necessary to use multiple, distributed cameras to
completely monitor a site. Typically, surveillance
applications have multiple video feeds presented to a
human observer for analysis. However, the ability of
humans to concentrate on multiple videos simultaneously
is limited. Therefore, there has been an interest in
developing computer vision systems that can analyze
information from multiple cameras simultaneously and
possibly present it in a compact symbolic fashion to the
user.

To cover an area of interest, it is reasonable to use
cameras with overlapping FOVs. Overlapping FOVs are

typically used in computer vision for the purpose of
extracting 3D information. The use of overlapping FOVs,
however, creates an ambiguity in monitoring people. A
single person present in the region of overlap will be seen
in multiple camera views. There is need to identify the
multiple projections of this person as the same 3D object,
and to label them consistently across cameras for security
or monitoring applications.

In related work, [1] presents an approach of dealing
with the handoff problem based on 3D-environment model
and calibrated cameras. The 3D coordinates of the person
are established using the calibration information to find the
location of the person in the environment model. At the
time of handoff, only the 3D voxel-occupancy information
is compared to achieve handoff, because multiple views of
the same person will map to the same voxel in 3D. In [2],
only relative calibration between cameras is used, and the
correspondence is established using a set of feature points
in a Bayesian probability framework. The intensity
features used are taken from the centerline of the upper
body in each projection to reduce the difference between
perspectives. Geometric features such as the height of the
person are also used. The system is able to predict when a
person is about the exit the current view and picks the best
next view for tracking. A different approach is described in
[3] that does not require calibrated cameras. The camera
calibration information is recovered by observing motion
trajectories in the scene. The motion trajectories in
different views are randomly matched against one another
and plane homographies computed for each match. The
correct homography is the one that is statistically most
frequent, because even though there are more incorrect
homographies than the correct one, they lie in scattered
orientations. Once the correct homography is established,
finer alignment is achieved through global frame
alignment. Finally [4, 5] describe approaches which try to
establish time correspondences between non-overlapping
FOVs. The idea there is not to completely cover the area of
interest, but to have motion constrained along a few paths,
and to correspond objects based on time from one camera
to another. Typical applications are cameras installed at
intervals along a corridor [4] or on a freeway [5].



The luxury of calibrated cameras or environment
models is not available in most situations. We therefore
tend to prefer approaches that can discover a sufficient
amount of information about the environment to solve the
handoff problem. We contend that camera calibration is
unnecessary and an overkill for this problem, since the
only place where handoff is required is when a person
enters or leaves the FOV of any camera. By building a
model of the relationship between FOV lines of various
cameras can provide us sufficient information to solve the
handoff problem.

In the next section we formalize the handoff problem
and describe how the relationship between the FOV of
different cameras can be used to solve the handoff
problem. In Section 3, we describe how this relationship
can be automatically discovered by observing motion of
people in the environment. Finally we present results of
our experiments in Section 4.

2. EDGE OF FIELD OF VIEW LINES

The handoff problem occurs when a person enters the FOV
of a camera. At that instant we want to determine if this
person is visible in the FOV of any other camera, and if so,
assign the same label to the new view. If the person is not
visible in any other camera, then we want to assign a new
label to this person. Consider the following scenario; a
room with two cameras has two persons walking in it. At
time instant 1, both persons are visible in Camera 1. At
time instant 2, Person 1 walks into the FOV of Camera 2.
Since we have already assigned labels to both persons
(Person 1 and 2), we need to figure out at this instant
which of the persons is entering the FOV of Camera 2.
There are three possibilities to consider here. The new
person seen in Camera 2 could be Person 1, Person 2 or a
new person entering the environment. Since we do not
know any 3D information about the environment or the
camera calibration matrices, we cannot determine what
label to assign to the new view seen in Camera 2.

