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Abstract— This paper proposes a new technique in wavelet
video compression that exploits the spatiotemporal regularity
of the video. A sequence of frames is said to be regular along
the directions in which the pixels vary the least. The directions
of regularity of a sequence depend on both its motion content
and its spatial structure. We model these directions by a 3D
vector field, referred as theStructural Flow. This flow determines
the paths of regularity along which the entropy of the data
is smaller. We use these paths to construct a special class of
wavelet basis, i.e., the3D orthonormal bandelet basisfor the
directional decomposition of the sequence. Our experiments on
several standard video sequences demonstrate the significant
improvement in compression compared to the standard wavelet
video coding.

I. I NTRODUCTION

Video compression is a very important part of many ap-
plications, such as video-conferencing, video storage, and
broadcasting, since their performance largely relies on the
efficiency of the compression. The wavelet coding, which
proved to be very efficient in image compression, is also
used in this area since it outperforms the standard DCT
(Discrete Cosine Transform) based methods, such as MPEG1
and MPEG2.

In standard wavelet video coding, agroup of frames(gof ) is
decomposed along the three major axes: temporal, horizontal
and vertical. However, this decomposition does not take the
regularity of thegof into account. In the presence of global
motion, uniform 3D paths of regularity are defined in agof ,
which extend along the direction of motion. The situation
gets more complicated when the motion is a mixture of
the local and global components. In this case,subgroups of
frames(subgofs) with different motion types result in multiple
directions of regularity. One way of modelling this regularity is
modelling the motion. The pixel correspondence information
over multiple frames gives the directions of regularity of the
gof . The motion-compensated (MC) wavelet coding algo-
rithms use this approach. The choice of the motion model is an
important factor in such algorithms, as its precision and com-
pressibility directly affect the bit rate. In the recent literature,
the researchers have used dense motion fields modelled by
Markov Random Fields [1] and deformable triangular meshes
([2]). All these models, however, use only consecutive pairs
of frames to compute the directions of regularity of the whole

gof . Hence, the overhead is a problem since the temporal
redundancy in the model cannot be removed when frame pairs
have similar motions. Moreover, the (MC) wavelets reduce to
the standard wavelets when there is no motion in thegof .
This means that it cannot exploit the spatial regularity of the
frames.

In this paper, we propose to model the spatiotemporal
directions of regularity of agof by a 3D vector field, called
thestructural flow. The structural flow can be modelled in dif-
ferent ways, depending on whether the regularity is spatial or
spatiotemporal. Once the flow is computed, the wavelet basis
can be warped along the directions of regularity to decompose
the gof . Then the warped basis isbandeletized, a technique
first introduced by Mallat et al in [3], in order to take further
advantage of the regularity. The overall compression requires
partitioning thegof into subgofs, whose regularities can be
as closely modelled as possible by their respective structural
flows. This is achieved by using an oct tree segmentation of
the gof , such that the reconstruction error and the bit rate of
the gof are optimized.

In this paper, Section II explains the main steps of con-
structing a bandelet basis for asubgof : Section II-A goes into
the details ofstructural flow, presenting some mathematical
background. Section II-B and II-C describe how this flow
can be used to construct a bandelet basis. Next, we discuss
the optimal segmentation of agof into subgofs in Section
III. Finally, we demonstrate our results on standard video
sequences in Section IV, and conclude with a discussion in
Section V.

II. T HE ORTHONORMAL 3D BANDELET BASIS

In wavelet video coding, the efficiency can be improved by
analyzing the directions of regularity of thegof (F ), which
are represented by thestructural flow. Unlike the standard
wavelets, the orthonormal bandelets can greatly benefit from
this direction information, and can achieve higher compression
rates. In this section, we will explain the main steps of
constructing a bandelet basis.

A. The Structural Flow

The structural flow,ζ(x, y, t), is a 3D vector field that shows
the directions, in which asubgof (Fi) varies regularly. De-



composing thesubgof along this field requires its directions to
be orthogonal. This is guaranteed by aplanar (cross-sectional)
parallelismof the flow field, which is defined as all the vectors
on a plane being equal in magnitude and direction. In our
framework, across-sectionally parallelflow field can belong
to one of the following three classes: (1)x − y parallel, (2)
x− t parallel, and (3)y − t parallel.

The x − y parallel structural flow models the temporal
directions of regularity in the frames. The other two classes of
structural flow, i.e.,x − t and y − t parallel flows, generally
model the spatial regularity of thesubgof . The regularity
condition that the structural flow needs to satisfy can also be
perceived as a requirement to follow the directions, in which
the sum of the directional gradients is minimum. Describing
the problem in this way allows us to write a continuous flow
energy equation forζ as

E(ζ) =
∫

Fi
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where H is a regularizing filter, such as a Gaussian. This
equation can be discretized, and then tailored to different types
of parallelism depending on howζ is defined. If the flow
is x − y parallel, then ζ(x, y, t) = ζxy(t) = (c′1[t], c
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(2)
Notice that the formulation ofζxy(t) implies that thex

and y components of the flow, (c′1[t], c
′
2[t]), are functions of

time only, which is constant for all the pixels of a certain
frame, i.e.,x−y cross-section of thesubgof . Fig. 1(a) shows
the frames of a syntheticgof , which has been sampled from
the Lena image by imitating a global translational motion in
the diagonal direction. Hence the direction of motion for all
frames is uniform. Fig. 1(b) shows the subsampledx − y
parallel flow field (shown with blue arrows), and thex − y
cross section of the flow att = 1, superimposed on the first
frame of the syntheticgof . The flow equations can be written
similarly when the flow class isy − t parallel, ζyt(x) =
(1, c′2[x], c′3[x]), or x − t parallel, ζxt(y) = (c′1[y], 1, c′3[y]).
Due to space considerations, we will describe our method
only for thex− y parallel flow. However, note that the same
formulas apply to all flow classes by doing a simple change
of functions.

A very important requirement on the flow representation is
that it should be compact, such that the flow overhead is min-
imum. In order to satisfy this condition, the directions,c′m[u]
(m ∈ {1, 2, 3}), are approximated with1st degree translated
box spline functions (S(u)), asc′m[u] =

∑
n αm

n S(2−lu−n),
whereαn (n = 1...2l) is thenth spline coefficient,l = 1..k is
a scale factor,2k is the width ofFi on the axis along which
the flow is not parallel, andu is the index of this axis. With
this representation, the whole flow can be recovered by storing
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Fig. 1. Thex − y parallel structural flow field for agof with a global
motion along the diagonal direction. (a) The original sequence (8 frames). (b)
(Left) The x− y parallel flow field. (Right) Thex− y cross-section of the
flow field at t = 1, superimposed on the first frame of thegof .

only the spline coefficients. The function,S(u), is formulated
asS(u) = 1−|u| if |u| < 1 and 0 otherwise. The coefficients
αn can be solved for by quadratic minimization of the energy
function (1), the choice depending on the parallelism class. In
the final step, the spline coefficients are quantized.

The conversion of the flow directions into actual spatiotem-
poral paths of regularity requires computing thestructural
flow curves. A structural flow curve,c[u], is an integral curve,
whose tangents are parallel toζ. It defines the paths, on which
Fi varies regularly, so that the wavelet basis can be warped
along the directions of regularity. The structural flow curve in
the discrete domain is given by the equation,

c[u] =
u∑

k=1

c′[k], (3)

The coordinates of anx − y parallel flow curve are given
as,(x + c1[t], y + c2[t], t) for a constant(x, y) and a varying
t. The curves of the flow in Figure 1 are shown by the red
lines on the vector field.

B. Constructing the Orthonormal Bandelet Basis

The standard3D wavelets decompose the data along the
three major axes.

However, if the directions of regularity are known, then the
data can be decomposed along those directions using the ban-
delets. The construction of this basis consists of two steps: (1)
Warping the standard3D wavelet basis, (2)Bandeletization.

The 3D wavelets can be warped along the flow curves
with the operatorW , which is defined asWxy(Fi(x, y, t)) =
Fi(x + c1[t], y + c2[t], t) for the x − y parallel flow, ζxy(t).
Decomposing thesubgof along the directions of regularity,
where the entropy is lower, results in less number of significant
wavelet coefficients.