Note here that we could have matched color features
of the two persons visible in Camera 1 to the new view in
Camera 2 to find the most likely match. However, when
the disparity is large, both in location and orientation,
feature matches are not reliable. After all, a person may be
wearing a shirt that is different colors at front and back.
The reliability of feature matching decreases with increase
in disparity, and it is not uncommon to have surveillance
cameras looking at an area from opposing directions.
Moreover, different cameras can have different intrinsic
parameters as well as photometric properties (like contrast,

color-balance etc.). Lighting variations also contribute to
the same object being seen with different colors in
different cameras.

For shallow mounted cameras each FOV’s footprint
can be described by two lines on the floor-plane, the left
and the right limit of FOV. Let Li

l and Li
r be the left and

right limits of FOV of the ith camera (Ci) on the ground
plane (Figure 1). Let the projection of Li

x (x ∈ {l, r}) in
Camera j be denoted by Lij

x. Note that Lii
x denotes the left

and the right sides of the image in Ci. As far as the camera
pair i, j is concerned, the only locations of interest in the
two images for handoff are Lij

x and Lji
x. These are up to

four lines, possibly two in each camera. Let us currently
assume that a person already visible in one of the cameras
is entering the FOV of another camera. In this case, all that
needs to be done is to look at the associated line in the
other camera and see which person is crossing that line.
Figure 1 describes this situation in more detail. A person is
entering the FOV of C2. There are two persons visible in
C1 at this instant. Both these persons are being tracked and
we have a bounding box around them. By looking at the
bottom part of the bounding box, we can determine quite
easily which person has entered the FOV of C2. The line
that helped us determine this is L21

l i.e. the left FOV of C2

as seen in C1. The new person in C2 is therefore assigned
the same label as the one it was assigned in C1. Note that
we are considering only the left and right edges of FOV in
this formulation, which is sufficient for cameras mounted
at a low angle of depression. However, there is nothing in
this analysis which prevents it from being extended to
considering all four limits of the camera footprint, which
will be necessary for images shot at a high angle of
depression.

Camera 1 Camera 2

Figure 1: Example of correct handoff: There are two
persons visible in Camera 1. When one of them enters the
FOV of Camera 2, the left edge of FOV of Camera 2 as
seen in Camera 1 (L21

l ) helps us disambiguate between
the labels.



Detection of New Persons
In the example given above, it is assumed that when a

person enters the FOV of a camera, he must be visible in
the FOV of another camera. This is not always the case. A
person might be entering from the door (in which case he
might just “appear” in the middle of the image) or he might
be entering the FOV from a point that is not visible in any
other camera. If the camera setup is such that the
environment is completely covered, then the latter case
will never happen. However, to keep the formulation
general, the second case has to be considered too.

In the previous case, we looked at the FOV lines of
the current camera as seen in other cameras. To find
whether a person is visible in other cameras or not, we
look at the FOV lines of other cameras as seen in the
current camera. Consider the scenario when a person is
entering the FOV of Ci. Whether this person is visible in
any other camera (Cj, j ≠ i) or not can be determined by
looking at all the FOV lines that are of the form Lji

x , i.e.
edge of FOV lines of other cameras as visible in this
camera (Ci).  These lines partition the image Ci into
(possibly over lapping) regions, marking the areas of
image Ci that correspond to FOV of other cameras.
Figure 2 illustrates this situation symbolically. Thus all the
cameras in which current person is visible can be
determined by acquiring the region of the person’s feet.

Thus with each line Lji
x, an additional variable δji

x is
stored. The value of δji

x can either be +1 or –1, depending
upon which side of the line falls inside the FOV of Cj.
Then, given an arbitrary point (x′, y′) in Ci, the point’s
visibility in Cj can be determined by just determining if
this point is on the correct side of both Lji

l and Lji
r. If L

ji
l is

represented by A x′ + B y′ + C. The point (x′, y′) is visible
in Cj if and only if

sgn( )’,’( yxL ji
l )= ji

lδ  and  sgn( )’,’( yxL ji
r )= ji

rδ  (1)

In the case when only one of the left or right lines of Cj is
visible in Ci, the condition in Eq. 1 is simplified to only
one of the anded terms.