After warping the wavelet basis, the last step is theban-
deletization. The wavelet function family{ψ(t)}j,m3 consists
of high-pass filters and it has a vanishing moment at lower
resolutions. The scaling function family{φ(t)}j,m3, however,



consists of low-pass filters and it does not have a vanishing
moment at lower resolutions. Hence, it cannot take advantage
of the regularity of thegof along the flow curves. This
problem is solved bybandeletizingthe warped wavelet basis,
i.e., replacing{φ(t)}j,m3 with {ψ(t)}l,m3 for l > j. The
bandeletization further decreases the number of significant
wavelet coefficients.

C. The Orthonormal Bandelet Decomposition

Decomposing asubgof with the orthonormal bandelet basis
can be implemented by slightly modifying the fast discrete
wavelet transform. Once the structural flow is known, the
warped wavelet transform can be computed by a subband
filtering that goes along the flow curves.

The subband filtering can be implemented by using the
lifting scheme [4], which requires that the neighbors of a point
be known. In warped wavelet filtering, these neighborhoods
are defined on the flow curves. The curve coordinates are
stored in a gridG(x, y, t). For the x − y parallel flow,
G(x, y, t) = (x+c1[t], y+c2[t], t) when(x+c1[t], y+c2[t], t)
is in the limits of Fi. Since thex − y parallel flow curves
are the sets of points with fixed (x, y) and varying t, the
pixels stored at the locations G(x, y, t − 1), G(x, y, t) and
G(x, y, t + 1) are temporal neighbors on the same curve. The
spatial neighborhoods of the pixels, on the other hand, are still
defined based on their spatial coordinates, not the flow curves.

After computing the warped wavelet coefficients, the next
step is the bandeletization. The coefficients resulting from the
scaling function are further decomposed by subband filtering at
lower resolutions. This concludes the bandelet transformation
of the subgof .

The reconstruction of thesubgof is implemented by invert-
ing the decomposition steps. After reconstructingG, the rest
is simply an inverse bandeletization that recovers the warped
wavelet coefficients, followed by an inverse subband filtering
of these coefficients along the flow curves.

III. VIDEO COMPRESSION

So far, the bandelet decomposition has been defined for a
subgof , where the compression rate depends on how well
the structural flow models the directions of regularity. Direct
extension of this method to agof does not always work
because agof usually has multiple directions of regularity
due to different types of motions taking place in the video,
and/or the different spatial arrangements in it.

The solution is segmenting agof into subgofs, such that
the directions of regularity of eachsubgof is as closely
estimated as possible. This is directly related to minimizing
the compression cost of eachFi such that the total cost,
D + λR =

∑
i Di + λRi is minimized, whereDi is the sum

of squared reconstruction error ofFi, Ri is the bit cost of the
bandelet and flow coefficients, andλ is a Lagrange multiplier.
In order to achieve this segmentation, we initially partition the
gof into rectangular prisms (cuboids) using anoct tree. The

width of each dimension of a cuboid is2kj , wherej ∈ {1, 2, 3}
denotes the particular dimension. The bandelet coefficients
are uniformly quantized with the quantization parameter,∆,
and then encoded. Since the bit cost of these coefficients is
almost proportional to the number of non-zero coefficients, as
shown in [5], the bit cost of the bandelet coefficients can be
approximated asRb,i = γ0Mi, whereMi is the number of
non-zero coefficients andγ0 = 7. The bit rates that we will
present in the next section will be based on this approximation.

The choice ofλ as a function of the quantization parameter
∆ can be computed by minimizing the total cost equation with
respect to∆. This minimization results in the definition ofλ
as λ = 3∆2

4γ0
. The minimization of the total cost starts with

computing the cost of all cuboids in the oct tree. The cost,
(Di + λRi), can be minimum for only one of the four flow
classes, including the no-flow case. When computing the cost
of a certain flow class, the scale parameterl (1 ≤ l ≤ k) in
the spline equation is found by trying all possible values ofl,
and selecting the one that results in the smallest cost. In the
end, the flow class that has the minimum cost determines the
flow type of Fi.