Establishing Correspondence Between Views
When a person enters the FOV of a new camera, it can

be determined whether this person is visible in the FOV of
some other camera or not. Whenever a person is in the
image all the other cameras in which this person will also
be visible can be found out by using Eq 1. If there is no
such camera, then a new label is assigned to this person.
Otherwise the previous track of this person is found so that
a link can be established between the two views.  This is
done by finding the person closest to the appropriate edge
of FOV line. Say that the person entered from the left side
of C1. Then, the persons visible in all cameras other than
C1 will be searched and the person that is closest to the left
edge of FOV line of C1 in that camera will be found. These
two views will then be linked together by entering them in
an equivalence table. In general, if a person enters Ci from
side x, then the label assigned to the new view will be:

1

2
3

-
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Camera 1

Figure 2: (Left) Three cameras setup in a room, with
their FOVs shown by different lines. A person is
entering the FOV of Camera 1. (Right) By looking at
the FOV lines of Cameras 2 and 3 in Camera 1, we can
determine that this person is visible in Camera 2 but
not in Camera 3.

(a)

(b)

(c)
Camera 1  Camera 2

Figure 3: (a) Person entering the FOV of C2 from
left yields a point on line L21

l in image taken from
C1. (b) Another such correspondence yields
another point, which are joined to find the
complete line L21

l shown in (c).
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where Pk is the label assigned to a person and D(P, L)
returns the absolute distance between the center of the
bottom line of the rectangular bounding box of person P
and the line L.

The complete algorithm for ambiguity resolution of
new views is given in the inset.

3. AUTOMATIC DETERMINATION OF
FOV LINES

When tracking is initiated, there is no information
provided about the FOV lines of the cameras. The system
can, however, find this information by observing motion in
the environment. Whenever there is a person entering or
exiting one camera, he actually lies on the projection of the
FOV line of this camera in all other ones in which he is
visible. Suppose that there is only one person in the room.
Then, when this person enters the FOV of a new camera,
we find one constraint on the associated line. Two such
constraints will define the line, and all constraints after that
can be used in a least squares formulation. This concept is
visually described in Figure 3. However it is not always
possible to have only one person walking in the scene.
Therefore, for cluttered situations where it is hard to find
the correspondences to be used for initial setup, we
propose another method. When multiple people are in the
scene and if someone crosses the edge of FOV, all persons
in other cameras are picked as being candidates for the
projection of FOV line. Since the false candidates are
randomly spread on both sides of the line where as the
correct candidates are clustered on a single line, correct
correspondences will yield a line in a single orientation,
whereas the wrong correspondences will yield lines in
scattered orientations. We use Hough transform to find the
best line in this case.

Thus there are two options for initial setup of FOV
lines. Quick self-calibration can be achieved by having
only one person walk around the room a few times. This
should be sufficient for determining the relationship

Figure 4: Experimental setup: 3 cameras are set
up in a room to cover most of the area. There is
only one door, which is visible in camera 1.

Repeat for each frame
For each camera Ci

If person appears from side x
Find S = {j | current person is visible in Cj }

(from Equation 1)

If S = φ
then assign current person a unique label

else
For each camera Cj s.t. j∈S

For each person k in Cj

Compute d(j,k)= D(Pjk,L
ij
x)

end
end

end
end

end
Let s = row of minimum element in d
Let t = column of minimum element in d
Then Pst ( in C

s
 ) is the same as the new person in C

i

end



between the cameras. All lines of interest should be
crossed at least twice during such a walk, which is often
easily established during a 30-40 second random walk
around the room. However, if the environment is busy and
cannot be cleared of people, we can use the second
method, which finds the statistical best line, treating every
correspondence as a potentially correct one. This method
needs more points for a reliable estimate of the lines and
will therefore take longer to be setup correctly. However, it
is completely automatic and does not need even the simple
setup step required in the first method.