The optimal segmentation ofF is found by a split/merge
algorithm starting from the leaf nodes of the oct tree. At each
level, eight child nodes are merged into a single node if their
cumulative cost is greater than the parent’s cost, otherwise they
stay split. The split-merge algorithm is applied until the top
of the tree is reached, which concludes the segmentation of
the gof in terms of the bit rate and the reconstruction error.
The basis for the wholegof is called theblock orthonormal
bandelet basis, and it consists of the union of the bases of the
subgofs in the final segmentation, on their own supports.

IV. RESULTS

In this section, we show the results of the bandelet vs
wavelet video compression on some standard sequences. In our
experiments, we employed the Daubechies 7-9 filters, using the
lifting scheme for both bandelets and wavelets. The bit rates
of both compression schemes are computed the same way. In
the bandelet decomposition, the smallestsubgof in the oct
tree is16 × 16 × 8 (x × y × t). The motion parameters are
quantized with a step size of 1/8.

The improvement in the compression can be observed when
the directions of regularity are not uniform. Our algorithm
handles this nonuniformity by automatically segmenting the
gof to minimize the compression cost. In Table I we show
the compression results for various sequences at multiple bit
rates, which are estimated according to [5]. Figure 2 shows the
segmentation of agof from the Flower sequence for∆ = 20.
The 1st row shows the segmented frames of agof from this
sequence. There are two motions in thegof due to the parallax
effect. The bandelet compression results in the segmentation
of thegof until eachsubgof contains a particular motion. The
frames of the subgof marked by the red rectangle are shown in
the 2nd row of Fig. 2, with the flow vectors superimposed on
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Fig. 2. The results for agof from the Flower Garden sequence (∆ = 20).
(1st Row) The original frames and their segmentation. The middle image is
the3rd frame, zoomed-in for details. Since the tree moves very fast, it results
in segmentation of thesubgofs at the boundaries. (2ndRow) The structural
flow of the subgof drawn with red boundaries, superimposed on the sub-
frames. (3rd Row) The same flow from several (oblique, top and side) views.
The direction of the motion has been captured correctly.

Flower Bit Rate (kbps) 330 250 80 30
PSNR (Bandelet) 44.80 39.40 27.85 23.72
PSNR (Wavelet) 7.81 6.77 5.19 5

Alex Bit Rate (kbps) 220 121 80 75
PSNR (Bandelet) 45.28 42.50 39.22 32.21
PSNR (Wavelet) 9.73 8.8 8.74 8.69

Susie Bit Rate (kbps) 700 510 318 226
PSNR (Bandelet) 38.7 36.03 33.4 30.86
PSNR (Wavelet) 26.83 18.98 11.18 9.88

Akiyo Bit Rate (kbps) 60 70 90 105
PSNR (Bandelet) 27.55 30.09 33.77 36.35
PSNR (Wavelet) 10.81 11.5 12.5 14.17

TABLE I

THE BANDELET VS WAVELET COMPRESSION OF VARIOUS SEQUENCES AT

MULTIPLE BIT RATES.

them. Close inspection of these frames shows that the motion
directions have been captured correctly.

V. CONCLUSION

In this paper, we presented a new framework in video coding
that first computes the directions in which a video is regular,
then decomposes it along those directions. Our representation,
the structural flow field, not only models the directions of
regularity due to not only motion, but also the spatial structure
of the frames.

As a future direction, we will search for better ways to
represent the structural flow in 3D. We also want to explore

the possibilities of computing good optical flow using this
framework. We believe that the analysis of the flow at different
parallelisms hold the key to computing a good optical flow.

REFERENCES

[1] S. Han and C. Podilchuk, “Video compression with dense motion fields,”
IEEE Transactions on Image Processing, vol. 10, no. 11, November 2001.

[2] A. Secker and D. Taubman, “Highly scalable video compression with
scalable motion coding,”to appear IEEE Transactions on Image Pro-
cessing, 2004.

[3] E. Le Pennec and S. Mallat, “Sparse geometric image representation with
bandelets,”to appear in IEEE Transaction on Image Processing.

[4] I. Daubechies and W. Sweldens, “Factoring wavelet transforms into lifting
steps,” inJ. Fourier Anal. Appl., 1996, vol. 4, pp. 245–267.

[5] F. Falzon and S. Mallat, “Analysis of low bit rate image transform
coding,” IEEE Transactions on Image Processing, 1 1998.