4. EXPERIMENTS AND RESULTS

To verify this formulation, we setup 3 cameras in room to
cover most of the floor area. The setup is shown in
Figure 4. To track persons, we used a simple background
difference tracker. Each image was subtracted from a
background image, and the result thresholded, to generate
a binary mask of the foreground objects. We performed
noise cleaning heuristically, by dilating and eroding the
mask, eliminating very small components and merging
components likely to belong to the same person. Occlusion
is frequent in indoor environments, and to deal with
occluding cases, we incorporated constant-velocity-based
assumption in our tracker. Our tracker could not deal with
one case of occlusion where a person exited from the
image and at the same time another person entered the
image from the same location, generating ambiguity. Since
the emphasis of this paper is not to develop a robust
technique for tracking during person to person occlusion,
but rather to demonstrate the solution to the handoff

problem, we manually corrected this case of wrong
tracking for the purposes of our experiments. Other than
this one case, tracking was done automatically for all
experiments.

To determine the FOV lines initially, we had one
person walk around the room briefly. All significant edge
of field of view lines were recovered from a short sequence
of a single person walking in the room for only about 40
sec. Figure 5 shows some sample frames from this

Figure 5: Determination of Edge of FOV lines using a short sequence of person walking in the room.
The first 3 columns show triplets of sample images taken at same time instant. The last column shows
the recovered lines

(a) (b)

Figure 6: (a)Tracks of two persons as seen in the three
cameras. A total of 10 tracks are seen. The first two
tracks in Camera 1 are persons entering from the door.
For all other tracks, an equivalence relation is established
automatically, shown by the arrows. Because of the
equivalence relations, globally correct labeling is
achieved, shown by the different colors of the tracks.  (b)
Track of three persons as seen in three cameras in
sequence 2



sequence and the edge of FOV lines recovered from this
step. The lines found in this first step were used for the
remaining experiment.

Next, two persons entered the room, walked among
the cameras and exited. The tracking module tracked each
view of these persons separately and assigned a unique
label to each track in every camera. Overall, 10 different
tracks of these persons were seen in the three cameras.
Figure 6a shows all the tracks, which are 4 in C1, 4 in C2

and 2 in C3. Our algorithm identified 8 situations where a
new view of an existing person was observed. In each of
these situations, a person was seen entering a new camera.
The distance of all other persons from the edge of FOV of
that camera is used to find the previous view of the person.
The arrows in Figure 6a show the equivalence relations
found out by our system. Once the arrows are marked, the
complete tracking history of the person is recovered, by
linking all the tracks of the same person together. The two
different colors in Figure 6a show the globally consistent
labels of the two persons. It can be seen that all handoffs
were handled correctly, and the global tracking
information was consistent at all times. The whole analysis
part is very fast, as only the information about bounding
boxes of the images and the lines is used in establishing the
equivalence between tracks.

We performed another experiment involving three
persons in a different environment. Figure 6b shows the
recovered relationships between the 10 tracks seen in three
cameras. In this case, our system correctly identified that
these 10 tracks actually represented three different persons,
with Person1 entering in Camera 1, then moving to
Cameras 2 and 3 before exiting the room while seen by
Camera 1, and so on. Figure 7 shows some of the handoff
scenarios seen in this sequence.

CONCLUSION

We have described a framework to solve the camera
handoff problem. We contend that camera calibration and
3D reconstruction is unnecessary for solving this problem.
Instead, we present a system based on edge of FOV lines
of cameras that can handle handoffs. We outline a process
to automatically find the lines representing these limits,
and then using them to resolve the ambiguity between
multiple tracks. This approach does not require feature
matching, which is difficult in widely separated cameras.
The whole approach is simple and fast. We show results
for a three-camera setup and resolve the handoff problem
correctly.
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Figure 7: Handoff examples in Sequence 2. In each of
the cases in column 1, a person is entering a new camera.
By looking at images in the 2nd column, we can correctly
identify this person.


